Abstract

We demonstrate plasmonic nanowire-based thermo-optic variable optical attenuators operating in the 1525-1625 nm wavelength range. The devices have a footprint as low as 1 mm, extinction ratio exceeding 40 dB, driving voltage below 3 V, and full modulation bandwidth of 1 kHz. The polarization dependent loss is shown to be critically dependent on the nanowire geometry but devices with polarization-dependent loss as low as ±2.5 dB PDL over most of the attenuation range have been fabricated. We propose an even more compact device design to reduce insertion loss to approximately 1 dB.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  2. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi,"Surface plasmon circuitry," Phys. Today 61, 44-50 (2008).
    [CrossRef]
  3. A. Degiron, P. Berini, and D. R. Smith, "Guiding light with long-range plasmons," Opt. Photon. News 19, 29-34 (2008).
    [CrossRef]
  4. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, "Long-range surface plasmon polariton nanowire waveguides for device applications," Opt. Express 14, 314-319 (2006).
    [CrossRef] [PubMed]
  5. L. Eldada, "Optical communication components," Rev. Sci. Instrum. 75, 575-593 (2004).
    [CrossRef]
  6. H. Ma, A.K.-Y. Jen, and L. R. Dalton, "Polymer-based optical waveguides: Materials processing and devices," Adv. Mater. 14, 1339-1365 (2002).
    [CrossRef]
  7. L. Eldada, "Advances in Polymer Integrated Optics," IEEE J. Sel. Top. Quantum Electron. 6, 54-68 (2000).
    [CrossRef]
  8. D. Li, Y. Zhang, L. Liu, and L. Xu, "Low consumption power variable optical attenuator with sol-gel derived organic/inorganic hybrid materials," Opt. Express 14, 6029-6034 (2006).
    [CrossRef] [PubMed]
  9. X. Jiang,  et al., "Compact Variable Optical Attenuator Based on Multimode Interference Coupler," IEEE Photon. Technol. Lett 17, 2361-2363 (2005).
    [CrossRef]
  10. Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, "Polymer waveguide thermo-optic switches with -70 dB optical crosstalk," Opt. Commun. 258, 18-22 (2006).
    [CrossRef]
  11. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "In-line extinction modulator based on long-range surface plasmon polaritons," Opt. Commun. 244, 455-459 (2005).
    [CrossRef]
  12. S. Park and S. H. Song, "Polymeric variable optical attenuator based on long range surface plasmon polaritons," Electron. Lett. 42, 402-404 (2006).
    [CrossRef]
  13. G. Gagnon, N. Lahoud, G. Mattiussi, and P. Berini, "Thermally activated variable attenuation of long-range surface plasmon-polariton waves," J. Lightwave Technol. 24, 4391-4402 (2006).
    [CrossRef]
  14. P. Berini, "Optical Waveguide Structures," US patent number 6,741,782 (2004).
  15. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding," Phys. Rev. B 76, 035434 (2007).
  16. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).

2008 (2)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi,"Surface plasmon circuitry," Phys. Today 61, 44-50 (2008).
[CrossRef]

A. Degiron, P. Berini, and D. R. Smith, "Guiding light with long-range plasmons," Opt. Photon. News 19, 29-34 (2008).
[CrossRef]

2007 (1)

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding," Phys. Rev. B 76, 035434 (2007).

2006 (5)

2005 (2)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "In-line extinction modulator based on long-range surface plasmon polaritons," Opt. Commun. 244, 455-459 (2005).
[CrossRef]

X. Jiang,  et al., "Compact Variable Optical Attenuator Based on Multimode Interference Coupler," IEEE Photon. Technol. Lett 17, 2361-2363 (2005).
[CrossRef]

2004 (1)

L. Eldada, "Optical communication components," Rev. Sci. Instrum. 75, 575-593 (2004).
[CrossRef]

2002 (1)

H. Ma, A.K.-Y. Jen, and L. R. Dalton, "Polymer-based optical waveguides: Materials processing and devices," Adv. Mater. 14, 1339-1365 (2002).
[CrossRef]

2000 (1)

L. Eldada, "Advances in Polymer Integrated Optics," IEEE J. Sel. Top. Quantum Electron. 6, 54-68 (2000).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).

Berini, P.

Boltasseva, A.

Bozhevolnyi, S. I.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi,"Surface plasmon circuitry," Phys. Today 61, 44-50 (2008).
[CrossRef]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding," Phys. Rev. B 76, 035434 (2007).

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, "Long-range surface plasmon polariton nanowire waveguides for device applications," Opt. Express 14, 314-319 (2006).
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "In-line extinction modulator based on long-range surface plasmon polaritons," Opt. Commun. 244, 455-459 (2005).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).

Dalton, L. R.

H. Ma, A.K.-Y. Jen, and L. R. Dalton, "Polymer-based optical waveguides: Materials processing and devices," Adv. Mater. 14, 1339-1365 (2002).
[CrossRef]

Degiron, A.

A. Degiron, P. Berini, and D. R. Smith, "Guiding light with long-range plasmons," Opt. Photon. News 19, 29-34 (2008).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi,"Surface plasmon circuitry," Phys. Today 61, 44-50 (2008).
[CrossRef]

Eldada, L.

L. Eldada, "Optical communication components," Rev. Sci. Instrum. 75, 575-593 (2004).
[CrossRef]

L. Eldada, "Advances in Polymer Integrated Optics," IEEE J. Sel. Top. Quantum Electron. 6, 54-68 (2000).
[CrossRef]

Gagnon, G.

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi,"Surface plasmon circuitry," Phys. Today 61, 44-50 (2008).
[CrossRef]

Jen, A.K.-Y.

H. Ma, A.K.-Y. Jen, and L. R. Dalton, "Polymer-based optical waveguides: Materials processing and devices," Adv. Mater. 14, 1339-1365 (2002).
[CrossRef]

Jiang, X.

X. Jiang,  et al., "Compact Variable Optical Attenuator Based on Multimode Interference Coupler," IEEE Photon. Technol. Lett 17, 2361-2363 (2005).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).

Jung, J.

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding," Phys. Rev. B 76, 035434 (2007).

Lahoud, N.

Lee, H.-J.

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, "Polymer waveguide thermo-optic switches with -70 dB optical crosstalk," Opt. Commun. 258, 18-22 (2006).
[CrossRef]

Leosson, K.

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, "Long-range surface plasmon polariton nanowire waveguides for device applications," Opt. Express 14, 314-319 (2006).
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "In-line extinction modulator based on long-range surface plasmon polaritons," Opt. Commun. 244, 455-459 (2005).
[CrossRef]

Li, D.

Liu, L.

Ma, H.

H. Ma, A.K.-Y. Jen, and L. R. Dalton, "Polymer-based optical waveguides: Materials processing and devices," Adv. Mater. 14, 1339-1365 (2002).
[CrossRef]

Mattiussi, G.

Nikolajsen, T.

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, "Long-range surface plasmon polariton nanowire waveguides for device applications," Opt. Express 14, 314-319 (2006).
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "In-line extinction modulator based on long-range surface plasmon polaritons," Opt. Commun. 244, 455-459 (2005).
[CrossRef]

Noh, Y.-O.

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, "Polymer waveguide thermo-optic switches with -70 dB optical crosstalk," Opt. Commun. 258, 18-22 (2006).
[CrossRef]

Oh, M.-C.

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, "Polymer waveguide thermo-optic switches with -70 dB optical crosstalk," Opt. Commun. 258, 18-22 (2006).
[CrossRef]

Park, S.

S. Park and S. H. Song, "Polymeric variable optical attenuator based on long range surface plasmon polaritons," Electron. Lett. 42, 402-404 (2006).
[CrossRef]

Smith, D. R.

A. Degiron, P. Berini, and D. R. Smith, "Guiding light with long-range plasmons," Opt. Photon. News 19, 29-34 (2008).
[CrossRef]

Søndergaard, T.

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding," Phys. Rev. B 76, 035434 (2007).

Song, S. H.

S. Park and S. H. Song, "Polymeric variable optical attenuator based on long range surface plasmon polaritons," Electron. Lett. 42, 402-404 (2006).
[CrossRef]

Won, Y.-H.

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, "Polymer waveguide thermo-optic switches with -70 dB optical crosstalk," Opt. Commun. 258, 18-22 (2006).
[CrossRef]

Xu, L.

Zhang, Y.

Adv. Mater. (1)

H. Ma, A.K.-Y. Jen, and L. R. Dalton, "Polymer-based optical waveguides: Materials processing and devices," Adv. Mater. 14, 1339-1365 (2002).
[CrossRef]

Electron. Lett. (1)

S. Park and S. H. Song, "Polymeric variable optical attenuator based on long range surface plasmon polaritons," Electron. Lett. 42, 402-404 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Eldada, "Advances in Polymer Integrated Optics," IEEE J. Sel. Top. Quantum Electron. 6, 54-68 (2000).
[CrossRef]

IEEE Photon. Technol. Lett (1)

X. Jiang,  et al., "Compact Variable Optical Attenuator Based on Multimode Interference Coupler," IEEE Photon. Technol. Lett 17, 2361-2363 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (2)

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, "Polymer waveguide thermo-optic switches with -70 dB optical crosstalk," Opt. Commun. 258, 18-22 (2006).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "In-line extinction modulator based on long-range surface plasmon polaritons," Opt. Commun. 244, 455-459 (2005).
[CrossRef]

Opt. Express (2)

Opt. Photon. News (1)

A. Degiron, P. Berini, and D. R. Smith, "Guiding light with long-range plasmons," Opt. Photon. News 19, 29-34 (2008).
[CrossRef]

Phys. Rev. B (2)

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding," Phys. Rev. B 76, 035434 (2007).

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi,"Surface plasmon circuitry," Phys. Today 61, 44-50 (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

L. Eldada, "Optical communication components," Rev. Sci. Instrum. 75, 575-593 (2004).
[CrossRef]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

P. Berini, "Optical Waveguide Structures," US patent number 6,741,782 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Calculated magnitude and direction (in the x-y plane) of the electric field of the y-polarized E(0,1) mode in the vicinity of the wire, illustrating the high field intensity close to the corners

Fig. 2.
Fig. 2.

(a) Schematic picture of the device geometry. The plasmonic nanowire waveguide is divided into short sections connected to common electrodes in order to increase device yield. (b) A 1-mm long chip containing 12 individual VOAs. Light is coupled to the device under test through polarization-maintaining optical fibres for extinction measurements. (c) Optical microscope image of a fully processed device, showing the layout of electrodes and contact pads.

Fig. 3.
Fig. 3.

Images of the output facet of a 2-mm long, nominally 180 nm×180 nm square nanowire waveguide for (a) y-polarized and (b) x-polarized input light, corresponding to the E(0,1) and E(1,0) long-range corner plasmon polariton supermodes, respectively. The red arrows indicate the direction of the dominating electric field component of the output light. (c) The field intensity along the dashed line in Fig. 1 for the orthogonally polarized long-range modes (thin red lines) and the x-profile of the full calculated 2D intensity distribution of the same calculation, corrected for finite image resolution, integrated along the y-axis (thick red lines) and normalized in intensity. The experimental points represent the x-profile of panels a and b, integrated along the y-axis and scaled in absolute intensity. Results for the two modes are nearly identical, except for the increased background level in case of the x-polarized mode. The simulated data was obtained for a 190 nm×190 nm wire, which gave the best fit to the experimental profiles.

Fig. 4.
Fig. 4.

The upper panels show fibre-to-fibre insertion loss for three different device geometries. The input was linearly polarized at 45° with respect to the waveguide axes and the x and y-polarized output was measured. Insertion loss is plotted relative to the direct fibre-to-fibre transmission of each polarization direction. The difference between the x and y-polarized insertion loss is plotted in the lower panels, illustrating the variation between devices and the high sensitivity to small variations in the cross-sectional geometry. The maximum driving voltage in all cases is below 3V.

Metrics