Abstract

Materials for optical data storage and optical information processing must exhibit good holographic properties. Many materials for these applications have been already proposed. Here we describe a grating inscription process characterized by short inscription time and long-time stability. A series of ruthenium-acetylide organometallic complexes containing an azobenzene fragment were synthesized. Photo-induced gratings were produced by short pulse (16 ps, 532 nm) laser irradiation. The surface relief gratings formed at the same time were observed by atomic force microscope. In this work, we highlight the short inscription times brought into play as well as the good temporal stability of these gratings stored at room temperature. We study the influence of the polarization states and the light intensity of writing beams on the dynamics of the surface relief gratings formation and we compare these results with those of a known representative of azobenzene derivative (Disperse Red 1). Lastly, we show that it is possible to write two-dimensional surface relief gratings.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Diffraction efficiency increase by corona discharge in photoinduced surface-relief gratings on an azo polymer film

Katsuhiro Munakata, Kenji Harada, Hitoshi Anji, Masahide Itoh, Toyohiko Yatagai, and Shinsuke Umegaki
Opt. Lett. 26(1) 4-6 (2001)

Permanent polarization gratings in elastomer azo-dye systems: comparison of layered and mixed samples

Federica Ciuchi, Alfredo Mazzulla, and Gabriella Cipparrone
J. Opt. Soc. Am. B 19(11) 2531-2537 (2002)

Third-order nonlinear optical properties of in-backbone substituted oligo(triacetylene) chromophores

S. Concilio, I. Biaggio, P. Günter, S. P. Piotto, M. J. Edelmann, J.-M. Raimundo, and F. Diederich
J. Opt. Soc. Am. B 20(8) 1656-1660 (2003)

References

  • View by:
  • |
  • |
  • |

  1. S. Barlow and S. R. Marder, “Electronic and optical properties of conjugated group 8 metallocene derivatives,” Chem. Commun. 2000, 1555–1562 (2000).
    [Crossref]
  2. H. Le Bozec and T. Renouard, “Dipolar and non-dipolar pyridine and bipyridine metal complexes for nonlinear optics,” Eur. J. Inorg. Chem. 2000, 229–239 (2000).
    [Crossref]
  3. C. E. Powell and M. G. Humphrey, “Nonlinear optical properties of transition metal acetylides and their derivatives,” Coord. Chem. Rev. 248, 725–756 (2004).
    [Crossref]
  4. B. J. Coe, “Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups,” Acc. Chem. Res. 39, 383–393 (2006).
    [Crossref] [PubMed]
  5. P. Yuan, J. Yin, G. Yu, Q. Hu, and S. Hua Liu, “Synthesis and second-order NLO properties of donor-acceptor σ-alkenyl ruthenium complexes,” Organometallics 26, 196–200 (2007).
    [Crossref]
  6. B. J. Coe, S. Houbrechts, I. Asselberghs, and A. Persoons, “Efficient, reversible redox-switching of molecular first hyperpolarizabilities in ruthenium(II) complexes possessing large quadratic optical nonlinearities,” Angew. Chem. Int.Ed. 38, 366–369 (1999).
    [Crossref]
  7. S. K. Hurst, M. P. Cifuentes, A. M. McDonagh, M. G. Humphrey, M. Samoc, B. Luther-Davies, I. Asselberghs, and A. Persoons, “Organometallic complexes for nonlinear optics. Quadratic and cubic hyperpolarizabilities of some dipolar and quadrupolar gold and ruthenium complexes,” J. Organomet. Chem. 642, 259–267 (2002).
    [Crossref]
  8. N. J. Long and C. K. Williams, “Metal alkynyl σ complexes: Synthesis and Materials,” Angew. Chem. Int.Ed. 2003, 2586–2617 (2003).
  9. J. Luc, J.-L. Fillaut, J. Niziol, and B. Sahraoui, “Large third-order nonlinear optical properties of alkynyl ruthenium chromophore thin films using third harmonic generation,” J. Opt. Adv. Mat. 9, 2826–2832 (2007).
  10. J. Luc, A. Migalska-Zalas, S. Tkaczyk, J. Andriès, J.-L. Fillaut, A. Meghea, and B. Sahraoui, “Nonlinear optical effects in new alkynyl-ruthenium containing nanocomposites,” J. Opt. Adv. Mat. (Review paper) 10, 29–43 (2008).
  11. A. Miniewicz, B. Sahraoui, E. Schab-Balcerzak, A. Sobolewska, A. C. Mitus, and F. Kajzar, “Pulsed-laser grating recording in organic materials containing azobenzene derivatives,” Nonlin. Opt. Quant. Opt. 35, 95–102 (2006).
  12. O. Baldus, A. Leopold, R. Hagen, T. Bieringer, and S. J. Zilker, “Surface relief gratings generated by pulsed holography: A simple way to polymer nanostructures without isomerizing side-chains,” J. Chem. Phys. 114, 1344–1349 (2001).
    [Crossref]
  13. Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, and Z. Zhou, “Single femtosecond pulse holography using polymethyl methacrylate,” Opt. Exp. 10, 1173–1178 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-21-1173
  14. P. S. Ramanujam, M. Pedersen, and S. Hvilsted, “Instant holography,” Appl. Phys. Lett. 74, 3227–3229 (1999).
    [Crossref]
  15. C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
    [Crossref]
  16. R. Czaplicki, O. Krupka, Z. Essaïdi, A. El-Ghayoury, F. Kajzar, J.G. Grote, and B. Sahraoui, “Grating inscription in picosecond regime in thin films of functionalized DNA,” Opt. Exp. 15, 15268–15273 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15268
    [Crossref]
  17. F. Lagugné-Labarthet, T. Buffeteau, and C. Sourisseau, “Molecular orientations in azopolymer holographic diffraction gratings as studied by Raman confocal microspectrometry,” J. Phys. Chem. B 102, 5754–5765 (1998).
  18. B. Bellini, J. Ackermann, H. Klein, C. Grave, P. Dumas, and V. Safarov, “Light-induced molecular motion of azobenzene-containing molecules: a random-walk model,” J. Phys. Condens. Matter 18, 1817–1835 (2006).
    [Crossref]
  19. C. Fiorini, N. Prudhomme, G. De Veyrac, I. Maurin, P. Raimond, and J.-M. Nunzi, “Molecular migration mechanism for laser induced surface relief grating formation,” Synth. Met. 115, 121–125 (2000).
    [Crossref]
  20. E. Toussaere and P. Labbé, “Linear and non-linear gratings in DR1 side chain polymers,” Opt. Mat. 12, 357–362 (1999).
    [Crossref]
  21. C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100, 8836–8842 (1996).
    [Crossref]
  22. C. Chun, J. Ghim, M.-J. Kim, and D. Y. Kim, “Photofabrication of surface relief gratings from azobenzene containing perfluorocyclobutane aryl ether polymer,” J. Polym. Sci.: Part A: Polym. Chem. 43, 3525–3532 (2005).
    [Crossref]
  23. Y. He, X. Wang, and Q. Zhou, “Synthesis and characterization of a novel photoprocessible hyperbranched azo polymer,” Synth. Met. 132, 245–248 (2003).
    [Crossref]
  24. M. Kim, B. Kang, S. Yang, C. Drew, L. A. Samuelson, and J. Kumar, “Facile patterning of periodic arrays of metal oxides,” Adv. Mat. 18, 1622–1626 (2006).
    [Crossref]
  25. H. Nakano, T. Tanino, T. Takahashi, H. Andoa, and Y. Shirotaab, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem. 18, 242–246 (2008).
    [Crossref]
  26. N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
    [Crossref]

2008 (2)

J. Luc, A. Migalska-Zalas, S. Tkaczyk, J. Andriès, J.-L. Fillaut, A. Meghea, and B. Sahraoui, “Nonlinear optical effects in new alkynyl-ruthenium containing nanocomposites,” J. Opt. Adv. Mat. (Review paper) 10, 29–43 (2008).

H. Nakano, T. Tanino, T. Takahashi, H. Andoa, and Y. Shirotaab, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem. 18, 242–246 (2008).
[Crossref]

2007 (3)

J. Luc, J.-L. Fillaut, J. Niziol, and B. Sahraoui, “Large third-order nonlinear optical properties of alkynyl ruthenium chromophore thin films using third harmonic generation,” J. Opt. Adv. Mat. 9, 2826–2832 (2007).

R. Czaplicki, O. Krupka, Z. Essaïdi, A. El-Ghayoury, F. Kajzar, J.G. Grote, and B. Sahraoui, “Grating inscription in picosecond regime in thin films of functionalized DNA,” Opt. Exp. 15, 15268–15273 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15268
[Crossref]

P. Yuan, J. Yin, G. Yu, Q. Hu, and S. Hua Liu, “Synthesis and second-order NLO properties of donor-acceptor σ-alkenyl ruthenium complexes,” Organometallics 26, 196–200 (2007).
[Crossref]

2006 (4)

B. J. Coe, “Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups,” Acc. Chem. Res. 39, 383–393 (2006).
[Crossref] [PubMed]

A. Miniewicz, B. Sahraoui, E. Schab-Balcerzak, A. Sobolewska, A. C. Mitus, and F. Kajzar, “Pulsed-laser grating recording in organic materials containing azobenzene derivatives,” Nonlin. Opt. Quant. Opt. 35, 95–102 (2006).

B. Bellini, J. Ackermann, H. Klein, C. Grave, P. Dumas, and V. Safarov, “Light-induced molecular motion of azobenzene-containing molecules: a random-walk model,” J. Phys. Condens. Matter 18, 1817–1835 (2006).
[Crossref]

M. Kim, B. Kang, S. Yang, C. Drew, L. A. Samuelson, and J. Kumar, “Facile patterning of periodic arrays of metal oxides,” Adv. Mat. 18, 1622–1626 (2006).
[Crossref]

2005 (1)

C. Chun, J. Ghim, M.-J. Kim, and D. Y. Kim, “Photofabrication of surface relief gratings from azobenzene containing perfluorocyclobutane aryl ether polymer,” J. Polym. Sci.: Part A: Polym. Chem. 43, 3525–3532 (2005).
[Crossref]

2004 (1)

C. E. Powell and M. G. Humphrey, “Nonlinear optical properties of transition metal acetylides and their derivatives,” Coord. Chem. Rev. 248, 725–756 (2004).
[Crossref]

2003 (2)

N. J. Long and C. K. Williams, “Metal alkynyl σ complexes: Synthesis and Materials,” Angew. Chem. Int.Ed. 2003, 2586–2617 (2003).

Y. He, X. Wang, and Q. Zhou, “Synthesis and characterization of a novel photoprocessible hyperbranched azo polymer,” Synth. Met. 132, 245–248 (2003).
[Crossref]

2002 (2)

S. K. Hurst, M. P. Cifuentes, A. M. McDonagh, M. G. Humphrey, M. Samoc, B. Luther-Davies, I. Asselberghs, and A. Persoons, “Organometallic complexes for nonlinear optics. Quadratic and cubic hyperpolarizabilities of some dipolar and quadrupolar gold and ruthenium complexes,” J. Organomet. Chem. 642, 259–267 (2002).
[Crossref]

Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, and Z. Zhou, “Single femtosecond pulse holography using polymethyl methacrylate,” Opt. Exp. 10, 1173–1178 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-21-1173

2001 (1)

O. Baldus, A. Leopold, R. Hagen, T. Bieringer, and S. J. Zilker, “Surface relief gratings generated by pulsed holography: A simple way to polymer nanostructures without isomerizing side-chains,” J. Chem. Phys. 114, 1344–1349 (2001).
[Crossref]

2000 (3)

C. Fiorini, N. Prudhomme, G. De Veyrac, I. Maurin, P. Raimond, and J.-M. Nunzi, “Molecular migration mechanism for laser induced surface relief grating formation,” Synth. Met. 115, 121–125 (2000).
[Crossref]

S. Barlow and S. R. Marder, “Electronic and optical properties of conjugated group 8 metallocene derivatives,” Chem. Commun. 2000, 1555–1562 (2000).
[Crossref]

H. Le Bozec and T. Renouard, “Dipolar and non-dipolar pyridine and bipyridine metal complexes for nonlinear optics,” Eur. J. Inorg. Chem. 2000, 229–239 (2000).
[Crossref]

1999 (4)

B. J. Coe, S. Houbrechts, I. Asselberghs, and A. Persoons, “Efficient, reversible redox-switching of molecular first hyperpolarizabilities in ruthenium(II) complexes possessing large quadratic optical nonlinearities,” Angew. Chem. Int.Ed. 38, 366–369 (1999).
[Crossref]

E. Toussaere and P. Labbé, “Linear and non-linear gratings in DR1 side chain polymers,” Opt. Mat. 12, 357–362 (1999).
[Crossref]

P. S. Ramanujam, M. Pedersen, and S. Hvilsted, “Instant holography,” Appl. Phys. Lett. 74, 3227–3229 (1999).
[Crossref]

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[Crossref]

1998 (1)

F. Lagugné-Labarthet, T. Buffeteau, and C. Sourisseau, “Molecular orientations in azopolymer holographic diffraction gratings as studied by Raman confocal microspectrometry,” J. Phys. Chem. B 102, 5754–5765 (1998).

1996 (1)

C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100, 8836–8842 (1996).
[Crossref]

1971 (1)

C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[Crossref]

Ackermann, J.

B. Bellini, J. Ackermann, H. Klein, C. Grave, P. Dumas, and V. Safarov, “Light-induced molecular motion of azobenzene-containing molecules: a random-walk model,” J. Phys. Condens. Matter 18, 1817–1835 (2006).
[Crossref]

Andoa, H.

H. Nakano, T. Tanino, T. Takahashi, H. Andoa, and Y. Shirotaab, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem. 18, 242–246 (2008).
[Crossref]

Andriès, J.

J. Luc, A. Migalska-Zalas, S. Tkaczyk, J. Andriès, J.-L. Fillaut, A. Meghea, and B. Sahraoui, “Nonlinear optical effects in new alkynyl-ruthenium containing nanocomposites,” J. Opt. Adv. Mat. (Review paper) 10, 29–43 (2008).

Asselberghs, I.

S. K. Hurst, M. P. Cifuentes, A. M. McDonagh, M. G. Humphrey, M. Samoc, B. Luther-Davies, I. Asselberghs, and A. Persoons, “Organometallic complexes for nonlinear optics. Quadratic and cubic hyperpolarizabilities of some dipolar and quadrupolar gold and ruthenium complexes,” J. Organomet. Chem. 642, 259–267 (2002).
[Crossref]

B. J. Coe, S. Houbrechts, I. Asselberghs, and A. Persoons, “Efficient, reversible redox-switching of molecular first hyperpolarizabilities in ruthenium(II) complexes possessing large quadratic optical nonlinearities,” Angew. Chem. Int.Ed. 38, 366–369 (1999).
[Crossref]

Baldus, O.

O. Baldus, A. Leopold, R. Hagen, T. Bieringer, and S. J. Zilker, “Surface relief gratings generated by pulsed holography: A simple way to polymer nanostructures without isomerizing side-chains,” J. Chem. Phys. 114, 1344–1349 (2001).
[Crossref]

Barlow, S.

S. Barlow and S. R. Marder, “Electronic and optical properties of conjugated group 8 metallocene derivatives,” Chem. Commun. 2000, 1555–1562 (2000).
[Crossref]

Barrett, C. J.

C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100, 8836–8842 (1996).
[Crossref]

Bellini, B.

B. Bellini, J. Ackermann, H. Klein, C. Grave, P. Dumas, and V. Safarov, “Light-induced molecular motion of azobenzene-containing molecules: a random-walk model,” J. Phys. Condens. Matter 18, 1817–1835 (2006).
[Crossref]

Bian, S.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[Crossref]

Bieringer, T.

O. Baldus, A. Leopold, R. Hagen, T. Bieringer, and S. J. Zilker, “Surface relief gratings generated by pulsed holography: A simple way to polymer nanostructures without isomerizing side-chains,” J. Chem. Phys. 114, 1344–1349 (2001).
[Crossref]

Bjorkholm, J. E.

C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[Crossref]

Buffeteau, T.

F. Lagugné-Labarthet, T. Buffeteau, and C. Sourisseau, “Molecular orientations in azopolymer holographic diffraction gratings as studied by Raman confocal microspectrometry,” J. Phys. Chem. B 102, 5754–5765 (1998).

Chun, C.

C. Chun, J. Ghim, M.-J. Kim, and D. Y. Kim, “Photofabrication of surface relief gratings from azobenzene containing perfluorocyclobutane aryl ether polymer,” J. Polym. Sci.: Part A: Polym. Chem. 43, 3525–3532 (2005).
[Crossref]

Cifuentes, M. P.

S. K. Hurst, M. P. Cifuentes, A. M. McDonagh, M. G. Humphrey, M. Samoc, B. Luther-Davies, I. Asselberghs, and A. Persoons, “Organometallic complexes for nonlinear optics. Quadratic and cubic hyperpolarizabilities of some dipolar and quadrupolar gold and ruthenium complexes,” J. Organomet. Chem. 642, 259–267 (2002).
[Crossref]

Coe, B. J.

B. J. Coe, “Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups,” Acc. Chem. Res. 39, 383–393 (2006).
[Crossref] [PubMed]

B. J. Coe, S. Houbrechts, I. Asselberghs, and A. Persoons, “Efficient, reversible redox-switching of molecular first hyperpolarizabilities in ruthenium(II) complexes possessing large quadratic optical nonlinearities,” Angew. Chem. Int.Ed. 38, 366–369 (1999).
[Crossref]

Czaplicki, R.

R. Czaplicki, O. Krupka, Z. Essaïdi, A. El-Ghayoury, F. Kajzar, J.G. Grote, and B. Sahraoui, “Grating inscription in picosecond regime in thin films of functionalized DNA,” Opt. Exp. 15, 15268–15273 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15268
[Crossref]

De Veyrac, G.

C. Fiorini, N. Prudhomme, G. De Veyrac, I. Maurin, P. Raimond, and J.-M. Nunzi, “Molecular migration mechanism for laser induced surface relief grating formation,” Synth. Met. 115, 121–125 (2000).
[Crossref]

Drew, C.

M. Kim, B. Kang, S. Yang, C. Drew, L. A. Samuelson, and J. Kumar, “Facile patterning of periodic arrays of metal oxides,” Adv. Mat. 18, 1622–1626 (2006).
[Crossref]

Dumas, P.

B. Bellini, J. Ackermann, H. Klein, C. Grave, P. Dumas, and V. Safarov, “Light-induced molecular motion of azobenzene-containing molecules: a random-walk model,” J. Phys. Condens. Matter 18, 1817–1835 (2006).
[Crossref]

El-Ghayoury, A.

R. Czaplicki, O. Krupka, Z. Essaïdi, A. El-Ghayoury, F. Kajzar, J.G. Grote, and B. Sahraoui, “Grating inscription in picosecond regime in thin films of functionalized DNA,” Opt. Exp. 15, 15268–15273 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15268
[Crossref]

Essaïdi, Z.

R. Czaplicki, O. Krupka, Z. Essaïdi, A. El-Ghayoury, F. Kajzar, J.G. Grote, and B. Sahraoui, “Grating inscription in picosecond regime in thin films of functionalized DNA,” Opt. Exp. 15, 15268–15273 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15268
[Crossref]

Fillaut, J.-L.

J. Luc, A. Migalska-Zalas, S. Tkaczyk, J. Andriès, J.-L. Fillaut, A. Meghea, and B. Sahraoui, “Nonlinear optical effects in new alkynyl-ruthenium containing nanocomposites,” J. Opt. Adv. Mat. (Review paper) 10, 29–43 (2008).

J. Luc, J.-L. Fillaut, J. Niziol, and B. Sahraoui, “Large third-order nonlinear optical properties of alkynyl ruthenium chromophore thin films using third harmonic generation,” J. Opt. Adv. Mat. 9, 2826–2832 (2007).

Fiorini, C.

C. Fiorini, N. Prudhomme, G. De Veyrac, I. Maurin, P. Raimond, and J.-M. Nunzi, “Molecular migration mechanism for laser induced surface relief grating formation,” Synth. Met. 115, 121–125 (2000).
[Crossref]

Ghim, J.

C. Chun, J. Ghim, M.-J. Kim, and D. Y. Kim, “Photofabrication of surface relief gratings from azobenzene containing perfluorocyclobutane aryl ether polymer,” J. Polym. Sci.: Part A: Polym. Chem. 43, 3525–3532 (2005).
[Crossref]

Grave, C.

B. Bellini, J. Ackermann, H. Klein, C. Grave, P. Dumas, and V. Safarov, “Light-induced molecular motion of azobenzene-containing molecules: a random-walk model,” J. Phys. Condens. Matter 18, 1817–1835 (2006).
[Crossref]

Grote, J.G.

R. Czaplicki, O. Krupka, Z. Essaïdi, A. El-Ghayoury, F. Kajzar, J.G. Grote, and B. Sahraoui, “Grating inscription in picosecond regime in thin films of functionalized DNA,” Opt. Exp. 15, 15268–15273 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15268
[Crossref]

Hagen, R.

O. Baldus, A. Leopold, R. Hagen, T. Bieringer, and S. J. Zilker, “Surface relief gratings generated by pulsed holography: A simple way to polymer nanostructures without isomerizing side-chains,” J. Chem. Phys. 114, 1344–1349 (2001).
[Crossref]

He, Y.

Y. He, X. Wang, and Q. Zhou, “Synthesis and characterization of a novel photoprocessible hyperbranched azo polymer,” Synth. Met. 132, 245–248 (2003).
[Crossref]

Houbrechts, S.

B. J. Coe, S. Houbrechts, I. Asselberghs, and A. Persoons, “Efficient, reversible redox-switching of molecular first hyperpolarizabilities in ruthenium(II) complexes possessing large quadratic optical nonlinearities,” Angew. Chem. Int.Ed. 38, 366–369 (1999).
[Crossref]

Hu, Q.

P. Yuan, J. Yin, G. Yu, Q. Hu, and S. Hua Liu, “Synthesis and second-order NLO properties of donor-acceptor σ-alkenyl ruthenium complexes,” Organometallics 26, 196–200 (2007).
[Crossref]

Hua Liu, S.

P. Yuan, J. Yin, G. Yu, Q. Hu, and S. Hua Liu, “Synthesis and second-order NLO properties of donor-acceptor σ-alkenyl ruthenium complexes,” Organometallics 26, 196–200 (2007).
[Crossref]

Humphrey, M. G.

C. E. Powell and M. G. Humphrey, “Nonlinear optical properties of transition metal acetylides and their derivatives,” Coord. Chem. Rev. 248, 725–756 (2004).
[Crossref]

S. K. Hurst, M. P. Cifuentes, A. M. McDonagh, M. G. Humphrey, M. Samoc, B. Luther-Davies, I. Asselberghs, and A. Persoons, “Organometallic complexes for nonlinear optics. Quadratic and cubic hyperpolarizabilities of some dipolar and quadrupolar gold and ruthenium complexes,” J. Organomet. Chem. 642, 259–267 (2002).
[Crossref]

Hurst, S. K.

S. K. Hurst, M. P. Cifuentes, A. M. McDonagh, M. G. Humphrey, M. Samoc, B. Luther-Davies, I. Asselberghs, and A. Persoons, “Organometallic complexes for nonlinear optics. Quadratic and cubic hyperpolarizabilities of some dipolar and quadrupolar gold and ruthenium complexes,” J. Organomet. Chem. 642, 259–267 (2002).
[Crossref]

Hvilsted, S.

P. S. Ramanujam, M. Pedersen, and S. Hvilsted, “Instant holography,” Appl. Phys. Lett. 74, 3227–3229 (1999).
[Crossref]

Ishizuka, T.

Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, and Z. Zhou, “Single femtosecond pulse holography using polymethyl methacrylate,” Opt. Exp. 10, 1173–1178 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-21-1173

Itoh, K.

Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, and Z. Zhou, “Single femtosecond pulse holography using polymethyl methacrylate,” Opt. Exp. 10, 1173–1178 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-21-1173

Kajzar, F.

R. Czaplicki, O. Krupka, Z. Essaïdi, A. El-Ghayoury, F. Kajzar, J.G. Grote, and B. Sahraoui, “Grating inscription in picosecond regime in thin films of functionalized DNA,” Opt. Exp. 15, 15268–15273 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15268
[Crossref]

A. Miniewicz, B. Sahraoui, E. Schab-Balcerzak, A. Sobolewska, A. C. Mitus, and F. Kajzar, “Pulsed-laser grating recording in organic materials containing azobenzene derivatives,” Nonlin. Opt. Quant. Opt. 35, 95–102 (2006).

Kang, B.

M. Kim, B. Kang, S. Yang, C. Drew, L. A. Samuelson, and J. Kumar, “Facile patterning of periodic arrays of metal oxides,” Adv. Mat. 18, 1622–1626 (2006).
[Crossref]

Kim, D. Y.

C. Chun, J. Ghim, M.-J. Kim, and D. Y. Kim, “Photofabrication of surface relief gratings from azobenzene containing perfluorocyclobutane aryl ether polymer,” J. Polym. Sci.: Part A: Polym. Chem. 43, 3525–3532 (2005).
[Crossref]

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[Crossref]

Kim, M.

M. Kim, B. Kang, S. Yang, C. Drew, L. A. Samuelson, and J. Kumar, “Facile patterning of periodic arrays of metal oxides,” Adv. Mat. 18, 1622–1626 (2006).
[Crossref]

Kim, M.-J.

C. Chun, J. Ghim, M.-J. Kim, and D. Y. Kim, “Photofabrication of surface relief gratings from azobenzene containing perfluorocyclobutane aryl ether polymer,” J. Polym. Sci.: Part A: Polym. Chem. 43, 3525–3532 (2005).
[Crossref]

Klein, H.

B. Bellini, J. Ackermann, H. Klein, C. Grave, P. Dumas, and V. Safarov, “Light-induced molecular motion of azobenzene-containing molecules: a random-walk model,” J. Phys. Condens. Matter 18, 1817–1835 (2006).
[Crossref]

Kogelnik, H.

C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[Crossref]

Krupka, O.

R. Czaplicki, O. Krupka, Z. Essaïdi, A. El-Ghayoury, F. Kajzar, J.G. Grote, and B. Sahraoui, “Grating inscription in picosecond regime in thin films of functionalized DNA,” Opt. Exp. 15, 15268–15273 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15268
[Crossref]

Kumar, J.

M. Kim, B. Kang, S. Yang, C. Drew, L. A. Samuelson, and J. Kumar, “Facile patterning of periodic arrays of metal oxides,” Adv. Mat. 18, 1622–1626 (2006).
[Crossref]

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[Crossref]

Labbé, P.

E. Toussaere and P. Labbé, “Linear and non-linear gratings in DR1 side chain polymers,” Opt. Mat. 12, 357–362 (1999).
[Crossref]

Lagugné-Labarthet, F.

F. Lagugné-Labarthet, T. Buffeteau, and C. Sourisseau, “Molecular orientations in azopolymer holographic diffraction gratings as studied by Raman confocal microspectrometry,” J. Phys. Chem. B 102, 5754–5765 (1998).

Le Bozec, H.

H. Le Bozec and T. Renouard, “Dipolar and non-dipolar pyridine and bipyridine metal complexes for nonlinear optics,” Eur. J. Inorg. Chem. 2000, 229–239 (2000).
[Crossref]

Leopold, A.

O. Baldus, A. Leopold, R. Hagen, T. Bieringer, and S. J. Zilker, “Surface relief gratings generated by pulsed holography: A simple way to polymer nanostructures without isomerizing side-chains,” J. Chem. Phys. 114, 1344–1349 (2001).
[Crossref]

Li, L.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[Crossref]

Li, Y.

Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, and Z. Zhou, “Single femtosecond pulse holography using polymethyl methacrylate,” Opt. Exp. 10, 1173–1178 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-21-1173

Liu, W.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[Crossref]

Long, N. J.

N. J. Long and C. K. Williams, “Metal alkynyl σ complexes: Synthesis and Materials,” Angew. Chem. Int.Ed. 2003, 2586–2617 (2003).

Luc, J.

J. Luc, A. Migalska-Zalas, S. Tkaczyk, J. Andriès, J.-L. Fillaut, A. Meghea, and B. Sahraoui, “Nonlinear optical effects in new alkynyl-ruthenium containing nanocomposites,” J. Opt. Adv. Mat. (Review paper) 10, 29–43 (2008).

J. Luc, J.-L. Fillaut, J. Niziol, and B. Sahraoui, “Large third-order nonlinear optical properties of alkynyl ruthenium chromophore thin films using third harmonic generation,” J. Opt. Adv. Mat. 9, 2826–2832 (2007).

Luther-Davies, B.

S. K. Hurst, M. P. Cifuentes, A. M. McDonagh, M. G. Humphrey, M. Samoc, B. Luther-Davies, I. Asselberghs, and A. Persoons, “Organometallic complexes for nonlinear optics. Quadratic and cubic hyperpolarizabilities of some dipolar and quadrupolar gold and ruthenium complexes,” J. Organomet. Chem. 642, 259–267 (2002).
[Crossref]

Marder, S. R.

S. Barlow and S. R. Marder, “Electronic and optical properties of conjugated group 8 metallocene derivatives,” Chem. Commun. 2000, 1555–1562 (2000).
[Crossref]

Maurin, I.

C. Fiorini, N. Prudhomme, G. De Veyrac, I. Maurin, P. Raimond, and J.-M. Nunzi, “Molecular migration mechanism for laser induced surface relief grating formation,” Synth. Met. 115, 121–125 (2000).
[Crossref]

McDonagh, A. M.

S. K. Hurst, M. P. Cifuentes, A. M. McDonagh, M. G. Humphrey, M. Samoc, B. Luther-Davies, I. Asselberghs, and A. Persoons, “Organometallic complexes for nonlinear optics. Quadratic and cubic hyperpolarizabilities of some dipolar and quadrupolar gold and ruthenium complexes,” J. Organomet. Chem. 642, 259–267 (2002).
[Crossref]

Meghea, A.

J. Luc, A. Migalska-Zalas, S. Tkaczyk, J. Andriès, J.-L. Fillaut, A. Meghea, and B. Sahraoui, “Nonlinear optical effects in new alkynyl-ruthenium containing nanocomposites,” J. Opt. Adv. Mat. (Review paper) 10, 29–43 (2008).

Migalska-Zalas, A.

J. Luc, A. Migalska-Zalas, S. Tkaczyk, J. Andriès, J.-L. Fillaut, A. Meghea, and B. Sahraoui, “Nonlinear optical effects in new alkynyl-ruthenium containing nanocomposites,” J. Opt. Adv. Mat. (Review paper) 10, 29–43 (2008).

Miniewicz, A.

A. Miniewicz, B. Sahraoui, E. Schab-Balcerzak, A. Sobolewska, A. C. Mitus, and F. Kajzar, “Pulsed-laser grating recording in organic materials containing azobenzene derivatives,” Nonlin. Opt. Quant. Opt. 35, 95–102 (2006).

Mitus, A. C.

A. Miniewicz, B. Sahraoui, E. Schab-Balcerzak, A. Sobolewska, A. C. Mitus, and F. Kajzar, “Pulsed-laser grating recording in organic materials containing azobenzene derivatives,” Nonlin. Opt. Quant. Opt. 35, 95–102 (2006).

Nakano, H.

H. Nakano, T. Tanino, T. Takahashi, H. Andoa, and Y. Shirotaab, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem. 18, 242–246 (2008).
[Crossref]

Natansohn, A. L.

C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100, 8836–8842 (1996).
[Crossref]

Niziol, J.

J. Luc, J.-L. Fillaut, J. Niziol, and B. Sahraoui, “Large third-order nonlinear optical properties of alkynyl ruthenium chromophore thin films using third harmonic generation,” J. Opt. Adv. Mat. 9, 2826–2832 (2007).

Nunzi, J.-M.

C. Fiorini, N. Prudhomme, G. De Veyrac, I. Maurin, P. Raimond, and J.-M. Nunzi, “Molecular migration mechanism for laser induced surface relief grating formation,” Synth. Met. 115, 121–125 (2000).
[Crossref]

Pedersen, M.

P. S. Ramanujam, M. Pedersen, and S. Hvilsted, “Instant holography,” Appl. Phys. Lett. 74, 3227–3229 (1999).
[Crossref]

Persoons, A.

S. K. Hurst, M. P. Cifuentes, A. M. McDonagh, M. G. Humphrey, M. Samoc, B. Luther-Davies, I. Asselberghs, and A. Persoons, “Organometallic complexes for nonlinear optics. Quadratic and cubic hyperpolarizabilities of some dipolar and quadrupolar gold and ruthenium complexes,” J. Organomet. Chem. 642, 259–267 (2002).
[Crossref]

B. J. Coe, S. Houbrechts, I. Asselberghs, and A. Persoons, “Efficient, reversible redox-switching of molecular first hyperpolarizabilities in ruthenium(II) complexes possessing large quadratic optical nonlinearities,” Angew. Chem. Int.Ed. 38, 366–369 (1999).
[Crossref]

Powell, C. E.

C. E. Powell and M. G. Humphrey, “Nonlinear optical properties of transition metal acetylides and their derivatives,” Coord. Chem. Rev. 248, 725–756 (2004).
[Crossref]

Prudhomme, N.

C. Fiorini, N. Prudhomme, G. De Veyrac, I. Maurin, P. Raimond, and J.-M. Nunzi, “Molecular migration mechanism for laser induced surface relief grating formation,” Synth. Met. 115, 121–125 (2000).
[Crossref]

Raimond, P.

C. Fiorini, N. Prudhomme, G. De Veyrac, I. Maurin, P. Raimond, and J.-M. Nunzi, “Molecular migration mechanism for laser induced surface relief grating formation,” Synth. Met. 115, 121–125 (2000).
[Crossref]

Ramanujam, P. S.

P. S. Ramanujam, M. Pedersen, and S. Hvilsted, “Instant holography,” Appl. Phys. Lett. 74, 3227–3229 (1999).
[Crossref]

Renouard, T.

H. Le Bozec and T. Renouard, “Dipolar and non-dipolar pyridine and bipyridine metal complexes for nonlinear optics,” Eur. J. Inorg. Chem. 2000, 229–239 (2000).
[Crossref]

Rochon, P. L.

C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100, 8836–8842 (1996).
[Crossref]

Safarov, V.

B. Bellini, J. Ackermann, H. Klein, C. Grave, P. Dumas, and V. Safarov, “Light-induced molecular motion of azobenzene-containing molecules: a random-walk model,” J. Phys. Condens. Matter 18, 1817–1835 (2006).
[Crossref]

Sahraoui, B.

J. Luc, A. Migalska-Zalas, S. Tkaczyk, J. Andriès, J.-L. Fillaut, A. Meghea, and B. Sahraoui, “Nonlinear optical effects in new alkynyl-ruthenium containing nanocomposites,” J. Opt. Adv. Mat. (Review paper) 10, 29–43 (2008).

J. Luc, J.-L. Fillaut, J. Niziol, and B. Sahraoui, “Large third-order nonlinear optical properties of alkynyl ruthenium chromophore thin films using third harmonic generation,” J. Opt. Adv. Mat. 9, 2826–2832 (2007).

R. Czaplicki, O. Krupka, Z. Essaïdi, A. El-Ghayoury, F. Kajzar, J.G. Grote, and B. Sahraoui, “Grating inscription in picosecond regime in thin films of functionalized DNA,” Opt. Exp. 15, 15268–15273 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15268
[Crossref]

A. Miniewicz, B. Sahraoui, E. Schab-Balcerzak, A. Sobolewska, A. C. Mitus, and F. Kajzar, “Pulsed-laser grating recording in organic materials containing azobenzene derivatives,” Nonlin. Opt. Quant. Opt. 35, 95–102 (2006).

Samoc, M.

S. K. Hurst, M. P. Cifuentes, A. M. McDonagh, M. G. Humphrey, M. Samoc, B. Luther-Davies, I. Asselberghs, and A. Persoons, “Organometallic complexes for nonlinear optics. Quadratic and cubic hyperpolarizabilities of some dipolar and quadrupolar gold and ruthenium complexes,” J. Organomet. Chem. 642, 259–267 (2002).
[Crossref]

Samuelson, L.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[Crossref]

Samuelson, L. A.

M. Kim, B. Kang, S. Yang, C. Drew, L. A. Samuelson, and J. Kumar, “Facile patterning of periodic arrays of metal oxides,” Adv. Mat. 18, 1622–1626 (2006).
[Crossref]

Schab-Balcerzak, E.

A. Miniewicz, B. Sahraoui, E. Schab-Balcerzak, A. Sobolewska, A. C. Mitus, and F. Kajzar, “Pulsed-laser grating recording in organic materials containing azobenzene derivatives,” Nonlin. Opt. Quant. Opt. 35, 95–102 (2006).

Shank, C. V.

C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[Crossref]

Shirotaab, Y.

H. Nakano, T. Tanino, T. Takahashi, H. Andoa, and Y. Shirotaab, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem. 18, 242–246 (2008).
[Crossref]

Sobolewska, A.

A. Miniewicz, B. Sahraoui, E. Schab-Balcerzak, A. Sobolewska, A. C. Mitus, and F. Kajzar, “Pulsed-laser grating recording in organic materials containing azobenzene derivatives,” Nonlin. Opt. Quant. Opt. 35, 95–102 (2006).

Sourisseau, C.

F. Lagugné-Labarthet, T. Buffeteau, and C. Sourisseau, “Molecular orientations in azopolymer holographic diffraction gratings as studied by Raman confocal microspectrometry,” J. Phys. Chem. B 102, 5754–5765 (1998).

Takahashi, T.

H. Nakano, T. Tanino, T. Takahashi, H. Andoa, and Y. Shirotaab, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem. 18, 242–246 (2008).
[Crossref]

Tanino, T.

H. Nakano, T. Tanino, T. Takahashi, H. Andoa, and Y. Shirotaab, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem. 18, 242–246 (2008).
[Crossref]

Tkaczyk, S.

J. Luc, A. Migalska-Zalas, S. Tkaczyk, J. Andriès, J.-L. Fillaut, A. Meghea, and B. Sahraoui, “Nonlinear optical effects in new alkynyl-ruthenium containing nanocomposites,” J. Opt. Adv. Mat. (Review paper) 10, 29–43 (2008).

Toussaere, E.

E. Toussaere and P. Labbé, “Linear and non-linear gratings in DR1 side chain polymers,” Opt. Mat. 12, 357–362 (1999).
[Crossref]

Tripathy, S. K.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[Crossref]

Viswanathan, N. K.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[Crossref]

Wang, X.

Y. He, X. Wang, and Q. Zhou, “Synthesis and characterization of a novel photoprocessible hyperbranched azo polymer,” Synth. Met. 132, 245–248 (2003).
[Crossref]

Watanabe, W.

Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, and Z. Zhou, “Single femtosecond pulse holography using polymethyl methacrylate,” Opt. Exp. 10, 1173–1178 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-21-1173

Williams, C. K.

N. J. Long and C. K. Williams, “Metal alkynyl σ complexes: Synthesis and Materials,” Angew. Chem. Int.Ed. 2003, 2586–2617 (2003).

Williams, J.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[Crossref]

Yamada, K.

Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, and Z. Zhou, “Single femtosecond pulse holography using polymethyl methacrylate,” Opt. Exp. 10, 1173–1178 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-21-1173

Yang, S.

M. Kim, B. Kang, S. Yang, C. Drew, L. A. Samuelson, and J. Kumar, “Facile patterning of periodic arrays of metal oxides,” Adv. Mat. 18, 1622–1626 (2006).
[Crossref]

Yin, J.

P. Yuan, J. Yin, G. Yu, Q. Hu, and S. Hua Liu, “Synthesis and second-order NLO properties of donor-acceptor σ-alkenyl ruthenium complexes,” Organometallics 26, 196–200 (2007).
[Crossref]

Yu, G.

P. Yuan, J. Yin, G. Yu, Q. Hu, and S. Hua Liu, “Synthesis and second-order NLO properties of donor-acceptor σ-alkenyl ruthenium complexes,” Organometallics 26, 196–200 (2007).
[Crossref]

Yuan, P.

P. Yuan, J. Yin, G. Yu, Q. Hu, and S. Hua Liu, “Synthesis and second-order NLO properties of donor-acceptor σ-alkenyl ruthenium complexes,” Organometallics 26, 196–200 (2007).
[Crossref]

Zhou, Q.

Y. He, X. Wang, and Q. Zhou, “Synthesis and characterization of a novel photoprocessible hyperbranched azo polymer,” Synth. Met. 132, 245–248 (2003).
[Crossref]

Zhou, Z.

Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, and Z. Zhou, “Single femtosecond pulse holography using polymethyl methacrylate,” Opt. Exp. 10, 1173–1178 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-21-1173

Zilker, S. J.

O. Baldus, A. Leopold, R. Hagen, T. Bieringer, and S. J. Zilker, “Surface relief gratings generated by pulsed holography: A simple way to polymer nanostructures without isomerizing side-chains,” J. Chem. Phys. 114, 1344–1349 (2001).
[Crossref]

Acc. Chem. Res. (1)

B. J. Coe, “Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups,” Acc. Chem. Res. 39, 383–393 (2006).
[Crossref] [PubMed]

Adv. Mat. (1)

M. Kim, B. Kang, S. Yang, C. Drew, L. A. Samuelson, and J. Kumar, “Facile patterning of periodic arrays of metal oxides,” Adv. Mat. 18, 1622–1626 (2006).
[Crossref]

Angew. Chem. Int. (2)

N. J. Long and C. K. Williams, “Metal alkynyl σ complexes: Synthesis and Materials,” Angew. Chem. Int.Ed. 2003, 2586–2617 (2003).

B. J. Coe, S. Houbrechts, I. Asselberghs, and A. Persoons, “Efficient, reversible redox-switching of molecular first hyperpolarizabilities in ruthenium(II) complexes possessing large quadratic optical nonlinearities,” Angew. Chem. Int.Ed. 38, 366–369 (1999).
[Crossref]

Appl. Phys. Lett. (2)

P. S. Ramanujam, M. Pedersen, and S. Hvilsted, “Instant holography,” Appl. Phys. Lett. 74, 3227–3229 (1999).
[Crossref]

C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[Crossref]

Chem. Commun. (1)

S. Barlow and S. R. Marder, “Electronic and optical properties of conjugated group 8 metallocene derivatives,” Chem. Commun. 2000, 1555–1562 (2000).
[Crossref]

Coord. Chem. Rev. (1)

C. E. Powell and M. G. Humphrey, “Nonlinear optical properties of transition metal acetylides and their derivatives,” Coord. Chem. Rev. 248, 725–756 (2004).
[Crossref]

Eur. J. Inorg. Chem. (1)

H. Le Bozec and T. Renouard, “Dipolar and non-dipolar pyridine and bipyridine metal complexes for nonlinear optics,” Eur. J. Inorg. Chem. 2000, 229–239 (2000).
[Crossref]

J. Chem. Phys. (1)

O. Baldus, A. Leopold, R. Hagen, T. Bieringer, and S. J. Zilker, “Surface relief gratings generated by pulsed holography: A simple way to polymer nanostructures without isomerizing side-chains,” J. Chem. Phys. 114, 1344–1349 (2001).
[Crossref]

J. Mater. Chem. (2)

H. Nakano, T. Tanino, T. Takahashi, H. Andoa, and Y. Shirotaab, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem. 18, 242–246 (2008).
[Crossref]

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem. 9, 1941–1955 (1999).
[Crossref]

J. Opt. Adv. Mat. (1)

J. Luc, J.-L. Fillaut, J. Niziol, and B. Sahraoui, “Large third-order nonlinear optical properties of alkynyl ruthenium chromophore thin films using third harmonic generation,” J. Opt. Adv. Mat. 9, 2826–2832 (2007).

J. Opt. Adv. Mat. (Review paper) (1)

J. Luc, A. Migalska-Zalas, S. Tkaczyk, J. Andriès, J.-L. Fillaut, A. Meghea, and B. Sahraoui, “Nonlinear optical effects in new alkynyl-ruthenium containing nanocomposites,” J. Opt. Adv. Mat. (Review paper) 10, 29–43 (2008).

J. Organomet. Chem. (1)

S. K. Hurst, M. P. Cifuentes, A. M. McDonagh, M. G. Humphrey, M. Samoc, B. Luther-Davies, I. Asselberghs, and A. Persoons, “Organometallic complexes for nonlinear optics. Quadratic and cubic hyperpolarizabilities of some dipolar and quadrupolar gold and ruthenium complexes,” J. Organomet. Chem. 642, 259–267 (2002).
[Crossref]

J. Phys. Chem. (2)

F. Lagugné-Labarthet, T. Buffeteau, and C. Sourisseau, “Molecular orientations in azopolymer holographic diffraction gratings as studied by Raman confocal microspectrometry,” J. Phys. Chem. B 102, 5754–5765 (1998).

C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100, 8836–8842 (1996).
[Crossref]

J. Phys. Condens. Matter (1)

B. Bellini, J. Ackermann, H. Klein, C. Grave, P. Dumas, and V. Safarov, “Light-induced molecular motion of azobenzene-containing molecules: a random-walk model,” J. Phys. Condens. Matter 18, 1817–1835 (2006).
[Crossref]

J. Polym. Sci.: Part A: Polym. Chem. (1)

C. Chun, J. Ghim, M.-J. Kim, and D. Y. Kim, “Photofabrication of surface relief gratings from azobenzene containing perfluorocyclobutane aryl ether polymer,” J. Polym. Sci.: Part A: Polym. Chem. 43, 3525–3532 (2005).
[Crossref]

Nonlin. Opt. Quant. Opt. (1)

A. Miniewicz, B. Sahraoui, E. Schab-Balcerzak, A. Sobolewska, A. C. Mitus, and F. Kajzar, “Pulsed-laser grating recording in organic materials containing azobenzene derivatives,” Nonlin. Opt. Quant. Opt. 35, 95–102 (2006).

Opt. Exp. (2)

R. Czaplicki, O. Krupka, Z. Essaïdi, A. El-Ghayoury, F. Kajzar, J.G. Grote, and B. Sahraoui, “Grating inscription in picosecond regime in thin films of functionalized DNA,” Opt. Exp. 15, 15268–15273 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15268
[Crossref]

Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, and Z. Zhou, “Single femtosecond pulse holography using polymethyl methacrylate,” Opt. Exp. 10, 1173–1178 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-21-1173

Opt. Mat. (1)

E. Toussaere and P. Labbé, “Linear and non-linear gratings in DR1 side chain polymers,” Opt. Mat. 12, 357–362 (1999).
[Crossref]

Organometallics (1)

P. Yuan, J. Yin, G. Yu, Q. Hu, and S. Hua Liu, “Synthesis and second-order NLO properties of donor-acceptor σ-alkenyl ruthenium complexes,” Organometallics 26, 196–200 (2007).
[Crossref]

Synth. Met. (2)

C. Fiorini, N. Prudhomme, G. De Veyrac, I. Maurin, P. Raimond, and J.-M. Nunzi, “Molecular migration mechanism for laser induced surface relief grating formation,” Synth. Met. 115, 121–125 (2000).
[Crossref]

Y. He, X. Wang, and Q. Zhou, “Synthesis and characterization of a novel photoprocessible hyperbranched azo polymer,” Synth. Met. 132, 245–248 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Gratings recording in complex C by two 16 ps beams with the s-s polarization and different intensities.

Fig. 2.
Fig. 2.

First-order diffraction efficiency as the function of irradiation time (a) for complex C with different linear polarization states of writing beams (10 GW/cm2), (b) for complexes A-C with s-s polarization.

Fig. 3.
Fig. 3.

a) Three dimensional atomic force microscope scan of area exposed to the two s-s polarized laser beams for complex B at 10 GW/cm2 and b) cross section of this SRG.

Fig. 4.
Fig. 4.

Diffraction efficiency as a function of irradiation time for complex C (10 GW/cm2, s-s polarization).

Fig. 5.
Fig. 5.

2D (left) and 3D (right) AFM images of a photo-induced two-dimensional SRG for complex B (10 GW/cm2, s-s polarization).

Tables (2)

Tables Icon

Table 1. Experimental parameters of SRGs: the first-order diffraction efficiency (η+1), the average height (h), and the inscription or writing time (t w ) for various polarization states of writing beams (at 10 GW/cm2).

Tables Icon

Table 2. Experimental values of 2D SRGs: the maximum first-order diffraction efficiency (η+1) and the average height (h) for various polarization states of writing beams (at 10 GW/cm2).

Metrics