Abstract

We convert a linearly polarized Gaussian beam into a radially polarized doughnut beam with an eight-segment spirally varying retarder (SVR) at wavelength of 808 nm. The SVR is designed based on the linear birefringence of α-barium borate (α-BBO) crystal and fabricated using a dry etching process. Radially polarized light of high purity (>96% at far-field distribution) was generated experimentally using the segmented SVR positioned between two quarter waveplates with orthogonal slow axes. The emergent polarization can be switched between radially and azimuthally polarized cylindrical vector beams with a pair of half-wave plates.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000).
    [CrossRef] [PubMed]
  2. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
    [CrossRef]
  3. Q. Zhan, "Trapping metallic Rayleigh particles with radial polarization," Opt. Express 12, 3377-3382 (2004).
    [CrossRef] [PubMed]
  4. K. Watanabe, N. Horiguchi, and H. Kano, "Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination," Appl. Opt. 46, 4985-4990 (2007).
    [CrossRef] [PubMed]
  5. M. Meier, V. Romano, and T. Feurer, "Materials processing with pulsed radially and azimuthally polarized laser radiation," Appl. Phys. A 86, 329-334 (2007).
    [CrossRef]
  6. Q. Zhan and J. R. Leger, "Focus shaping using cylindrical vector beams," Opt. Express 10, 324-331 (2002).
    [PubMed]
  7. J. Li, K. Ueda, M. Musha, and A. Shirakawa, "Generation of radially polarized mode in Yb fiber laser by using a dual conical prism," Opt. Lett. 31, 2969-2971 (2006).
    [CrossRef] [PubMed]
  8. Y. Kozawa and S. Sato, "Generation of a radially polarized laser beam by use of a conical Brewster prism," Opt. Lett. 30, 3063-3065 (2005).
    [CrossRef] [PubMed]
  9. K. Yonezawa, Y. Kozawa, and S. Sato, "Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal," Opt. Lett. 31, 2151-2153 (2006).
    [CrossRef] [PubMed]
  10. S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically," Appl. Opt. 29, 2234-2239 (1990).
    [CrossRef] [PubMed]
  11. S. C. Tidwell, G. H. Kim, and W. D. Kimura, "Efficient radially polarized laser beam generation with a double interferometer," Appl. Opt. 32, 5222-5229 (1993).
    [CrossRef] [PubMed]
  12. N. Passilly, R. de S. Denis, and K. A. Ameur, "Simple interferometric technique for generation of a radially polarized light beam," J. Opt. Soc. Am. A 22, 984-991 (2005).
    [CrossRef]
  13. P. B. Phua and W. J. Lai, "Simple coherent polarization manipulation scheme for generating high power radially polarized beam," Opt. Express 15, 14251-14256 (2008).
    [CrossRef]
  14. H. Ren, Y. H. Lin, and S. T. Wu, "Linear to axial or radial polarization conversion using a liquid crystal gel," Appl. Phys. Lett. 89, 051114 (2006).
    [CrossRef]
  15. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, "Efficient extracavity generation of radially and azimuthally polarized beams," Opt. Lett. 32, 1468-1470 (2007).
    [CrossRef] [PubMed]
  16. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings," Opt. Lett. 27, 285-287 (2002).
    [CrossRef]
  17. B. C. Lim, P. B. Phua, W. J. Lai, and M. H. Hong, "Fast switchable electro-optic radial polarization retarder," Opt. Lett. 33, 950-952 (2008).
    [CrossRef] [PubMed]
  18. A. K. Spilman and T. G. Brown, "Stress birefringent, space-variant wave plates for vortex illumination," Appl. Opt. 46, 61-66 (2007).
    [CrossRef]
  19. K. J. Moh, X. C. Yuan, J. Bu, R. E. Burge, and BruceZ. Gao, "Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams," Appl. Opt. 46, 7544-7551 (2007).
    [CrossRef] [PubMed]
  20. P. B. Phua, W. J. Lai, Y. L. Lim, B. S. Tan, R. F. Wu, K. S. Lai, and H. W. Tan, "High power radially polarized light generated from photonic crystal segmented half-wave-plate," in Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference, paper CMo4, San Jose, USA, (2008).
  21. T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystal for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron 34, 63-70 (2002).
    [CrossRef]
  22. P. B. Phua, W. J. Lai, Y. L. Lim, K. S. Tiaw, B. C. Lim, H. H. Teo, and M. H. Hong, "Mimicking Optical Activity for Generating Radially Polarized Light," Opt. Lett. 32, 376-378 (2007).
    [CrossRef] [PubMed]

2008 (2)

2007 (6)

2006 (3)

2005 (2)

2004 (1)

2002 (3)

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystal for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron 34, 63-70 (2002).
[CrossRef]

Q. Zhan and J. R. Leger, "Focus shaping using cylindrical vector beams," Opt. Express 10, 324-331 (2002).
[PubMed]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings," Opt. Lett. 27, 285-287 (2002).
[CrossRef]

2000 (2)

K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

1993 (1)

1990 (1)

Biener, G.

Bomzon, Z.

Brown, T. G.

Bruce, R. E.

Bu, J.

Burge, R. E.

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Feurer, T.

M. Meier, V. Romano, and T. Feurer, "Materials processing with pulsed radially and azimuthally polarized laser radiation," Appl. Phys. A 86, 329-334 (2007).
[CrossRef]

Ford, D. H.

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Hasman, E.

Hong, M. H.

Horiguchi, N.

Ishino, N.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystal for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron 34, 63-70 (2002).
[CrossRef]

Jackel, S.

Kano, H.

Kawakami, S.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystal for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron 34, 63-70 (2002).
[CrossRef]

Kim, G. H.

Kimura, W. D.

Kleiner, V.

Kozawa, Y.

Lai, W. J.

Leger, J. R.

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Li, J.

Lim, B. C.

Lim, Y. L.

Lin, Y. H.

H. Ren, Y. H. Lin, and S. T. Wu, "Linear to axial or radial polarization conversion using a liquid crystal gel," Appl. Phys. Lett. 89, 051114 (2006).
[CrossRef]

Lumer, Y.

Machavariani, G.

Meier, M.

M. Meier, V. Romano, and T. Feurer, "Materials processing with pulsed radially and azimuthally polarized laser radiation," Appl. Phys. A 86, 329-334 (2007).
[CrossRef]

Meir, A.

Miura, K.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystal for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron 34, 63-70 (2002).
[CrossRef]

Moh, K. J.

Moshe, I.

Musha, M.

Ohtera, Y.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystal for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron 34, 63-70 (2002).
[CrossRef]

Passilly, N.

Phua, P. B.

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Ren, H.

H. Ren, Y. H. Lin, and S. T. Wu, "Linear to axial or radial polarization conversion using a liquid crystal gel," Appl. Phys. Lett. 89, 051114 (2006).
[CrossRef]

Romano, V.

M. Meier, V. Romano, and T. Feurer, "Materials processing with pulsed radially and azimuthally polarized laser radiation," Appl. Phys. A 86, 329-334 (2007).
[CrossRef]

Sato, S.

Sato, T.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystal for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron 34, 63-70 (2002).
[CrossRef]

Shirakawa, A.

Spilman, A. K.

Tamamura, T.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystal for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron 34, 63-70 (2002).
[CrossRef]

Teo, H. H.

Tiaw, K. S.

Tidwell, S. C.

Ueda, K.

Watanabe, K.

Wu, S. T.

H. Ren, Y. H. Lin, and S. T. Wu, "Linear to axial or radial polarization conversion using a liquid crystal gel," Appl. Phys. Lett. 89, 051114 (2006).
[CrossRef]

Yonezawa, K.

Youngworth, K. S.

Yuan, X. C.

Zhan, Q.

Appl. Opt. (5)

Appl. Phys. A (1)

M. Meier, V. Romano, and T. Feurer, "Materials processing with pulsed radially and azimuthally polarized laser radiation," Appl. Phys. A 86, 329-334 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

H. Ren, Y. H. Lin, and S. T. Wu, "Linear to axial or radial polarization conversion using a liquid crystal gel," Appl. Phys. Lett. 89, 051114 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Opt. Express (4)

Opt. Lett. (7)

Opt. Quantum Electron (1)

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystal for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron 34, 63-70 (2002).
[CrossRef]

Other (1)

P. B. Phua, W. J. Lai, Y. L. Lim, B. S. Tan, R. F. Wu, K. S. Lai, and H. W. Tan, "High power radially polarized light generated from photonic crystal segmented half-wave-plate," in Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference, paper CMo4, San Jose, USA, (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Silicon masks used during dry etching process.

Fig. 2.
Fig. 2.

(a) Stepped spiral profile of the segmented SVR and (b) the fabricated segmented SVR.

Fig. 3.
Fig. 3.

Actual etching profile of the SVR with a total depth of ~11 µm.

Fig. 4.
Fig. 4.

Experimental setup (QWP: Quarter-wave plate, HWP: Half-wave plate, SVR: Spirally varying retarder)

Fig. 5.
Fig. 5.

Near-field intensity distribution of radially polarized light generated from the SVR (a) without and (b) with a polarizer. White arrows indicate the directions of the transmission axes of the rotated polarizer. Polarization purity is ~94.6 %.

Fig. 6.
Fig. 6.

Far-field intensity distribution of radially polarized light generated from the SVR (a) without and (b) with a polarizer. White arrows indicate the directions of the transmission axes of the rotated polarizer. Polarization purity is ~96.0 %.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D seg = 2 λ | Δ n | s
D Total = D seg × ( s 1 )

Metrics