Abstract

Multispectral bioluminescence tomography (BLT) attracts increasing more attention in the area of small animal studies because multispectral data acquisition could help in the 3D location of bioluminescent sources. Generally, BLT problem is ill-posed and a priori information is indispensable to reconstruction bioluminescent source uniquely and quantitatively. In this paper, we propose a spectrally solved bioluminescence tomography algorithm with an optimal permissible source region strategy. Being the most different from earlier studies, an optimal permissible source region strategy which is automatically selected without human intervention is developed to reduce the ill-posedness of BLT and therefore improves the reconstruction quality. Furthermore, both numerical stability and computational efficiency benefit from the strategy. In the numerical experiments, a heterogeneous phantom is used to evaluate the proposed algorithm and the synthetic data is produced by Monte Carlo method for avoiding the inverse crime. The results demonstrate the feasibility and potential of our methodology for reconstructing the distribution of bioluminescent sources.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weisslder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
    [CrossRef] [PubMed]
  2. C. H. Contag and M. H. Bachmann, "Advances in bioluminescence imaging of gene expression," Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
  3. G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. F. Meinel, "Development of the first bioluminescence ct scanner," Radiology 229(P), 566 (2003).
  4. G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, "In vivo mouse studies with bioluminescence tomography," Opt. Express 14, 7801-7809 (2006).
    [CrossRef] [PubMed]
  5. G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289- 2299 (2004).
    [CrossRef] [PubMed]
  6. Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, "A multilevel adaptive finite element algorithm for bioluminescence tomography," Opt. Express 14, 8211-8223 (2006).
    [CrossRef] [PubMed]
  7. H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, "Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo," J. Biomed. Opt. 10, 041210-1-9 (2005).
    [CrossRef]
  8. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13, 6756-6771 (2005).
    [CrossRef] [PubMed]
  9. Y. Lv, J. Tian, W. Cong, G. Wang, W. Yang, C. Qin, and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element: methodology and simulation," Phys. Med. Biol. 52, 4497-4512 (2007).
    [CrossRef] [PubMed]
  10. W. Han, W. Cong, and G. Wang, "Mathematical Study and Numirical Simulation of Multispectral Bioluminescence Tomography," Int. J. Biomed. Imaging 2006, 54390 (2006).
  11. O. Coquoz, T. L. Troy, D. Jekic-McMullen, and B. W. Rice, "Determination of depth of in vivo bioluminescent signals using spectral imaging techniques," Proc. SPIE 4967, 37-45 (2003).
    [CrossRef]
  12. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
    [CrossRef] [PubMed]
  13. G. Alexandrakis, F.R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
    [CrossRef] [PubMed]
  14. A. X. Cong and G. Wang, "Multispectral Bioluminescence Tomography: Methodology and Simulation," Int. J. Biomed. Imaging 2006, Article ID 57614, 7 pages, 2006. doi:10.1155/IJBI/2006/57614.
    [CrossRef]
  15. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen and M. S. Patterson, "Spectrally resolved bioluminescence optical tomography," Opt. Lett. 31: 365-367 (2006).
    [CrossRef] [PubMed]
  16. G. Wang, H. Shen, K. Durairaj, X. Qian, and W. Cong, "The first bioluminescence tomography system for simultaneous acquisition of Multiview and multispectral Data," Int. J. Biomed. Imaging, 2006. Article ID 58601, 8 pages, 2006. doi:10.1155/IJBI/2006/58601.
    [CrossRef]
  17. X. Gu, Q. Zhang, L. Larcom, and H. Jiang, "Three-dimensional bioluminescence tomography with model-based reconstruction," Opt. Express 12, 3996-4000 (2004).
    [CrossRef] [PubMed]
  18. N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, "Iterative reconstruction method for light emitting sources based on the diffusion equation," Med. Phys. 33, 61-68 (2006).
  19. M. Jiang, T. Zhou, J. Cheng, W. Cong, and G. Wang, "Image reconstruction for bioluminescence tomography from partial measurement," Opt. Express 15,11095-11116 (2007).
    [CrossRef] [PubMed]
  20. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
    [CrossRef] [PubMed]
  21. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, 41-93 (1999).
    [CrossRef]
  22. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
    [CrossRef] [PubMed]
  23. S. S. Rao, The Finite Element Method in Enginering, (Butterworth-Heinemann, Boston, 1999).
  24. P. E. Gill, W. Murray, and M. Wright, Practical optimization, (Academic Press, New York, 1981).
  25. E. G. Birgin and J. M. Martinez, "A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients," Computing Sup. 15, 49-60 (2001).
    [CrossRef]
  26. E. G. Birgin, J. M. Martinez, "Large-scale Active-Set Box-Constrained Optimization Method with Spectral Projected Gradients," Comput. Optim. Appl. 23, 101-125, (2002).
    [CrossRef]
  27. H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004).
    [CrossRef] [PubMed]
  28. Y. Lv, J. Tian, W. Cong, and G. Wang, "Experimental Study on Bioluminescence Tomography with Multimodality Fusion," Int. J. Biomed. Imaging 2007, 86741 (2007).
    [CrossRef]
  29. V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, "Diffuse Optical Tomography of Highly Heterogeneous Media," IEEE Trans. Med. Imaging 20, 470-478 (2001).
    [CrossRef] [PubMed]
  30. S. Holder, Electrical Impedance Tomography (Institute of Physics Publishing, Bristol and Philadelphia, 2005).
  31. J. K. Willmann, N. V. Bruggen, L. M. Dinkelborg and S. S. Gambhir, "Molecular imaging in drug development," Nat. Rev. Drug Discovery 7, 591-607 (2008).
    [CrossRef]

2008

J. K. Willmann, N. V. Bruggen, L. M. Dinkelborg and S. S. Gambhir, "Molecular imaging in drug development," Nat. Rev. Drug Discovery 7, 591-607 (2008).
[CrossRef]

2007

Y. Lv, J. Tian, W. Cong, and G. Wang, "Experimental Study on Bioluminescence Tomography with Multimodality Fusion," Int. J. Biomed. Imaging 2007, 86741 (2007).
[CrossRef]

Y. Lv, J. Tian, W. Cong, G. Wang, W. Yang, C. Qin, and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element: methodology and simulation," Phys. Med. Biol. 52, 4497-4512 (2007).
[CrossRef] [PubMed]

M. Jiang, T. Zhou, J. Cheng, W. Cong, and G. Wang, "Image reconstruction for bioluminescence tomography from partial measurement," Opt. Express 15,11095-11116 (2007).
[CrossRef] [PubMed]

2006

2005

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weisslder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

G. Alexandrakis, F.R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

2004

X. Gu, Q. Zhang, L. Larcom, and H. Jiang, "Three-dimensional bioluminescence tomography with model-based reconstruction," Opt. Express 12, 3996-4000 (2004).
[CrossRef] [PubMed]

G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289- 2299 (2004).
[CrossRef] [PubMed]

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef] [PubMed]

2003

O. Coquoz, T. L. Troy, D. Jekic-McMullen, and B. W. Rice, "Determination of depth of in vivo bioluminescent signals using spectral imaging techniques," Proc. SPIE 4967, 37-45 (2003).
[CrossRef]

2002

C. H. Contag and M. H. Bachmann, "Advances in bioluminescence imaging of gene expression," Annu. Rev. Biomed. Eng. 4, 235-260 (2002).

E. G. Birgin, J. M. Martinez, "Large-scale Active-Set Box-Constrained Optimization Method with Spectral Projected Gradients," Comput. Optim. Appl. 23, 101-125, (2002).
[CrossRef]

2001

E. G. Birgin and J. M. Martinez, "A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients," Computing Sup. 15, 49-60 (2001).
[CrossRef]

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, "Diffuse Optical Tomography of Highly Heterogeneous Media," IEEE Trans. Med. Imaging 20, 470-478 (2001).
[CrossRef] [PubMed]

1999

S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, 41-93 (1999).
[CrossRef]

1995

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

1993

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Alexandrakis, G.

G. Alexandrakis, F.R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Antich, P. P.

N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, "Iterative reconstruction method for light emitting sources based on the diffusion equation," Med. Phys. 33, 61-68 (2006).

Arridge, S. R.

S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, 41-93 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Bachmann, M. H.

C. H. Contag and M. H. Bachmann, "Advances in bioluminescence imaging of gene expression," Annu. Rev. Biomed. Eng. 4, 235-260 (2002).

Bading, J. R.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Birgin, E. G.

E. G. Birgin, J. M. Martinez, "Large-scale Active-Set Box-Constrained Optimization Method with Spectral Projected Gradients," Comput. Optim. Appl. 23, 101-125, (2002).
[CrossRef]

E. G. Birgin and J. M. Martinez, "A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients," Computing Sup. 15, 49-60 (2001).
[CrossRef]

Bruggen, N. V.

J. K. Willmann, N. V. Bruggen, L. M. Dinkelborg and S. S. Gambhir, "Molecular imaging in drug development," Nat. Rev. Drug Discovery 7, 591-607 (2008).
[CrossRef]

Chance, B.

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, "Diffuse Optical Tomography of Highly Heterogeneous Media," IEEE Trans. Med. Imaging 20, 470-478 (2001).
[CrossRef] [PubMed]

Chatziioannou, A. F.

G. Alexandrakis, F.R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Chaudhari, A. J.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Cheng, J.

Cherry, S. R.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Cong, A.

Cong, W.

Y. Lv, J. Tian, W. Cong, G. Wang, W. Yang, C. Qin, and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element: methodology and simulation," Phys. Med. Biol. 52, 4497-4512 (2007).
[CrossRef] [PubMed]

M. Jiang, T. Zhou, J. Cheng, W. Cong, and G. Wang, "Image reconstruction for bioluminescence tomography from partial measurement," Opt. Express 15,11095-11116 (2007).
[CrossRef] [PubMed]

Y. Lv, J. Tian, W. Cong, and G. Wang, "Experimental Study on Bioluminescence Tomography with Multimodality Fusion," Int. J. Biomed. Imaging 2007, 86741 (2007).
[CrossRef]

W. Han, W. Cong, and G. Wang, "Mathematical Study and Numirical Simulation of Multispectral Bioluminescence Tomography," Int. J. Biomed. Imaging 2006, 54390 (2006).

G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, "In vivo mouse studies with bioluminescence tomography," Opt. Express 14, 7801-7809 (2006).
[CrossRef] [PubMed]

Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, "A multilevel adaptive finite element algorithm for bioluminescence tomography," Opt. Express 14, 8211-8223 (2006).
[CrossRef] [PubMed]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef] [PubMed]

Contag, C. H.

C. H. Contag and M. H. Bachmann, "Advances in bioluminescence imaging of gene expression," Annu. Rev. Biomed. Eng. 4, 235-260 (2002).

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, "Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo," J. Biomed. Opt. 10, 041210-1-9 (2005).
[CrossRef]

Conti, P. S.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Coquoz, O.

O. Coquoz, T. L. Troy, D. Jekic-McMullen, and B. W. Rice, "Determination of depth of in vivo bioluminescent signals using spectral imaging techniques," Proc. SPIE 4967, 37-45 (2003).
[CrossRef]

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, "Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo," J. Biomed. Opt. 10, 041210-1-9 (2005).
[CrossRef]

Darvas, F.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Davis, S. C.

Dehghani, H.

Delpy, D. T.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Dinkelborg, L. M.

J. K. Willmann, N. V. Bruggen, L. M. Dinkelborg and S. S. Gambhir, "Molecular imaging in drug development," Nat. Rev. Drug Discovery 7, 591-607 (2008).
[CrossRef]

Doyle, T. C.

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, "Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo," J. Biomed. Opt. 10, 041210-1-9 (2005).
[CrossRef]

Durairaj, K.

Gambhir, S. S.

J. K. Willmann, N. V. Bruggen, L. M. Dinkelborg and S. S. Gambhir, "Molecular imaging in drug development," Nat. Rev. Drug Discovery 7, 591-607 (2008).
[CrossRef]

Gu, X.

Han, W.

W. Han, W. Cong, and G. Wang, "Mathematical Study and Numirical Simulation of Multispectral Bioluminescence Tomography," Int. J. Biomed. Imaging 2006, 54390 (2006).

Henry, M.

Hielscher, A. H.

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, "Diffuse Optical Tomography of Highly Heterogeneous Media," IEEE Trans. Med. Imaging 20, 470-478 (2001).
[CrossRef] [PubMed]

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Hoffman, E.

Hoffman, E. A.

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef] [PubMed]

G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. F. Meinel, "Development of the first bioluminescence ct scanner," Radiology 229(P), 566 (2003).

Jekic-McMullen, D.

O. Coquoz, T. L. Troy, D. Jekic-McMullen, and B. W. Rice, "Determination of depth of in vivo bioluminescent signals using spectral imaging techniques," Proc. SPIE 4967, 37-45 (2003).
[CrossRef]

Jiang, H.

Jiang, M.

Jiang, S.

Kalish, F.

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, "Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo," J. Biomed. Opt. 10, 041210-1-9 (2005).
[CrossRef]

Kumar, D.

Larcom, L.

Leahy, R. M.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Lewis, M. A.

N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, "Iterative reconstruction method for light emitting sources based on the diffusion equation," Med. Phys. 33, 61-68 (2006).

Li, H.

Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, "A multilevel adaptive finite element algorithm for bioluminescence tomography," Opt. Express 14, 8211-8223 (2006).
[CrossRef] [PubMed]

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef] [PubMed]

Li, Y.

G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289- 2299 (2004).
[CrossRef] [PubMed]

Liu, Y.

Luo, J.

Lv, Y.

Y. Lv, J. Tian, W. Cong, G. Wang, W. Yang, C. Qin, and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element: methodology and simulation," Phys. Med. Biol. 52, 4497-4512 (2007).
[CrossRef] [PubMed]

Y. Lv, J. Tian, W. Cong, and G. Wang, "Experimental Study on Bioluminescence Tomography with Multimodality Fusion," Int. J. Biomed. Imaging 2007, 86741 (2007).
[CrossRef]

Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, "A multilevel adaptive finite element algorithm for bioluminescence tomography," Opt. Express 14, 8211-8223 (2006).
[CrossRef] [PubMed]

Martinez, J. M.

E. G. Birgin, J. M. Martinez, "Large-scale Active-Set Box-Constrained Optimization Method with Spectral Projected Gradients," Comput. Optim. Appl. 23, 101-125, (2002).
[CrossRef]

E. G. Birgin and J. M. Martinez, "A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients," Computing Sup. 15, 49-60 (2001).
[CrossRef]

McCray, P. B.

McLennan, G.

Meinel, J. F.

G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. F. Meinel, "Development of the first bioluminescence ct scanner," Radiology 229(P), 566 (2003).

Moats, R. A.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weisslder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, "Diffuse Optical Tomography of Highly Heterogeneous Media," IEEE Trans. Med. Imaging 20, 470-478 (2001).
[CrossRef] [PubMed]

Patterson, M. S.

Paulsen, K. D.

Pogue, B. W.

Qian, X.

Qin, C.

Y. Lv, J. Tian, W. Cong, G. Wang, W. Yang, C. Qin, and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element: methodology and simulation," Phys. Med. Biol. 52, 4497-4512 (2007).
[CrossRef] [PubMed]

Rannou, F.R.

G. Alexandrakis, F.R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Rice, B. W.

O. Coquoz, T. L. Troy, D. Jekic-McMullen, and B. W. Rice, "Determination of depth of in vivo bioluminescent signals using spectral imaging techniques," Proc. SPIE 4967, 37-45 (2003).
[CrossRef]

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, "Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo," J. Biomed. Opt. 10, 041210-1-9 (2005).
[CrossRef]

Richer, E.

N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, "Iterative reconstruction method for light emitting sources based on the diffusion equation," Med. Phys. 33, 61-68 (2006).

Ripoll, J.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weisslder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Schweiger, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Shen, H.

Sinn, P.

Slavine, N. V.

N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, "Iterative reconstruction method for light emitting sources based on the diffusion equation," Med. Phys. 33, 61-68 (2006).

Smith, D. J.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Suter, M.

G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. F. Meinel, "Development of the first bioluminescence ct scanner," Radiology 229(P), 566 (2003).

Tian, J.

Y. Lv, J. Tian, W. Cong, G. Wang, W. Yang, C. Qin, and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element: methodology and simulation," Phys. Med. Biol. 52, 4497-4512 (2007).
[CrossRef] [PubMed]

Y. Lv, J. Tian, W. Cong, and G. Wang, "Experimental Study on Bioluminescence Tomography with Multimodality Fusion," Int. J. Biomed. Imaging 2007, 86741 (2007).
[CrossRef]

Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, "A multilevel adaptive finite element algorithm for bioluminescence tomography," Opt. Express 14, 8211-8223 (2006).
[CrossRef] [PubMed]

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef] [PubMed]

Troy, T. L.

O. Coquoz, T. L. Troy, D. Jekic-McMullen, and B. W. Rice, "Determination of depth of in vivo bioluminescent signals using spectral imaging techniques," Proc. SPIE 4967, 37-45 (2003).
[CrossRef]

Wang, G.

Y. Lv, J. Tian, W. Cong, G. Wang, W. Yang, C. Qin, and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element: methodology and simulation," Phys. Med. Biol. 52, 4497-4512 (2007).
[CrossRef] [PubMed]

Y. Lv, J. Tian, W. Cong, and G. Wang, "Experimental Study on Bioluminescence Tomography with Multimodality Fusion," Int. J. Biomed. Imaging 2007, 86741 (2007).
[CrossRef]

M. Jiang, T. Zhou, J. Cheng, W. Cong, and G. Wang, "Image reconstruction for bioluminescence tomography from partial measurement," Opt. Express 15,11095-11116 (2007).
[CrossRef] [PubMed]

W. Han, W. Cong, and G. Wang, "Mathematical Study and Numirical Simulation of Multispectral Bioluminescence Tomography," Int. J. Biomed. Imaging 2006, 54390 (2006).

Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, "A multilevel adaptive finite element algorithm for bioluminescence tomography," Opt. Express 14, 8211-8223 (2006).
[CrossRef] [PubMed]

G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, "In vivo mouse studies with bioluminescence tomography," Opt. Express 14, 7801-7809 (2006).
[CrossRef] [PubMed]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289- 2299 (2004).
[CrossRef] [PubMed]

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef] [PubMed]

G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. F. Meinel, "Development of the first bioluminescence ct scanner," Radiology 229(P), 566 (2003).

Wang, L. V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weisslder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef] [PubMed]

G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. F. Meinel, "Development of the first bioluminescence ct scanner," Radiology 229(P), 566 (2003).

Weisslder, R.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weisslder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Willmann, J. K.

J. K. Willmann, N. V. Bruggen, L. M. Dinkelborg and S. S. Gambhir, "Molecular imaging in drug development," Nat. Rev. Drug Discovery 7, 591-607 (2008).
[CrossRef]

Xu, M.

Y. Lv, J. Tian, W. Cong, G. Wang, W. Yang, C. Qin, and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element: methodology and simulation," Phys. Med. Biol. 52, 4497-4512 (2007).
[CrossRef] [PubMed]

Yang, W.

Y. Lv, J. Tian, W. Cong, G. Wang, W. Yang, C. Qin, and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element: methodology and simulation," Phys. Med. Biol. 52, 4497-4512 (2007).
[CrossRef] [PubMed]

Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, "A multilevel adaptive finite element algorithm for bioluminescence tomography," Opt. Express 14, 8211-8223 (2006).
[CrossRef] [PubMed]

Yodh, A. G.

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, "Diffuse Optical Tomography of Highly Heterogeneous Media," IEEE Trans. Med. Imaging 20, 470-478 (2001).
[CrossRef] [PubMed]

Zabner, J.

Zhang, Q.

Zhao, H.

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, "Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo," J. Biomed. Opt. 10, 041210-1-9 (2005).
[CrossRef]

Zhou, T.

Zhu, F.

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef] [PubMed]

Acad. Radiol.

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng.

C. H. Contag and M. H. Bachmann, "Advances in bioluminescence imaging of gene expression," Annu. Rev. Biomed. Eng. 4, 235-260 (2002).

Comput. Optim. Appl.

E. G. Birgin, J. M. Martinez, "Large-scale Active-Set Box-Constrained Optimization Method with Spectral Projected Gradients," Comput. Optim. Appl. 23, 101-125, (2002).
[CrossRef]

Computing Sup.

E. G. Birgin and J. M. Martinez, "A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients," Computing Sup. 15, 49-60 (2001).
[CrossRef]

IEEE Trans. Med. Imaging

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, "Diffuse Optical Tomography of Highly Heterogeneous Media," IEEE Trans. Med. Imaging 20, 470-478 (2001).
[CrossRef] [PubMed]

Int. J. Biomed. Imaging

Y. Lv, J. Tian, W. Cong, and G. Wang, "Experimental Study on Bioluminescence Tomography with Multimodality Fusion," Int. J. Biomed. Imaging 2007, 86741 (2007).
[CrossRef]

W. Han, W. Cong, and G. Wang, "Mathematical Study and Numirical Simulation of Multispectral Bioluminescence Tomography," Int. J. Biomed. Imaging 2006, 54390 (2006).

Inverse Probl.

S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, 41-93 (1999).
[CrossRef]

Med. Phys.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, "Iterative reconstruction method for light emitting sources based on the diffusion equation," Med. Phys. 33, 61-68 (2006).

G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289- 2299 (2004).
[CrossRef] [PubMed]

Nat. Biotechnol.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weisslder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Nat. Rev. Drug Discovery

J. K. Willmann, N. V. Bruggen, L. M. Dinkelborg and S. S. Gambhir, "Molecular imaging in drug development," Nat. Rev. Drug Discovery 7, 591-607 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

G. Alexandrakis, F.R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Y. Lv, J. Tian, W. Cong, G. Wang, W. Yang, C. Qin, and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element: methodology and simulation," Phys. Med. Biol. 52, 4497-4512 (2007).
[CrossRef] [PubMed]

Proc. SPIE

O. Coquoz, T. L. Troy, D. Jekic-McMullen, and B. W. Rice, "Determination of depth of in vivo bioluminescent signals using spectral imaging techniques," Proc. SPIE 4967, 37-45 (2003).
[CrossRef]

Other

A. X. Cong and G. Wang, "Multispectral Bioluminescence Tomography: Methodology and Simulation," Int. J. Biomed. Imaging 2006, Article ID 57614, 7 pages, 2006. doi:10.1155/IJBI/2006/57614.
[CrossRef]

G. Wang, H. Shen, K. Durairaj, X. Qian, and W. Cong, "The first bioluminescence tomography system for simultaneous acquisition of Multiview and multispectral Data," Int. J. Biomed. Imaging, 2006. Article ID 58601, 8 pages, 2006. doi:10.1155/IJBI/2006/58601.
[CrossRef]

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, "Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo," J. Biomed. Opt. 10, 041210-1-9 (2005).
[CrossRef]

G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. F. Meinel, "Development of the first bioluminescence ct scanner," Radiology 229(P), 566 (2003).

S. S. Rao, The Finite Element Method in Enginering, (Butterworth-Heinemann, Boston, 1999).

P. E. Gill, W. Murray, and M. Wright, Practical optimization, (Academic Press, New York, 1981).

S. Holder, Electrical Impedance Tomography (Institute of Physics Publishing, Bristol and Philadelphia, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The sketch of searching optimal permissible source region.

Fig. 2.
Fig. 2.

The flow chart of the proposed algorithm.

Fig. 3.
Fig. 3.

Heterogeneous phantom. (a) A heterogeneous phantom with Muscle, Bone, Heart, Lungs, Liver and a single source in right lung. (b) The discretized mesh used in MOSE. (c) The initial mesh used in reconstruction algorithm. (d) The cross-section, including Muscle, Bone, Lungs and a source. The four arrows show the directions of the CCD camera.

Fig. 4.
Fig. 4.

Reconstruction results. (a) Reconstructed result using monochromatic synthetic data in [500nm,550nm] with partial measurement; (c) Spectrally resolved BLT reconstruction with proposed algorithm; (e) Multispectral BLT reconstruction with the optimal permissible source region strategy and complete measurement; (g) Reconstruction result with the method proposed in literature [9]; (b), (d), (f) and (h) are the magnified right lung images of (a), (c), (e) and (g), respectively. The sphere is the actual source.

Fig. 5.
Fig. 5.

Reconstruction results with the proposed algorithm under different noise data. (a) Noise level was 5% noise, and for (c), (e), (g) was 10%, 20%, 50%, respectively; (b), (d), (f) and (h) are the magnified right lung images of (a), (c), (e) and (g), respectively. The sphere is the actual source.

Fig. 6.
Fig. 6.

Reconstruction results with the proposed algorithm in view of different initial guesses. (a) initial guess S 0 1 is zero and for (c) is 0.1; (b) and (d) are magnified right lung images of (a) and (c), respectively. The sphere is the actual source.

Fig. 7.
Fig. 7.

Optical property errors consideration in the proposed algorithm. (a) The reconstruction result with +50% errors; (c) The reconstruction result with -50% errors; (b) and (d) are the magnified reconstructed results with +50% and -50% errors, respectively. The sphere is the actual source.

Tables (5)

Tables Icon

Table 1. Optical property parameters in different wavelength range (Unit: mm -1) [9].

Tables Icon

Table 2. Quantitative comparison between the actual and reconstructed source centers and energy densities with different methods. The unit of ε is mm.

Tables Icon

Table 3. Reconstruction results with the proposed algorithm under different noise data.

Tables Icon

Table 4. Quantitative reconstruction results using different initial guesses

Tables Icon

Table 5. Comparison between the actual and reconstructed source centers with optical property errors. The unit of ε is mm.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

· ( D ( x , λ ) Φ ( x , λ ) ) + µ a ( x , λ ) Φ ( x , λ ) = S ( x , λ ) ( x Ω )
Φ ( x , λ ) + 2 A ( x ; n , n ) D ( x , λ ) ( ν ( x ) · Φ ( x , λ ) ) = 0 ( x Ω )
A ( x ; n , n ) 1 + R ( x ) 1 R ( x )
Q ( x , λ ) = D ( x , λ ) ( ν ( x ) · Φ ( x , λ ) ) = Φ ( x , λ ) 2 A ( x ; n , n ) ( x ϒ )
Ω ( D ( x , τ l ) ( Φ ( x , τ l ) ) · ( Ψ ( x , τ l ) ) + µ a ( x , τ l ) Φ ( x , τ l ) Ψ ( x , τ l ) ) d x
+ Ω 1 2 A ( x ; n , n ) Φ ( x , τ l ) Ψ ( x , τ l ) d x = Ω S ( x , τ l ) Ψ ( x , τ l ) d x ( Ψ ( x , τ l ) H 1 ( Ω ) )
( K k ( τ l ) + C k ( τ l ) + B k ( τ l ) ) Φ k ( τ l ) = F k ( τ l ) S k ( τ l )
{ K i j k ( τ l ) = Ω D ( x , τ l ) ( ψ i k ( x , τ l ) ) · ( ψ j k ( x , τ l ) ) d x c i j k ( τ l ) = Ω µ a ( x , τ l ) ψ j k ( x , τ l ) ψ j k ( x , τ l ) d x b i j k ( τ l ) = Ω ψ i k ( x , τ l ) ψ j k ( x , τ l ) / ( 2 A ( x ; n , n ' ) ) d x f i j k ( τ l ) = Ω ψ i k ( x , τ l ) ψ j k ( x , τ l ) d x
Φ k ( τ l ) = M k 1 ( τ l ) F k ( τ l ) S k ( τ l )
Φ k ( τ l ) = A k ( τ l ) S k ( τ l )
A T A S 1 = A T Φ
S 1 n + 1 = S 1 n + α n β n
β n = A T A S 1 n A T Φ
J ( S 1 ) = 1 2 | | A T A S 1 A T Φ | |
α n = arg min α J ( S 1 n α β n )
α n = | | β n | | | | A · β n | |
Φ k meas ( τ l ) = G k ( τ l ) S k ( τ l )
Φ k meas = G k W k S k
S k = I k 1 k S k 1 ( k 2 )
A k S k p = Φ k meas
min S inf k S k p S sup k Θ k ( S k p ) = { | | A k S k p Φ k meas | | Λ + ρ k · ( S k ρ S k init ) T ( S k p S k init ) }

Metrics