Abstract

We demonstrate here a spatially non-blocking optical 4×4 router with a footprint of 0.07 mm2 for use in future integrated photonic interconnection networks. The device is dynamically switched using thermo-optically tuned silicon microring resonators with a wavelength shift to power ratio of 0.25nm/mW. The design can route four optical inputs to four outputs with individual bandwidths of up to 38.5 GHz. All tested configurations successfully routed a single-wavelength laser and provided a maximum extinction ratio larger than 20 dB.

© 2008 Optical Society of America

Full Article  |  PDF Article

Errata

Nicholás Sherwood-Droz, Howard Wang, Long Chen, Benjamin G. Lee, Aleksandr Biberman, Keren Bergman, and Michal Lipson, "Optical 4x4 hitless Silicon router for optical Networks-on-Chip (NoC): erratum," Opt. Express 16, 19395-19395 (2008)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-16-23-19395

References

  • View by:
  • |
  • |
  • |

  1. A. Shacham, K. Bergman, and L. P. Carloni, "On the Design of a Photonic Network-on-Chip," in Networks-on-Chip (2007), pp. 53-64.
  2. R. G. Beausoleil, P. J. Kuekes, G. S. Snider, W. Shih-Yuan, and R. S. Williams, "Nanoelectronic and Nanophotonic Interconnect," Proc. IEEE 96, 230-247 (2008).
    [CrossRef]
  3. J. Lexau, X. Zheng, J. Bergey, A. V. Krishnamoorthy, R. Ho, R. Drost, and J. Cunningham, "CMOS Integration of Capacitive, Optical, and Electrical Interconnects," International Interconnect Technology Conference, IEEE 2007, 78-80 (2007).
    [CrossRef]
  4. M. Briere, B. Girodias, Y. Bouchebaba, G. Nicolescu, F. Mieyeville, F. Gaffiot, and I. O. Connor, "System level assessment of an optical NoC in an MPSoC platform," in Proceedings of the conference on Design, automation and test in Europe (EDA Consortium, Nice, France, 2007).
  5. B. A. Small, B. G. Lee, K. Bergman, Q. Xu, and M. Lipson, "Multiple-wavelength integrated photonic networks based on microring resonator devices," J. Opt. Netw. 6, 112-120 (2007).
    [CrossRef]
  6. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, "Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects," Opt. Express 15, 11934-11941 (2007).
    [CrossRef] [PubMed]
  7. S. T. Chu, B. E. Little, W. Pan, T. A. Kaneko, S. A. Sato, and Y. A. Kokubun, "An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid," Photon. Technol. Lett., IEEE 11, 691-693 (1999).
    [CrossRef]
  8. B. E. Little, S. T. Chu, W. Pan, and Y. A. K. Y. Kokubun, "Microring resonator arrays for VLSI photonics," Photon. Technol. Lett. IEEE 12, 323-325 (2000).
    [CrossRef]
  9. L. Zhang, M. Yang, Y. Jiang, E. Regentova, and E. Lu, "Generalized Wavelength Routed Optical Micronetwork in Network-on-Chip," Proceedings of the 18 th IASTED International Conference on Parallel and Distributed Computing and Systems (2006).
  10. W. J. Dally, Principles and Practices of Interconnection Networks (Morgan Kaufmann, 2004).
  11. A. Shacham, B. G. Lee, A. Biberman, K. Bergman, and L. P. Carloni, "Photonic NoC for DMA Communications in Chip Multiprocessors," in 15th Annual IEEE Symposium on High-Performance Interconnects (HOTI 2007)(2007), pp. 29-38.
  12. H. Wang, M. Petracca, A. Biberman, B. G. Lee, L. P. Carloni, and K. Bergman, "Nanophotonic Optical Interconnection Network Architecture for On-Chip and Off-Chip Communications," in Optical Fiber communication/National Fiber Optic Engineers Conference(2008), pp. 1-3.
  13. C. R. Pollock, and M. Lipson, Integrated Photonics (Kluwer Academic Publishers, 2003).
  14. S. N. Magdalena, L. Tao, W. Xuan, and R. P. Roberto, "Tunable silicon microring resonator with wide free spectral range," Appl. Phys. Lett. 89, 071110 (2006).
    [CrossRef]
  15. W. M. J. Green, H. F. Hamann, L. Sekaric, M. J. Rooks, and Y. A. Vlasov, "Ultra-compact reconfigurable silicon optical devices using micron-scale localized thermal heating," in Optical Fiber Communication and the National Fiber Optic Engineers Conference, 2007. OFC/NFOEC 2007. (2007), pp. 1-3.
  16. M. Lipson, "Compact Electro-Optic Modulators on a Silicon Chip," Photonics in Switching, 67-68 (2006).
  17. M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond submilliwatt silicon-on-insulator thermooptic switch," IEEE Photon. Technol. Lett. IEEE 16, 2514-2516 (2004).
    [CrossRef]
  18. G. Cocorullo, F. G. Della Corte, I. Rendina, and P. M. Sarro, "Thermo-optic effect exploitation in silicon microstructures," Sens. Actuators A: Phys. 71, 19-26 (1998).
    [CrossRef]
  19. D. Geuzebroek, E. J. Klein, H. Kelderman, and A. Driessen, "Wavelength tuning and switching of a thermooptic microring resonator," Proc. ECIO, pp. 395-398 (2003).
  20. F. Xu and A. W. Poon, "Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings," Opt. Express 16, 8649-8657 (2008).
    [CrossRef] [PubMed]
  21. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, "Maximizing the Thermo-Optic Tuning Range of Silicon Photonic Structures," in Photonics in Switching (2007), pp. 67-68.
  22. N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, "4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators," Opt. Eng. 47, 044601 (2008).
    [CrossRef]

2008

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, W. Shih-Yuan, and R. S. Williams, "Nanoelectronic and Nanophotonic Interconnect," Proc. IEEE 96, 230-247 (2008).
[CrossRef]

F. Xu and A. W. Poon, "Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings," Opt. Express 16, 8649-8657 (2008).
[CrossRef] [PubMed]

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, "4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators," Opt. Eng. 47, 044601 (2008).
[CrossRef]

2007

2006

S. N. Magdalena, L. Tao, W. Xuan, and R. P. Roberto, "Tunable silicon microring resonator with wide free spectral range," Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

M. Lipson, "Compact Electro-Optic Modulators on a Silicon Chip," Photonics in Switching, 67-68 (2006).

2004

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond submilliwatt silicon-on-insulator thermooptic switch," IEEE Photon. Technol. Lett. IEEE 16, 2514-2516 (2004).
[CrossRef]

2000

B. E. Little, S. T. Chu, W. Pan, and Y. A. K. Y. Kokubun, "Microring resonator arrays for VLSI photonics," Photon. Technol. Lett. IEEE 12, 323-325 (2000).
[CrossRef]

1999

S. T. Chu, B. E. Little, W. Pan, T. A. Kaneko, S. A. Sato, and Y. A. Kokubun, "An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid," Photon. Technol. Lett., IEEE 11, 691-693 (1999).
[CrossRef]

1998

G. Cocorullo, F. G. Della Corte, I. Rendina, and P. M. Sarro, "Thermo-optic effect exploitation in silicon microstructures," Sens. Actuators A: Phys. 71, 19-26 (1998).
[CrossRef]

Beausoleil, R. G.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, W. Shih-Yuan, and R. S. Williams, "Nanoelectronic and Nanophotonic Interconnect," Proc. IEEE 96, 230-247 (2008).
[CrossRef]

Bergman, K.

Chu, S. T.

B. E. Little, S. T. Chu, W. Pan, and Y. A. K. Y. Kokubun, "Microring resonator arrays for VLSI photonics," Photon. Technol. Lett. IEEE 12, 323-325 (2000).
[CrossRef]

S. T. Chu, B. E. Little, W. Pan, T. A. Kaneko, S. A. Sato, and Y. A. Kokubun, "An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid," Photon. Technol. Lett., IEEE 11, 691-693 (1999).
[CrossRef]

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, I. Rendina, and P. M. Sarro, "Thermo-optic effect exploitation in silicon microstructures," Sens. Actuators A: Phys. 71, 19-26 (1998).
[CrossRef]

Daqun, L.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, "4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators," Opt. Eng. 47, 044601 (2008).
[CrossRef]

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, I. Rendina, and P. M. Sarro, "Thermo-optic effect exploitation in silicon microstructures," Sens. Actuators A: Phys. 71, 19-26 (1998).
[CrossRef]

Geis, M. W.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond submilliwatt silicon-on-insulator thermooptic switch," IEEE Photon. Technol. Lett. IEEE 16, 2514-2516 (2004).
[CrossRef]

Han-Yong, N.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, "4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators," Opt. Eng. 47, 044601 (2008).
[CrossRef]

Jose, M.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, "4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators," Opt. Eng. 47, 044601 (2008).
[CrossRef]

Kachesh, P.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, "4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators," Opt. Eng. 47, 044601 (2008).
[CrossRef]

Kaneko, T. A.

S. T. Chu, B. E. Little, W. Pan, T. A. Kaneko, S. A. Sato, and Y. A. Kokubun, "An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid," Photon. Technol. Lett., IEEE 11, 691-693 (1999).
[CrossRef]

Kokubun, Y. A.

S. T. Chu, B. E. Little, W. Pan, T. A. Kaneko, S. A. Sato, and Y. A. Kokubun, "An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid," Photon. Technol. Lett., IEEE 11, 691-693 (1999).
[CrossRef]

Kokubun, Y. A. K. Y.

B. E. Little, S. T. Chu, W. Pan, and Y. A. K. Y. Kokubun, "Microring resonator arrays for VLSI photonics," Photon. Technol. Lett. IEEE 12, 323-325 (2000).
[CrossRef]

Kuekes, P. J.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, W. Shih-Yuan, and R. S. Williams, "Nanoelectronic and Nanophotonic Interconnect," Proc. IEEE 96, 230-247 (2008).
[CrossRef]

Lee, B. G.

Lipson, M.

Little, B. E.

B. E. Little, S. T. Chu, W. Pan, and Y. A. K. Y. Kokubun, "Microring resonator arrays for VLSI photonics," Photon. Technol. Lett. IEEE 12, 323-325 (2000).
[CrossRef]

S. T. Chu, B. E. Little, W. Pan, T. A. Kaneko, S. A. Sato, and Y. A. Kokubun, "An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid," Photon. Technol. Lett., IEEE 11, 691-693 (1999).
[CrossRef]

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond submilliwatt silicon-on-insulator thermooptic switch," IEEE Photon. Technol. Lett. IEEE 16, 2514-2516 (2004).
[CrossRef]

Magdalena, S. N.

S. N. Magdalena, L. Tao, W. Xuan, and R. P. Roberto, "Tunable silicon microring resonator with wide free spectral range," Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

Michael, R. W.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, "4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators," Opt. Eng. 47, 044601 (2008).
[CrossRef]

Pan, W.

B. E. Little, S. T. Chu, W. Pan, and Y. A. K. Y. Kokubun, "Microring resonator arrays for VLSI photonics," Photon. Technol. Lett. IEEE 12, 323-325 (2000).
[CrossRef]

S. T. Chu, B. E. Little, W. Pan, T. A. Kaneko, S. A. Sato, and Y. A. Kokubun, "An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid," Photon. Technol. Lett., IEEE 11, 691-693 (1999).
[CrossRef]

Poon, A. W.

Rendina, I.

G. Cocorullo, F. G. Della Corte, I. Rendina, and P. M. Sarro, "Thermo-optic effect exploitation in silicon microstructures," Sens. Actuators A: Phys. 71, 19-26 (1998).
[CrossRef]

Roberto, R. P.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, "4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators," Opt. Eng. 47, 044601 (2008).
[CrossRef]

S. N. Magdalena, L. Tao, W. Xuan, and R. P. Roberto, "Tunable silicon microring resonator with wide free spectral range," Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

Rooks, M.

Sarro, P. M.

G. Cocorullo, F. G. Della Corte, I. Rendina, and P. M. Sarro, "Thermo-optic effect exploitation in silicon microstructures," Sens. Actuators A: Phys. 71, 19-26 (1998).
[CrossRef]

Sato, S. A.

S. T. Chu, B. E. Little, W. Pan, T. A. Kaneko, S. A. Sato, and Y. A. Kokubun, "An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid," Photon. Technol. Lett., IEEE 11, 691-693 (1999).
[CrossRef]

Sekaric, L.

Shih-Yuan, W.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, W. Shih-Yuan, and R. S. Williams, "Nanoelectronic and Nanophotonic Interconnect," Proc. IEEE 96, 230-247 (2008).
[CrossRef]

Small, B. A.

Snider, G. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, W. Shih-Yuan, and R. S. Williams, "Nanoelectronic and Nanophotonic Interconnect," Proc. IEEE 96, 230-247 (2008).
[CrossRef]

Spector, S. J.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond submilliwatt silicon-on-insulator thermooptic switch," IEEE Photon. Technol. Lett. IEEE 16, 2514-2516 (2004).
[CrossRef]

Tao, L.

S. N. Magdalena, L. Tao, W. Xuan, and R. P. Roberto, "Tunable silicon microring resonator with wide free spectral range," Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

Vlasov, Y.

Williams, R. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, W. Shih-Yuan, and R. S. Williams, "Nanoelectronic and Nanophotonic Interconnect," Proc. IEEE 96, 230-247 (2008).
[CrossRef]

Williamson, R. C.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond submilliwatt silicon-on-insulator thermooptic switch," IEEE Photon. Technol. Lett. IEEE 16, 2514-2516 (2004).
[CrossRef]

Xia, F.

Xu, F.

Xu, Q.

Xuan, W.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, "4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators," Opt. Eng. 47, 044601 (2008).
[CrossRef]

S. N. Magdalena, L. Tao, W. Xuan, and R. P. Roberto, "Tunable silicon microring resonator with wide free spectral range," Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

Appl. Phys. Lett.

S. N. Magdalena, L. Tao, W. Xuan, and R. P. Roberto, "Tunable silicon microring resonator with wide free spectral range," Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. IEEE

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond submilliwatt silicon-on-insulator thermooptic switch," IEEE Photon. Technol. Lett. IEEE 16, 2514-2516 (2004).
[CrossRef]

J. Opt. Netw.

Opt. Eng.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, "4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators," Opt. Eng. 47, 044601 (2008).
[CrossRef]

Opt. Express

Photon. Technol. Lett. IEEE

B. E. Little, S. T. Chu, W. Pan, and Y. A. K. Y. Kokubun, "Microring resonator arrays for VLSI photonics," Photon. Technol. Lett. IEEE 12, 323-325 (2000).
[CrossRef]

Photon. Technol. Lett., IEEE

S. T. Chu, B. E. Little, W. Pan, T. A. Kaneko, S. A. Sato, and Y. A. Kokubun, "An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid," Photon. Technol. Lett., IEEE 11, 691-693 (1999).
[CrossRef]

Photonics in Switching

M. Lipson, "Compact Electro-Optic Modulators on a Silicon Chip," Photonics in Switching, 67-68 (2006).

Proc. IEEE

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, W. Shih-Yuan, and R. S. Williams, "Nanoelectronic and Nanophotonic Interconnect," Proc. IEEE 96, 230-247 (2008).
[CrossRef]

Sens. Actuators A: Phys.

G. Cocorullo, F. G. Della Corte, I. Rendina, and P. M. Sarro, "Thermo-optic effect exploitation in silicon microstructures," Sens. Actuators A: Phys. 71, 19-26 (1998).
[CrossRef]

Other

D. Geuzebroek, E. J. Klein, H. Kelderman, and A. Driessen, "Wavelength tuning and switching of a thermooptic microring resonator," Proc. ECIO, pp. 395-398 (2003).

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, "Maximizing the Thermo-Optic Tuning Range of Silicon Photonic Structures," in Photonics in Switching (2007), pp. 67-68.

A. Shacham, K. Bergman, and L. P. Carloni, "On the Design of a Photonic Network-on-Chip," in Networks-on-Chip (2007), pp. 53-64.

W. M. J. Green, H. F. Hamann, L. Sekaric, M. J. Rooks, and Y. A. Vlasov, "Ultra-compact reconfigurable silicon optical devices using micron-scale localized thermal heating," in Optical Fiber Communication and the National Fiber Optic Engineers Conference, 2007. OFC/NFOEC 2007. (2007), pp. 1-3.

J. Lexau, X. Zheng, J. Bergey, A. V. Krishnamoorthy, R. Ho, R. Drost, and J. Cunningham, "CMOS Integration of Capacitive, Optical, and Electrical Interconnects," International Interconnect Technology Conference, IEEE 2007, 78-80 (2007).
[CrossRef]

M. Briere, B. Girodias, Y. Bouchebaba, G. Nicolescu, F. Mieyeville, F. Gaffiot, and I. O. Connor, "System level assessment of an optical NoC in an MPSoC platform," in Proceedings of the conference on Design, automation and test in Europe (EDA Consortium, Nice, France, 2007).

L. Zhang, M. Yang, Y. Jiang, E. Regentova, and E. Lu, "Generalized Wavelength Routed Optical Micronetwork in Network-on-Chip," Proceedings of the 18 th IASTED International Conference on Parallel and Distributed Computing and Systems (2006).

W. J. Dally, Principles and Practices of Interconnection Networks (Morgan Kaufmann, 2004).

A. Shacham, B. G. Lee, A. Biberman, K. Bergman, and L. P. Carloni, "Photonic NoC for DMA Communications in Chip Multiprocessors," in 15th Annual IEEE Symposium on High-Performance Interconnects (HOTI 2007)(2007), pp. 29-38.

H. Wang, M. Petracca, A. Biberman, B. G. Lee, L. P. Carloni, and K. Bergman, "Nanophotonic Optical Interconnection Network Architecture for On-Chip and Off-Chip Communications," in Optical Fiber communication/National Fiber Optic Engineers Conference(2008), pp. 1-3.

C. R. Pollock, and M. Lipson, Integrated Photonics (Kluwer Academic Publishers, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Microring resonators are used as individual routing devices; (a) an active switching element switches light at an intersection (insert shows switches in off state), (b) a simple 4×4 routing device highlighting a contention state where a red and a blue signal have used the same physical path.

Fig. 2.
Fig. 2.

The new 4×4 routing device is characterized by its multiple internal paths and ring resonator switching elements, allowing for dynamic hitless networking. Shown in color are four paths highlighting an arbitrary configuration using the maximum number of microrings.

Fig. 3.
Fig. 3.

The resonance wavelength shift in the microrings that is caused by the shift in effective index and equivalent temperature shift.

Fig. 4.
Fig. 4.

Heater and waveguide design for thermal and optical efficiency: (a) the optical mode is separated from the heater to avoid absorption while (b) maintaining enough proximity to couple heat into the waveguide.

Fig. 5.
Fig. 5.

Images of the fabricated router: (a) microscope image of full device shows gold contacts to nichrome heaters above the microrings; (b) an SEM image shows the details of the fabricated waveguide crossing and coupled rings (insert shows close-up of Ω heaters).

Fig. 6.
Fig. 6.

Electric power applied to the heaters shifts the microring resonances, causing a switch in the transmitted optical power of a given wavelength.

Fig. 7.
Fig. 7.

Extinction ratio comparison for two switched paths: (a) the power before and after switching is measured at the through port. (b) The power before and after switching is measured at the drop port.

Tables (1)

Tables Icon

Table 1. Router Path and State Organization

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

m λ 0 = n eff L .
( dn dT ) Si @ 1.5 μ m = 1 . 86 × 10 4 K 1 .

Metrics