Abstract

We show in theory and experiment that in a SBS based delay line pulses can be delayed to more than a bit period without broadening. Zero-broadening is possible since the broadening due to the narrow Brillouin gain bandwidth can be compensated by the group velocity dispersion accompanied with the pulse delay. We achieve compensation by a superposition of a broad gain with two narrow losses at its wings. In our experiments 1.9ns pulses were delayed to around 1.5Bit, at the same time its FWHM width was compressed to 80%. Therefore, besides slowing down pulses, the method could have the potential to compensate the fiber dispersion.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Willner, B. Zhang, L. Zhang, L.-S. Yan, and I. Fazal, "Optical Signal Processing using Tunable Delay Elements Based on Slow Light," IEEE J. Sel. Top. Quantum Electron 14, 691-705 (2008).
    [CrossRef]
  2. E. Parra and J. R. Lowell, "Toward applications of slow-light technology," Opt. Photonics News 18, 41-45 (2007).
  3. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
  4. K. Y. Song, M. G. Herraez, and L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82 -88 (2005).
    [CrossRef] [PubMed]
  5. M. G. Herraez, K. Y. Song, and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express 14, 1395-1400 (2006).
    [CrossRef]
  6. T. Schneider, R. Henker, K. U. Lauterbach, and M. Junker, "Comparison of Delay enhancement mechanisms for SBS-based slow light systems," Opt. Express 15, 9605 - 9613 (2007).
    [CrossRef]
  7. T. Schneider, "Time Delay Limits of SBS based Slow Light Systems," Opt. Lett. 33, 1398 - 1400 (2008).
    [CrossRef] [PubMed]
  8. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, "Optimal pump profile designs for broadband SBS slow-light systems," Opt. Express 16, 2764-2777 (2008).
    [CrossRef] [PubMed]
  9. M. D. Stenner and M. A. Neifeld, "Distortion management in slow-light pulse delay," Opt. Express 13, 9995 - 10002 (2005).
    [CrossRef] [PubMed]
  10. T. Sakamoto, T. Yamamoto, K. Shiraki, and T. Kurashima, "Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb," Opt. Express 16, 8026 - 8032 (2008).
    [CrossRef] [PubMed]
  11. T. Schneider, M. Junker, K. U. Lauterbach, and R. Henker, "Distortion reduction in cascaded slow light delays," Electron. Lett. 42, 1110 - 1112 (2006).
    [CrossRef]
  12. K. Y. Song, M. G. Herraez, and L. Thévenaz, "Long optically controlled delays in optical fibers," Opt. Lett. 30, 1782 - 1784 (2005).
    [CrossRef] [PubMed]
  13. Z. Zhu and D. J. Gauthier, "Nearly transparent SBS slow light in an optical fiber," Opt. Express 14, 7238-7245 (2006).
    [CrossRef] [PubMed]
  14. T. Schneider, R. Henker, K. U. Lauterbach, and M. Junker, "Distortion reduction in Slow Light systems based on stimulated Brillouin scattering," Opt. Express 16, 8280 - 8285 (2008).
    [CrossRef] [PubMed]
  15. S. Wang, L. Ren, Y. Liu, and Y. Tomota, "Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams," Opt. Express 16, 8067 - 8076 (2008).
    [CrossRef] [PubMed]

2008 (6)

2007 (2)

T. Schneider, R. Henker, K. U. Lauterbach, and M. Junker, "Comparison of Delay enhancement mechanisms for SBS-based slow light systems," Opt. Express 15, 9605 - 9613 (2007).
[CrossRef]

E. Parra and J. R. Lowell, "Toward applications of slow-light technology," Opt. Photonics News 18, 41-45 (2007).

2006 (3)

2005 (4)

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).

Fazal, I.

A. E. Willner, B. Zhang, L. Zhang, L.-S. Yan, and I. Fazal, "Optical Signal Processing using Tunable Delay Elements Based on Slow Light," IEEE J. Sel. Top. Quantum Electron 14, 691-705 (2008).
[CrossRef]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).

Gauthier, D. J.

R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, "Optimal pump profile designs for broadband SBS slow-light systems," Opt. Express 16, 2764-2777 (2008).
[CrossRef] [PubMed]

Z. Zhu and D. J. Gauthier, "Nearly transparent SBS slow light in an optical fiber," Opt. Express 14, 7238-7245 (2006).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).

Henker, R.

T. Schneider, R. Henker, K. U. Lauterbach, and M. Junker, "Distortion reduction in Slow Light systems based on stimulated Brillouin scattering," Opt. Express 16, 8280 - 8285 (2008).
[CrossRef] [PubMed]

T. Schneider, R. Henker, K. U. Lauterbach, and M. Junker, "Comparison of Delay enhancement mechanisms for SBS-based slow light systems," Opt. Express 15, 9605 - 9613 (2007).
[CrossRef]

T. Schneider, M. Junker, K. U. Lauterbach, and R. Henker, "Distortion reduction in cascaded slow light delays," Electron. Lett. 42, 1110 - 1112 (2006).
[CrossRef]

Herraez, M. G.

Junker, M.

T. Schneider, R. Henker, K. U. Lauterbach, and M. Junker, "Distortion reduction in Slow Light systems based on stimulated Brillouin scattering," Opt. Express 16, 8280 - 8285 (2008).
[CrossRef] [PubMed]

T. Schneider, R. Henker, K. U. Lauterbach, and M. Junker, "Comparison of Delay enhancement mechanisms for SBS-based slow light systems," Opt. Express 15, 9605 - 9613 (2007).
[CrossRef]

T. Schneider, M. Junker, K. U. Lauterbach, and R. Henker, "Distortion reduction in cascaded slow light delays," Electron. Lett. 42, 1110 - 1112 (2006).
[CrossRef]

Kurashima, T.

Lauterbach, K. U.

T. Schneider, R. Henker, K. U. Lauterbach, and M. Junker, "Distortion reduction in Slow Light systems based on stimulated Brillouin scattering," Opt. Express 16, 8280 - 8285 (2008).
[CrossRef] [PubMed]

T. Schneider, R. Henker, K. U. Lauterbach, and M. Junker, "Comparison of Delay enhancement mechanisms for SBS-based slow light systems," Opt. Express 15, 9605 - 9613 (2007).
[CrossRef]

T. Schneider, M. Junker, K. U. Lauterbach, and R. Henker, "Distortion reduction in cascaded slow light delays," Electron. Lett. 42, 1110 - 1112 (2006).
[CrossRef]

Liu, Y.

Lowell, J. R.

E. Parra and J. R. Lowell, "Toward applications of slow-light technology," Opt. Photonics News 18, 41-45 (2007).

Neifeld, M. A.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).

Pant, R.

Parra, E.

E. Parra and J. R. Lowell, "Toward applications of slow-light technology," Opt. Photonics News 18, 41-45 (2007).

Ren, L.

Sakamoto, T.

Schneider, T.

T. Schneider, R. Henker, K. U. Lauterbach, and M. Junker, "Distortion reduction in Slow Light systems based on stimulated Brillouin scattering," Opt. Express 16, 8280 - 8285 (2008).
[CrossRef] [PubMed]

T. Schneider, "Time Delay Limits of SBS based Slow Light Systems," Opt. Lett. 33, 1398 - 1400 (2008).
[CrossRef] [PubMed]

T. Schneider, R. Henker, K. U. Lauterbach, and M. Junker, "Comparison of Delay enhancement mechanisms for SBS-based slow light systems," Opt. Express 15, 9605 - 9613 (2007).
[CrossRef]

T. Schneider, M. Junker, K. U. Lauterbach, and R. Henker, "Distortion reduction in cascaded slow light delays," Electron. Lett. 42, 1110 - 1112 (2006).
[CrossRef]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).

Shiraki, K.

Song, K. Y.

Stenner, M. D.

Thévenaz, L.

Tomota, Y.

Wang, S.

Willner, A. E.

A. E. Willner, B. Zhang, L. Zhang, L.-S. Yan, and I. Fazal, "Optical Signal Processing using Tunable Delay Elements Based on Slow Light," IEEE J. Sel. Top. Quantum Electron 14, 691-705 (2008).
[CrossRef]

Yamamoto, T.

Yan, L.-S.

A. E. Willner, B. Zhang, L. Zhang, L.-S. Yan, and I. Fazal, "Optical Signal Processing using Tunable Delay Elements Based on Slow Light," IEEE J. Sel. Top. Quantum Electron 14, 691-705 (2008).
[CrossRef]

Zhang, B.

A. E. Willner, B. Zhang, L. Zhang, L.-S. Yan, and I. Fazal, "Optical Signal Processing using Tunable Delay Elements Based on Slow Light," IEEE J. Sel. Top. Quantum Electron 14, 691-705 (2008).
[CrossRef]

Zhang, L.

A. E. Willner, B. Zhang, L. Zhang, L.-S. Yan, and I. Fazal, "Optical Signal Processing using Tunable Delay Elements Based on Slow Light," IEEE J. Sel. Top. Quantum Electron 14, 691-705 (2008).
[CrossRef]

Zhu, Z.

Zhu, Z. M.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).

Electron. Lett. (1)

T. Schneider, M. Junker, K. U. Lauterbach, and R. Henker, "Distortion reduction in cascaded slow light delays," Electron. Lett. 42, 1110 - 1112 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron (1)

A. E. Willner, B. Zhang, L. Zhang, L.-S. Yan, and I. Fazal, "Optical Signal Processing using Tunable Delay Elements Based on Slow Light," IEEE J. Sel. Top. Quantum Electron 14, 691-705 (2008).
[CrossRef]

Opt. Express (9)

R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, "Optimal pump profile designs for broadband SBS slow-light systems," Opt. Express 16, 2764-2777 (2008).
[CrossRef] [PubMed]

M. D. Stenner and M. A. Neifeld, "Distortion management in slow-light pulse delay," Opt. Express 13, 9995 - 10002 (2005).
[CrossRef] [PubMed]

T. Sakamoto, T. Yamamoto, K. Shiraki, and T. Kurashima, "Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb," Opt. Express 16, 8026 - 8032 (2008).
[CrossRef] [PubMed]

K. Y. Song, M. G. Herraez, and L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82 -88 (2005).
[CrossRef] [PubMed]

M. G. Herraez, K. Y. Song, and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express 14, 1395-1400 (2006).
[CrossRef]

T. Schneider, R. Henker, K. U. Lauterbach, and M. Junker, "Comparison of Delay enhancement mechanisms for SBS-based slow light systems," Opt. Express 15, 9605 - 9613 (2007).
[CrossRef]

Z. Zhu and D. J. Gauthier, "Nearly transparent SBS slow light in an optical fiber," Opt. Express 14, 7238-7245 (2006).
[CrossRef] [PubMed]

T. Schneider, R. Henker, K. U. Lauterbach, and M. Junker, "Distortion reduction in Slow Light systems based on stimulated Brillouin scattering," Opt. Express 16, 8280 - 8285 (2008).
[CrossRef] [PubMed]

S. Wang, L. Ren, Y. Liu, and Y. Tomota, "Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams," Opt. Express 16, 8067 - 8076 (2008).
[CrossRef] [PubMed]

Opt. Lett. (2)

Opt. Photonics News (1)

E. Parra and J. R. Lowell, "Toward applications of slow-light technology," Opt. Photonics News 18, 41-45 (2007).

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).

Supplementary Material (1)

» Media 1: MOV (1192 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Normalized gain (a) and time delay (b) versus normalized frequency Ω for a single gain (dashed lines) and a gain superimposed with two losses at its wings (solid lines). The inset shows the spectral arrangement of gain (dotted line), losses (dashed line) and the superposition (solid line) for an enhanced frequency scale. In the Fig. (c) and (d) the broadening due to the gain bandwidth (dashed dotted lines), due to the GVD (dashed lines) and the overall broadening (solid lines) versus the pulse width parameter W is shown for a single gain (c) and a gain superimposed with two losses (d) (g0/g0=1, γ0Ω=1, m=5, d=1.1, k=0.1).

Fig. 2.
Fig. 2.

Normalized time delay (a) and normalized broadening (b) as a function of m versus d for g0/g0=1, γ0Ω=1, W=1.0, k=0.1.

Fig. 3.
Fig. 3.

Normalized pulse power vs. time delay for different frequency shifts between the loss and the gain. The shift was increased in 10MHz steps from 100 (right) to 400MHz (left). The four bold curves correspond to a frequency shift of 140MHz, 220MHz, 280MHz and 400MHz (right to left). Please compare to the four insets in Fig. 4. (Media 1).

Fig. 4.
Fig. 4.

Fractional pulse width (a) and fractional delay (b) versus frequency shift of the losses. The insets show selected delayed pulses together with the reference (please compare to the four bold curves in Fig. 3). [Media 1]

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G n = g 0 ( 1 1 + Ω 2 m k 2 [ 1 k 2 + ( Ω + d ) 2 + 1 k 2 + ( Ω d ) 2 ] ) ,
Δ T n = g 0 γ 0 ( 1 Ω 2 ( 1 + Ω 2 ) 2 mk [ k 2 ( Ω + d ) 2 ( k 2 + ( Ω + d ) 2 ) 2 + k 2 ( Ω d ) 2 ( k 2 + ( Ω d ) 2 ) 2 ] ) .

Metrics