Abstract

Higher-order-mode solid and hollow core photonic bandgap fibers exhibiting reversed or zero dispersion slope over tens or hundreds of nanometer bandwidths within the bandgap are presented. This attractive feature makes them well suited for broadband dispersion control in femtosecond pulse fiber lasers, amplifiers and optical parametric oscillators. The canonical form of the dispersion profile in photonic bandgap fibers is modified by a partial reflector layer/interface placed around the core forming a 2D cylindrical Gires-Tournois type interferometer. This small perturbation in the index profile induces a frequency dependent electric field distribution of the preferred propagating higher-order-mode resulting in a zero or reversed dispersion slope.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wandel and P. Kristensen, "Fiber designs for high figure of merit and high slope dispersion compensating fibers," J. Opt. Fiber. Commun. Rep. 3, 25-60 (2005).
    [CrossRef]
  2. L. Grüner-Nielsen, M. Wandel, P. Kristensen, C. Jørgensen, L. V. Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, "Dispersion-Compensating Fibers," J. Lightwave Technol. 23, 3566-3579 (2005).
    [CrossRef]
  3. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Anomalous dispersion in a solid, silica-based fiber," Opt. Lett. 31, 2532-2534 (2006).
    [CrossRef] [PubMed]
  4. J. W. Nicholson, S. Ramachandran, and S. Ghalmi, "A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber," Opt. Express 15, 6623-6628 (2007).
    [CrossRef] [PubMed]
  5. P. St. J. Russell, "Photonic-Crystal Fibers," J. Lightwave Technol. 24, 4729-4749 (2006).
    [CrossRef]
  6. J. Jasapara, T. H. Her, R. Bise, R. Windeler, and D. J. DiGiovanni, "Group-velocity dispersion measurements in a photonic bandgap fiber," J. Opt. Soc. Am. B 20, 1611-1615 (2003).
  7. C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, "A 158 fs 5.3 nJ fiber-laser system at 1 ?m using photonic bandgap fibers for dispersion control and pulse compression," Opt. Express 14, 6063-6068 (2006).
    [CrossRef] [PubMed]
  8. A. Ruehl, O. Prochnow, M. Engelbrecht, D. Wandt, and D. Kracht, "Similariton fiber laser with a hollow-core photonic bandgap fiber for dispersion control," Opt. Lett. 32, 1084-1086 (2007).
    [CrossRef] [PubMed]
  9. C. de Matos, J. Taylor, T. Hansen, K. Hansen, and J. Broeng, "All-fiber chirped pulse amplification using highlydispersive air-core photonic bandgap fiber," Opt. Express 11, 2832-2837 (2003).
    [CrossRef] [PubMed]
  10. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  11. K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003).
    [CrossRef] [PubMed]
  12. B. Rózsa, G. Katona, E. S. Vizi, Z. Várallyay, A. Sághy, L. Valenta, P. Maák, J. Fekete, ??. Bányász, and R. Szipöcs, "Random access three-dimensional two-photon microscopy," Appl. Opt. 46, 1860-1865 (2007).
    [CrossRef] [PubMed]
  13. D. G. Ouzonov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of Megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
    [CrossRef]
  14. D. G. Ouzounov, Ch. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, " Soliton pulse compression in photonic band-gap fibers" Opt. Express 13, 6153-6159 (2005).
    [CrossRef] [PubMed]
  15. Q. Fang, Z. Wang, L. Jin, J. Liu, Y. Yue, Y. Liu, G. Kai, S. Yuan, and X. Dong, "Dispersion design of all-solid photonic bandgap fiber," J. Opt. Soc. Am. B 24, 2899-2905 (2007).
  16. G. Vienne, Y. Xu, C. Jakobsen, H. J. Deyerl, J. Jensen, T. Sorensen, T. Hansen, Y. Huang, M. Terrel, R. Lee, N. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Express 12, 3500-3508 (2004).
    [CrossRef] [PubMed]
  17. J. Fekete, Z. Várallyay and R. Szipöcs, "Design of leaking mode free hollow core photonic bandgap fibers," JWA4, OFC/NFOEC Conference, San Diego, CA, 2008.
  18. P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg fiber" J. Opt. Soc. Am. 68, 1196-1201 (1978).
    [CrossRef]
  19. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, R. Szipöcs, "Prismless passively mode-locked femtosecond Cr:LiSGaF laser," Opt. Lett. 21, 1165-1167 (1996).
    [CrossRef] [PubMed]
  20. R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).
  21. H. A. Macleod, Thin-film optical filters, 3rd edition, (Taylor & Francis Group, Oxon, GB, 2001).
  22. S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, "Low-loss single mode large mode area all-silica photonic bandgap fiber," Opt. Express 14, 562-569 (2006).
    [CrossRef] [PubMed]
  23. http://www.cvilaser.com/Common/PDFs/dispersion equations.pdf
  24. Z. Várallyay, J. Fekete, and R. Szipöcs, "Higher-order mode photonic bandgap fibers with reversed dispersion slope," JWA8, OFC/NFOEC Conference, San Diego, CA, 2008.
  25. K. S. Lee and T. Erdogan, "Fiber mode conversion with tilted gratings in an optical fiber," J. Opt. Soc. Am. A 18, 1176-1185 (2001).
    [CrossRef]
  26. A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, "Full-vector analysis of realistic photonic crystal fiber," Opt. Lett. 24, 276-278 (1999).
    [CrossRef]
  27. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003).
    [CrossRef] [PubMed]
  28. G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, "High-conversion-efficiency widelytunable all-fiber optical parametric oscillator," Opt. Express 15, 2947-2952 (2007).
    [CrossRef] [PubMed]
  29. R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, "Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers," Opt. Express 14, 7974-7985 (2006).
    [CrossRef] [PubMed]
  30. M. Foroni, D. Passaro, F. Poli, A. Cucinotta, S. Selleri, J. Lægsgaard, A. Bjarklev, and V. Marie, "Tailoring of the transmission window in realistic hollow-core Bragg bers," JWA7, OFC/NFOEC Conference, San Diego, CA, 2008.
  31. T. Murao, K. Saitoh, and M. Koshiba, "Structural optimization of ultimate low loss air-guiding photonic bandgap fibers," JWA5, OFC/NFOEC Conference, San Diego, CA, 2008.

2007 (5)

2006 (5)

2005 (3)

2004 (1)

2003 (6)

2001 (1)

2000 (1)

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

1999 (1)

1996 (1)

1978 (1)

Ahmad, F. R.

D. G. Ouzonov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of Megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef]

Amezcua-Correa, R.

Andrés, M. V.

Andrés, P.

Apai, P.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

Bányász, ??.

Bise, R.

Bjarklev, A.

Blondy, J.-M.

Broderick, N. G.

Broeng, J.

Bubnov, M. M.

Cassanho, A.

de Matos, C.

DeBell, G.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

Deyerl, H. J.

Dianov, E. M.

DiGiovanni, D. J.

Dimarcello, F. V.

Dong, X.

Edvold, B.

Engelbrecht, M.

Erdogan, T.

Fang, Q.

Fekete, J.

Ferrando, A.

Février, S.

Gaeta, A. L.

D. G. Ouzounov, Ch. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, " Soliton pulse compression in photonic band-gap fibers" Opt. Express 13, 6153-6159 (2005).
[CrossRef] [PubMed]

D. G. Ouzonov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of Megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef]

Gallagher, M. T.

D. G. Ouzounov, Ch. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, " Soliton pulse compression in photonic band-gap fibers" Opt. Express 13, 6153-6159 (2005).
[CrossRef] [PubMed]

D. G. Ouzonov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of Megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef]

Ghalmi, S.

Grüner-Nielsen, L.

Guryanov, A. N.

Hansen, K.

Hansen, T.

Harvey, J. D.

Hasegawa, T.

Hensley, Ch. J.

Her, T. H.

Huang, Y.

Jakobsen, C.

Jakobsen, D.

Jamier, R.

Jasapara, J.

Jensen, J.

Jenssen, H. P.

Jespersen, K. G.

Jin, L.

Jørgensen, C.

Jørgensen, L. V.

Kai, G.

Katona, G.

Keiding, S. R.

Khopin, V. F.

Knight, J. C.

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Koch, K. W.

D. G. Ouzounov, Ch. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, " Soliton pulse compression in photonic band-gap fibers" Opt. Express 13, 6153-6159 (2005).
[CrossRef] [PubMed]

D. G. Ouzonov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of Megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef]

Köházi-Kis, A.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

Koshiba, M.

Kovács, A. P.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

Kracht, D.

Kristensen, P.

M. Wandel and P. Kristensen, "Fiber designs for high figure of merit and high slope dispersion compensating fibers," J. Opt. Fiber. Commun. Rep. 3, 25-60 (2005).
[CrossRef]

L. Grüner-Nielsen, M. Wandel, P. Kristensen, C. Jørgensen, L. V. Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, "Dispersion-Compensating Fibers," J. Lightwave Technol. 23, 3566-3579 (2005).
[CrossRef]

Lakó, S.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

Lee, K. S.

Lee, R.

Leonhardt, R.

Likhachev, M. E.

Liu, J.

Liu, Y.

Louderback, A. W.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

Maák, P.

Marie, V.

Marom, E.

Miret, J. J.

Monberg, E.

Mortensen, N.

Mott, L.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

Müller, D.

D. G. Ouzonov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of Megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef]

Murdoch, S. G.

Nicholson, J. W.

Nielsen, C. K.

Ouzonov, D. G.

D. G. Ouzonov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of Megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef]

Ouzounov, D. G.

Pálsdóttir, B.

Petrovich, M. N.

Poletti, F.

Prochnow, O.

Ramachandran, S.

Richardson, D. J.

Rózsa, B.

Ruehl, A.

Russell, P. St. J.

Sághy, A.

Saitoh, K.

Salganskii, M. Y.

Sasaoka, E.

Semjonov, S. L.

Silcox, J.

D. G. Ouzonov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of Megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef]

Silvestre, E.

Simonsen, H.

Sorensen, T.

Sorokin, E.

Sorokina, I. T.

Szipöcs, R.

B. Rózsa, G. Katona, E. S. Vizi, Z. Várallyay, A. Sághy, L. Valenta, P. Maák, J. Fekete, ??. Bányász, and R. Szipöcs, "Random access three-dimensional two-photon microscopy," Appl. Opt. 46, 1860-1865 (2007).
[CrossRef] [PubMed]

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, R. Szipöcs, "Prismless passively mode-locked femtosecond Cr:LiSGaF laser," Opt. Lett. 21, 1165-1167 (1996).
[CrossRef] [PubMed]

Taylor, J.

Terrel, M.

Thomas, M. G.

D. G. Ouzonov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of Megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef]

Tikhonravov, A. V.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

Trubetskov, M. K.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

Valenta, L.

Várallyay, Z.

Venkataraman, N.

D. G. Ouzonov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of Megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef]

Venkateraman, N.

Vienne, G.

Vizi, E. S.

Wandel, M.

M. Wandel and P. Kristensen, "Fiber designs for high figure of merit and high slope dispersion compensating fibers," J. Opt. Fiber. Commun. Rep. 3, 25-60 (2005).
[CrossRef]

L. Grüner-Nielsen, M. Wandel, P. Kristensen, C. Jørgensen, L. V. Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, "Dispersion-Compensating Fibers," J. Lightwave Technol. 23, 3566-3579 (2005).
[CrossRef]

Wandt, D.

Wang, Z.

Windeler, R.

Wintner, E.

Wisk, P.

Wong, G. K. L.

Xu, Y.

Yan, M. F.

Yariv, A.

Yeh, P.

Yuan, S.

Yue, Y.

Appl. Opt. (1)

Appl. Phys. B (1)

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

J. Lightwave Technol. (2)

J. Opt. Fiber. Commun. Rep. (1)

M. Wandel and P. Kristensen, "Fiber designs for high figure of merit and high slope dispersion compensating fibers," J. Opt. Fiber. Commun. Rep. 3, 25-60 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Nature (1)

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Opt. Express (10)

K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003).
[CrossRef] [PubMed]

G. Vienne, Y. Xu, C. Jakobsen, H. J. Deyerl, J. Jensen, T. Sorensen, T. Hansen, Y. Huang, M. Terrel, R. Lee, N. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Express 12, 3500-3508 (2004).
[CrossRef] [PubMed]

C. de Matos, J. Taylor, T. Hansen, K. Hansen, and J. Broeng, "All-fiber chirped pulse amplification using highlydispersive air-core photonic bandgap fiber," Opt. Express 11, 2832-2837 (2003).
[CrossRef] [PubMed]

D. G. Ouzounov, Ch. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, " Soliton pulse compression in photonic band-gap fibers" Opt. Express 13, 6153-6159 (2005).
[CrossRef] [PubMed]

C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, "A 158 fs 5.3 nJ fiber-laser system at 1 ?m using photonic bandgap fibers for dispersion control and pulse compression," Opt. Express 14, 6063-6068 (2006).
[CrossRef] [PubMed]

J. W. Nicholson, S. Ramachandran, and S. Ghalmi, "A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber," Opt. Express 15, 6623-6628 (2007).
[CrossRef] [PubMed]

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, "Low-loss single mode large mode area all-silica photonic bandgap fiber," Opt. Express 14, 562-569 (2006).
[CrossRef] [PubMed]

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003).
[CrossRef] [PubMed]

G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, "High-conversion-efficiency widelytunable all-fiber optical parametric oscillator," Opt. Express 15, 2947-2952 (2007).
[CrossRef] [PubMed]

R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, "Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers," Opt. Express 14, 7974-7985 (2006).
[CrossRef] [PubMed]

Opt. Lett. (4)

Science (1)

D. G. Ouzonov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of Megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef]

Other (6)

J. Fekete, Z. Várallyay and R. Szipöcs, "Design of leaking mode free hollow core photonic bandgap fibers," JWA4, OFC/NFOEC Conference, San Diego, CA, 2008.

H. A. Macleod, Thin-film optical filters, 3rd edition, (Taylor & Francis Group, Oxon, GB, 2001).

http://www.cvilaser.com/Common/PDFs/dispersion equations.pdf

Z. Várallyay, J. Fekete, and R. Szipöcs, "Higher-order mode photonic bandgap fibers with reversed dispersion slope," JWA8, OFC/NFOEC Conference, San Diego, CA, 2008.

M. Foroni, D. Passaro, F. Poli, A. Cucinotta, S. Selleri, J. Lægsgaard, A. Bjarklev, and V. Marie, "Tailoring of the transmission window in realistic hollow-core Bragg bers," JWA7, OFC/NFOEC Conference, San Diego, CA, 2008.

T. Murao, K. Saitoh, and M. Koshiba, "Structural optimization of ultimate low loss air-guiding photonic bandgap fibers," JWA5, OFC/NFOEC Conference, San Diego, CA, 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) SC Bragg PBG fiber used for FEM calculations, (b) 1D equivalent of a SC Bragg PBG fiber, (c) dispersion, loss and group delay of the 1D structure comprising 5 periods of low and high index layers with 2.543 µm and 0.651 µm thicknesses, respectively, (d) and demonstration of the reversed dispersion slope applying different GTI cavities on the top of the Bragg structure.

Fig. 2.
Fig. 2.

(a) Scheme of the all-silica Bragg fiber cross section used for FEM simulations, (b) 1D equivalent of all-silica Bragg structure with the additional GTI layer next to the core (red line), (c) computed dispersion, loss and group delay of the 1D equivalent without GTI layer, (d) computed dispersion loss and phase delay of the 1D equivalent with different GTI layer designs.

Fig. 3.
Fig. 3.

Results of finite element modeling: (a) dispersion and loss properties of a solid core Bragg PBG fiber with a resonant Gires-Tournois layer around the core, (b) corresponding mode field distributions at wavelengths of 800, 850, 900, 950, 1000 and 1050 nm (from left to right) which modes have LP01 field distribution in the core for longer wavelengths, (c) LP02 mode distributions at wavelengths of 640, 680, 720, 760 and 800 nm.

Fig. 4.
Fig. 4.

(a) Dispersion and confinement loss of LP02 mode propagating in HC Bragg fiber corresponding to three different 2D GTI structures. High and low index thicknesses are d=0.25 µm and L=3.92 µm in the QW Bragg mirror structure. Physical thicknesses of the high index partial reflector layers (d 0) and the low index air spacer layers (L 0) forming the 2D GTI structure are given as functions of the high and low index QWlayer thicknesses. (b) LP02 mode field distribution in a HC Bragg fiber having a 2D GTI structure with design parameters d 0=0.3d and L 0=0.3L. (blue curve in Fig. 4(a)).

Fig. 5.
Fig. 5.

Dispersion and loss profiles of all-silica HC Bragg fibers with 40 nm thick silica struts. d=0.25 µm, L=(a) 1.24, (b) 1.27, (c) 1.30 and (d) 1.33 µm. The GTI layer had the physical thickness of d 0=0.1d and the air spacer thickness was set to L 0=0.75L.

Fig. 6.
Fig. 6.

(a) the modeled 19-cell HC PBG fiber with hexagonal lattice, (b) HC PBG fiber with expanded core (reduced first, low index layer), (c) design parameters of the honey-comb cladding.

Fig. 7.
Fig. 7.

(a) effective indices obtained with 0 and 10.44% core expansion coefficients for LP02 mode, (b) dispersion where reversed slope is obtained over 55 nm, (c) confinement loss and (d) mode field distributions at 1000, 1025, 1050, 1075 and 1100 nm (from left to right).

Tables (2)

Tables Icon

Table 1. Summary of 1D simulation data corresponding to GTI type SC Bragg fibers of different designs exhibiting reversed dispersion slope.

Tables Icon

Table 2. Summary of 1D simulation data corresponding to GTI type HC Bragg fibers of different designs exhibiting reversed dispersion slope.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

O T m = n m d m cos α m = λ 0 4 where m = L or H
d m = λ 0 4 n m 2 n c 2 sin 2 Θ
Θ ( λ ) = arcsin ( n eff ( λ ) n c ( λ ) )
D ( λ ) = λ c d 2 n eff d λ 2
α cf ( λ ) = 2 π λ n eff
R c = ( E + 1 ) ( 2.5 Λ t 2 )

Metrics