Abstract

We report on a high-energy solid-state laser based on a master-oscillator power-amplifier system seeded by a 5-GHz repetition-rate mode-locked oscillator, aimed at the excitation of the dynamic Casimir effect by optically modulating a microwave resonator. Solid-state amplifiers provide up to 250 mJ at 1064 nm in a 500-ns (macro-)pulse envelope containing 12-ps (micro-)pulses, with a macro/micropulse format and energy resembling that of near-infrared free-electron lasers. Efficient second-harmonic conversion allowed synchronous pumping of an optical parametric oscillator, obtaining up to 40 mJ in the range 750–850 nm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. O'Shea and H. P. Freund, "Free-Electron Lasers: Status and Applications," Science 292, 1853-1858 (2001).
    [CrossRef] [PubMed]
  2. C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, "A novel experimental approach for the detection of the dynamic Casimir effect," Europhys. Lett. 70,754-757 (2005).
    [CrossRef]
  3. U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003).
    [CrossRef] [PubMed]
  4. J. E. Bernard and A. J. Alcock, "High-efficiency diode-pumped Nd:YVO4 slab laser," Opt. Lett. 18,968-970 (1993).
    [CrossRef] [PubMed]
  5. A. Agnesi, L. Carrà, F. Pirzio, D. Scarpa, A. Tomaselli, G. Reali, C. Vacchi, and C. Braggio, "High-gain diode-pumped amplifier for generation of microjoule-level picosecond pulses," Opt. Express 14, 9244-9249 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9244.
    [CrossRef] [PubMed]
  6. A. Agnesi, L. Carrà, P. Dallocchio, F. Pirzio, G. Reali, A. Tomaselli, D. Scarpa, and C. Vacchi, "High energy amplification of a continuous wave mode-locked picosecond Nd:YVO4 laser by a pulsed grazing-incidence slab amplifier," paper CFJ2, presented at Conference on Lasers and Electro-Optics 2008, San Jose (CA), USA
  7. T. Omatsu, K. Nawata, M. Okida, and K. Furuki, "MW ps pulse generation at sub-MHz repetition rate from a phase-conjugate Nd:YVO4 bounce amplifier," Opt. Express 15, 9123-9128 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-15-9123.
    [CrossRef] [PubMed]
  8. A. Agnesi, F. Pirzio, A. Tomaselli, G. Reali, and C. Braggio, "Multi-GHz tunable-repetition-rate mode-locked Nd:GdVO4 laser," Opt. Express 13, 5302-530 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-14-5302.
    [CrossRef] [PubMed]
  9. L. M. Frantz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
    [CrossRef]
  10. A. K. Potemkin, T. V. Barmashova, A. V. Kirsanov, M. A. Martyanov, E. A. Khazanov, and A. A. Shaykin, "Spatial filters for high-peak-power multistage laser amplifiers," Appl. Opt. 46,4423-4430 (2007).
    [CrossRef] [PubMed]
  11. I. Will, G. Koss, and I. Templin, "The upgraded photocatode laser of the TESLA Test Facility," Nucl. Instrum. Methods A 541, 467-477 (2005).

2007

2006

2005

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, "A novel experimental approach for the detection of the dynamic Casimir effect," Europhys. Lett. 70,754-757 (2005).
[CrossRef]

I. Will, G. Koss, and I. Templin, "The upgraded photocatode laser of the TESLA Test Facility," Nucl. Instrum. Methods A 541, 467-477 (2005).

A. Agnesi, F. Pirzio, A. Tomaselli, G. Reali, and C. Braggio, "Multi-GHz tunable-repetition-rate mode-locked Nd:GdVO4 laser," Opt. Express 13, 5302-530 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-14-5302.
[CrossRef] [PubMed]

2003

U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003).
[CrossRef] [PubMed]

2001

P. G. O'Shea and H. P. Freund, "Free-Electron Lasers: Status and Applications," Science 292, 1853-1858 (2001).
[CrossRef] [PubMed]

1993

1963

L. M. Frantz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

Agnesi, A.

Alcock, A. J.

Barmashova, T. V.

Bernard, J. E.

Braggio, C.

Bressi, G.

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, "A novel experimental approach for the detection of the dynamic Casimir effect," Europhys. Lett. 70,754-757 (2005).
[CrossRef]

Carrà, L.

Carugno, G.

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, "A novel experimental approach for the detection of the dynamic Casimir effect," Europhys. Lett. 70,754-757 (2005).
[CrossRef]

Del Noce, C.

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, "A novel experimental approach for the detection of the dynamic Casimir effect," Europhys. Lett. 70,754-757 (2005).
[CrossRef]

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

Freund, H. P.

P. G. O'Shea and H. P. Freund, "Free-Electron Lasers: Status and Applications," Science 292, 1853-1858 (2001).
[CrossRef] [PubMed]

Furuki, K.

Galeazzi, G.

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, "A novel experimental approach for the detection of the dynamic Casimir effect," Europhys. Lett. 70,754-757 (2005).
[CrossRef]

Keller, U.

U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003).
[CrossRef] [PubMed]

Khazanov, E. A.

Kirsanov, A. V.

Koss, G.

I. Will, G. Koss, and I. Templin, "The upgraded photocatode laser of the TESLA Test Facility," Nucl. Instrum. Methods A 541, 467-477 (2005).

Lombardi, A.

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, "A novel experimental approach for the detection of the dynamic Casimir effect," Europhys. Lett. 70,754-757 (2005).
[CrossRef]

Martyanov, M. A.

Nawata, K.

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

Okida, M.

Omatsu, T.

O'Shea, P. G.

P. G. O'Shea and H. P. Freund, "Free-Electron Lasers: Status and Applications," Science 292, 1853-1858 (2001).
[CrossRef] [PubMed]

Palmieri, A.

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, "A novel experimental approach for the detection of the dynamic Casimir effect," Europhys. Lett. 70,754-757 (2005).
[CrossRef]

Pirzio, F.

Potemkin, A. K.

Reali, G.

Ruoso, G.

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, "A novel experimental approach for the detection of the dynamic Casimir effect," Europhys. Lett. 70,754-757 (2005).
[CrossRef]

Scarpa, D.

Shaykin, A. A.

Templin, I.

I. Will, G. Koss, and I. Templin, "The upgraded photocatode laser of the TESLA Test Facility," Nucl. Instrum. Methods A 541, 467-477 (2005).

Tomaselli, A.

Vacchi, C.

Will, I.

I. Will, G. Koss, and I. Templin, "The upgraded photocatode laser of the TESLA Test Facility," Nucl. Instrum. Methods A 541, 467-477 (2005).

Zanello, D.

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, "A novel experimental approach for the detection of the dynamic Casimir effect," Europhys. Lett. 70,754-757 (2005).
[CrossRef]

Appl. Opt.

Europhys. Lett.

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, "A novel experimental approach for the detection of the dynamic Casimir effect," Europhys. Lett. 70,754-757 (2005).
[CrossRef]

J. Appl. Phys.

L. M. Frantz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

Nature

U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003).
[CrossRef] [PubMed]

Nucl. Instrum. Methods A

I. Will, G. Koss, and I. Templin, "The upgraded photocatode laser of the TESLA Test Facility," Nucl. Instrum. Methods A 541, 467-477 (2005).

Opt. Express

Opt. Lett.

Science

P. G. O'Shea and H. P. Freund, "Free-Electron Lasers: Status and Applications," Science 292, 1853-1858 (2001).
[CrossRef] [PubMed]

Other

A. Agnesi, L. Carrà, P. Dallocchio, F. Pirzio, G. Reali, A. Tomaselli, D. Scarpa, and C. Vacchi, "High energy amplification of a continuous wave mode-locked picosecond Nd:YVO4 laser by a pulsed grazing-incidence slab amplifier," paper CFJ2, presented at Conference on Lasers and Electro-Optics 2008, San Jose (CA), USA

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Conceptual setup of the laser system. (b) Detail of the 1064-nm amplifiers section.

Fig. 2.
Fig. 2.

Experimental comparison of output pulse train envelopes in case of no compensation (red curve) and of programmed deflection for gain saturation compensation (blue curve).

Fig. 3.
Fig. 3.

Background-free noncollinear autocorrelation of the mode-locking pulses generated by the master oscillator (green, fwhm =6 ps) after the diode-pumped Nd:YVO4 pre-amplifier (red, fwhm =8.9 ps) and lamp-pumped Nd:YAG boost amplifier stages (blue, fwhm =11.7 ps). Sech2 intensity shape was assumed for best fit. Inset: pulse optical spectrum of the oscillator, after Nd:YVO4 and Nd:YAG amplifiers, same legend.

Metrics