Abstract

Lamellar gratings illuminated in conical (off-plane) mounting can achieve with suitable optogeometrical parameters (grating profile, angle of incidence and wavelength) a total absorption of light for any polarization provided there is only the zeroth propagating order. A detailed analysis shows that electromagnetic resonances are involved and their nature strongly depends on the polarization. When the incident electric field is parallel to the cross-section of the grating, the resonance is provoked by the excitation of surface plasmons. For the orthogonal polarization, total absorption occurs for deep gratings only, when the grooves behave like resonant optical cavities. It is possible to reduce the optimal grating height by filling the grooves with a high refractive index material.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phylos. Mag. 4, 396-402 (1902).
  2. A. Hessel and A. A. Oliner, "A new theory of Wood's anomalies on optical gratings," Appl. Opt. 4, 1275-1297 (1965).
    [CrossRef]
  3. D. Maystre, "General study of grating anomalies from electromagnetic surface modes," in Electromagnetic Surface Modes, A. D. Boardman, ed. (John Wiley, 1982), Chap. 17.
  4. M. C. Hutley and D. Maystre, "The total absorption of light by a diffraction grating," Opt. Commun. 19, 431-436 (1976).
    [CrossRef]
  5. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, "Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light," Phys. Rev. Lett. 100, 066408 (2008).
    [CrossRef] [PubMed]
  6. A. Wirgin, T. López-Rios, "Can surface-enhanced Raman scattering be caused by waveguide resonance?," Opt. Commun. 48, 416-420 (1984).
    [CrossRef]
  7. E. Popov, L. Tsonev, and D. Maystre, "Losses of plasmon surface wave on metallic grating," J. Mod. Opt. 37, 379-387 (1990).
    [CrossRef]
  8. T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
    [CrossRef]
  9. F. J. Garcia-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Rios, T. Fournier, and B. Pannetier, "Localized surface plasmons in lamellar metallic gratings," J. Lightwave Technol. 17, 2191-2195 (1999).
    [CrossRef]
  10. R. Hooper, J. R. Sambles, "Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount," J. Opt. Soc. Am. 20, 836-843 (2003).
    [CrossRef]
  11. S. Collin, F. Pardo, R. Teissier, J. L. Pelouard, "Efficient light absorption in metal-semiconductor-metal nanostructures," Appl. Phys. Lett. 85, 194-196 (2004).
    [CrossRef]
  12. E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Huthley, G. H. Derrick, "Total absorption of unpolarized light by crossed gratings," Opt. Express 16, 6146-6155 (2008).
    [CrossRef] [PubMed]
  13. T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, "Omnidirectional absorption in nanostructured metal surface," Nat. Photonics 2, 299-301 (2008).
    [CrossRef]
  14. E. Popov, L. Tsonev, and D. Maystre, "Lamellar diffraction grating anomalies," Appl. Opt. 33, 5214-5219 (1994).
    [CrossRef] [PubMed]
  15. S. E. Sandstrom, G. Tayeb, and R. Petit, "Lossy multistep lamellar gratings in conical diffraction mountings - an exact eigenfunction solution," J. Electromagn. Waves Appl. 7, 631-649 (1993).
    [CrossRef]
  16. B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre, "Theoretical study of photonic band gaps in woodpile crystals," Phys. Rev. E 67, 66601 (2003).
  17. M. Nevière and E. Popov, Light Propagation in Periodic Media: Diffraction Theory and Design (Marcel Dekker, New York, 2003).
  18. D. Maystre, "Integral methods," in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 3.
  19. E. Popov, M. Nevière, P. Boyer, and N. Bonod, "Light transmission through single apertures," Opt. Commun. 255, 338-348 (2005).
    [CrossRef]
  20. E. Popov, N. Bonod, and S. Enoch, "Non-Bloch plasmonic stop-band in real-metal gratings," Opt. Express 15, 6241-6250 (2007)
    [CrossRef] [PubMed]
  21. E. Popov, N. Bonod, and S. Enoch, "Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings," Opt. Express 15, 4224-4237 (2007).
    [CrossRef] [PubMed]
  22. M. Neviere, "The homogeneous problem," in Electromagnetic theory of gratings, R. Petit ed. (Springer-Verlag, 1980), Chap. 5.

2008 (3)

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, "Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light," Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Huthley, G. H. Derrick, "Total absorption of unpolarized light by crossed gratings," Opt. Express 16, 6146-6155 (2008).
[CrossRef] [PubMed]

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, "Omnidirectional absorption in nanostructured metal surface," Nat. Photonics 2, 299-301 (2008).
[CrossRef]

2007 (2)

2005 (1)

E. Popov, M. Nevière, P. Boyer, and N. Bonod, "Light transmission through single apertures," Opt. Commun. 255, 338-348 (2005).
[CrossRef]

2004 (1)

S. Collin, F. Pardo, R. Teissier, J. L. Pelouard, "Efficient light absorption in metal-semiconductor-metal nanostructures," Appl. Phys. Lett. 85, 194-196 (2004).
[CrossRef]

2003 (2)

R. Hooper, J. R. Sambles, "Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount," J. Opt. Soc. Am. 20, 836-843 (2003).
[CrossRef]

B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre, "Theoretical study of photonic band gaps in woodpile crystals," Phys. Rev. E 67, 66601 (2003).

1999 (1)

1998 (1)

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

1994 (1)

1993 (1)

S. E. Sandstrom, G. Tayeb, and R. Petit, "Lossy multistep lamellar gratings in conical diffraction mountings - an exact eigenfunction solution," J. Electromagn. Waves Appl. 7, 631-649 (1993).
[CrossRef]

1990 (1)

E. Popov, L. Tsonev, and D. Maystre, "Losses of plasmon surface wave on metallic grating," J. Mod. Opt. 37, 379-387 (1990).
[CrossRef]

1984 (1)

A. Wirgin, T. López-Rios, "Can surface-enhanced Raman scattering be caused by waveguide resonance?," Opt. Commun. 48, 416-420 (1984).
[CrossRef]

1976 (1)

M. C. Hutley and D. Maystre, "The total absorption of light by a diffraction grating," Opt. Commun. 19, 431-436 (1976).
[CrossRef]

1965 (1)

1902 (1)

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phylos. Mag. 4, 396-402 (1902).

Abdelsalam, M.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, "Omnidirectional absorption in nanostructured metal surface," Nat. Photonics 2, 299-301 (2008).
[CrossRef]

Barbara, A.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, "Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light," Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

Bartlett, P. N.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, "Omnidirectional absorption in nanostructured metal surface," Nat. Photonics 2, 299-301 (2008).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, "Omnidirectional absorption in nanostructured metal surface," Nat. Photonics 2, 299-301 (2008).
[CrossRef]

Bonod, N.

Borisov, A. G.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, "Omnidirectional absorption in nanostructured metal surface," Nat. Photonics 2, 299-301 (2008).
[CrossRef]

Boyer, P.

E. Popov, M. Nevière, P. Boyer, and N. Bonod, "Light transmission through single apertures," Opt. Commun. 255, 338-348 (2005).
[CrossRef]

Bustarret, E.

Collin, S.

S. Collin, F. Pardo, R. Teissier, J. L. Pelouard, "Efficient light absorption in metal-semiconductor-metal nanostructures," Appl. Phys. Lett. 85, 194-196 (2004).
[CrossRef]

de Dood, M.

B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre, "Theoretical study of photonic band gaps in woodpile crystals," Phys. Rev. E 67, 66601 (2003).

Dechelette, A.

Derrick, G. H.

Enoch, S.

Fournier, T.

García De Abajo, F. J.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, "Omnidirectional absorption in nanostructured metal surface," Nat. Photonics 2, 299-301 (2008).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Rios, T. Fournier, and B. Pannetier, "Localized surface plasmons in lamellar metallic gratings," J. Lightwave Technol. 17, 2191-2195 (1999).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

Gralak, B.

B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre, "Theoretical study of photonic band gaps in woodpile crystals," Phys. Rev. E 67, 66601 (2003).

Hessel, A.

Hooper, R.

R. Hooper, J. R. Sambles, "Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount," J. Opt. Soc. Am. 20, 836-843 (2003).
[CrossRef]

Huthley, M. C.

Hutley, M. C.

M. C. Hutley and D. Maystre, "The total absorption of light by a diffraction grating," Opt. Commun. 19, 431-436 (1976).
[CrossRef]

Le Perchec, J.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, "Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light," Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

López-Rios, T.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, "Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light," Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Rios, T. Fournier, and B. Pannetier, "Localized surface plasmons in lamellar metallic gratings," J. Lightwave Technol. 17, 2191-2195 (1999).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

A. Wirgin, T. López-Rios, "Can surface-enhanced Raman scattering be caused by waveguide resonance?," Opt. Commun. 48, 416-420 (1984).
[CrossRef]

Maystre, D.

E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Huthley, G. H. Derrick, "Total absorption of unpolarized light by crossed gratings," Opt. Express 16, 6146-6155 (2008).
[CrossRef] [PubMed]

B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre, "Theoretical study of photonic band gaps in woodpile crystals," Phys. Rev. E 67, 66601 (2003).

E. Popov, L. Tsonev, and D. Maystre, "Lamellar diffraction grating anomalies," Appl. Opt. 33, 5214-5219 (1994).
[CrossRef] [PubMed]

E. Popov, L. Tsonev, and D. Maystre, "Losses of plasmon surface wave on metallic grating," J. Mod. Opt. 37, 379-387 (1990).
[CrossRef]

M. C. Hutley and D. Maystre, "The total absorption of light by a diffraction grating," Opt. Commun. 19, 431-436 (1976).
[CrossRef]

McPhedran, R. C.

Mendoza, D.

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

Nevière, M.

Oliner, A. A.

Pannetier, B.

F. J. Garcia-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Rios, T. Fournier, and B. Pannetier, "Localized surface plasmons in lamellar metallic gratings," J. Lightwave Technol. 17, 2191-2195 (1999).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

Pardo, F.

S. Collin, F. Pardo, R. Teissier, J. L. Pelouard, "Efficient light absorption in metal-semiconductor-metal nanostructures," Appl. Phys. Lett. 85, 194-196 (2004).
[CrossRef]

Pelouard, J. L.

S. Collin, F. Pardo, R. Teissier, J. L. Pelouard, "Efficient light absorption in metal-semiconductor-metal nanostructures," Appl. Phys. Lett. 85, 194-196 (2004).
[CrossRef]

Petit, R.

S. E. Sandstrom, G. Tayeb, and R. Petit, "Lossy multistep lamellar gratings in conical diffraction mountings - an exact eigenfunction solution," J. Electromagn. Waves Appl. 7, 631-649 (1993).
[CrossRef]

Popov, E.

Quémerais, P.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, "Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light," Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

Sambles, J. R.

R. Hooper, J. R. Sambles, "Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount," J. Opt. Soc. Am. 20, 836-843 (2003).
[CrossRef]

Sánchez-Dehesa, J.

F. J. Garcia-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Rios, T. Fournier, and B. Pannetier, "Localized surface plasmons in lamellar metallic gratings," J. Lightwave Technol. 17, 2191-2195 (1999).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

Sandstrom, S. E.

S. E. Sandstrom, G. Tayeb, and R. Petit, "Lossy multistep lamellar gratings in conical diffraction mountings - an exact eigenfunction solution," J. Electromagn. Waves Appl. 7, 631-649 (1993).
[CrossRef]

Sugawara, Y.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, "Omnidirectional absorption in nanostructured metal surface," Nat. Photonics 2, 299-301 (2008).
[CrossRef]

Tayeb, G.

B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre, "Theoretical study of photonic band gaps in woodpile crystals," Phys. Rev. E 67, 66601 (2003).

S. E. Sandstrom, G. Tayeb, and R. Petit, "Lossy multistep lamellar gratings in conical diffraction mountings - an exact eigenfunction solution," J. Electromagn. Waves Appl. 7, 631-649 (1993).
[CrossRef]

Teissier, R.

S. Collin, F. Pardo, R. Teissier, J. L. Pelouard, "Efficient light absorption in metal-semiconductor-metal nanostructures," Appl. Phys. Lett. 85, 194-196 (2004).
[CrossRef]

Teperik, T. V.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, "Omnidirectional absorption in nanostructured metal surface," Nat. Photonics 2, 299-301 (2008).
[CrossRef]

Tsonev, L.

E. Popov, L. Tsonev, and D. Maystre, "Lamellar diffraction grating anomalies," Appl. Opt. 33, 5214-5219 (1994).
[CrossRef] [PubMed]

E. Popov, L. Tsonev, and D. Maystre, "Losses of plasmon surface wave on metallic grating," J. Mod. Opt. 37, 379-387 (1990).
[CrossRef]

Wirgin, A.

A. Wirgin, T. López-Rios, "Can surface-enhanced Raman scattering be caused by waveguide resonance?," Opt. Commun. 48, 416-420 (1984).
[CrossRef]

Wood, R. W.

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phylos. Mag. 4, 396-402 (1902).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. Collin, F. Pardo, R. Teissier, J. L. Pelouard, "Efficient light absorption in metal-semiconductor-metal nanostructures," Appl. Phys. Lett. 85, 194-196 (2004).
[CrossRef]

J. Electromagn. Waves Appl. (1)

S. E. Sandstrom, G. Tayeb, and R. Petit, "Lossy multistep lamellar gratings in conical diffraction mountings - an exact eigenfunction solution," J. Electromagn. Waves Appl. 7, 631-649 (1993).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

E. Popov, L. Tsonev, and D. Maystre, "Losses of plasmon surface wave on metallic grating," J. Mod. Opt. 37, 379-387 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

R. Hooper, J. R. Sambles, "Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount," J. Opt. Soc. Am. 20, 836-843 (2003).
[CrossRef]

Nat. Photonics (1)

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, "Omnidirectional absorption in nanostructured metal surface," Nat. Photonics 2, 299-301 (2008).
[CrossRef]

Opt. Commun. (3)

E. Popov, M. Nevière, P. Boyer, and N. Bonod, "Light transmission through single apertures," Opt. Commun. 255, 338-348 (2005).
[CrossRef]

A. Wirgin, T. López-Rios, "Can surface-enhanced Raman scattering be caused by waveguide resonance?," Opt. Commun. 48, 416-420 (1984).
[CrossRef]

M. C. Hutley and D. Maystre, "The total absorption of light by a diffraction grating," Opt. Commun. 19, 431-436 (1976).
[CrossRef]

Opt. Express (3)

Phylos. Mag. (1)

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phylos. Mag. 4, 396-402 (1902).

Phys. Rev. E (1)

B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre, "Theoretical study of photonic band gaps in woodpile crystals," Phys. Rev. E 67, 66601 (2003).

Phys. Rev. Lett. (2)

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, "Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light," Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

Other (4)

D. Maystre, "General study of grating anomalies from electromagnetic surface modes," in Electromagnetic Surface Modes, A. D. Boardman, ed. (John Wiley, 1982), Chap. 17.

M. Nevière and E. Popov, Light Propagation in Periodic Media: Diffraction Theory and Design (Marcel Dekker, New York, 2003).

D. Maystre, "Integral methods," in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 3.

M. Neviere, "The homogeneous problem," in Electromagnetic theory of gratings, R. Petit ed. (Springer-Verlag, 1980), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scheme of a bare metallic lamellar grating with parameters of the conical mount

Figs. 2.
Figs. 2.

Map of the intensity |E|2 on one period of the grating. Parameters are d=644.8 nm, h=1360 nm, c/d=0.5, λ=650 nm, refractive index of gold n=0.142 + i3.374, θ=30°. (a) δ=90°, (b) δ=0°. The dotted line in Fig. 2(b) shows the top of the groove. The different nodes are numbered on the right side. The fifth node lies in the metal, approximately 30 nm below the bottom of the groove as explained later in the text. The distance t 2 between the top of the groove and the second node is represented.

Figs. 3.
Figs. 3.

(a). Reflected efficiency as a function of h. (b) Map of the electric intensity for h=1032 nm. Parameters are λ=650 nm, θ=30°, refractive index of gold n=0.142+i 3.374, φ=90°, δ=0°, d=644.8 nm, c/d=0.5.

Figs. 4.
Figs. 4.

Reflected efficiency in non-conical mount (φ=0) as a function of the angle of incidence θ and the period with silver (n=0.07+i 4.2). Groove is filled with silicon (n=3.5+i 0.02), and its shape is kept constant (width c=287 nm), h=120 nm. (a). Electric field parallel to the groove, (b) magnetic field parallel to the groove. White crosses indicate the parameters d and θ chosen to plot the energy flow in Fig. 5, solid black line represents the cutoff position of order −1st, the violet solid line in (b) gives the position of the plasmon propagating constant at h=0, and the dark circles, at h=120 nm.

Figs. 5.
Figs. 5.

Map of the modulus of the Poynting vector and lines of energy flow (black lines) on the top of the grating over 5 periods. The parameters are d=410 nm, c=287 nm, θ=30°(crosses in Fig. 4), refractive index of silver is n=0.07+i4.2. (a) Electric field parallel to the grooves, the reflected efficiency is equal to 7.36%, (b) electric field perpendicular to the grooves, the reflected efficiency is equal to 1.47%.

Tables (1)

Tables Icon

Table 1: Values of the grating depth for the different absorption peaks depending on the node number given in the first column. Second column: exact values of h corresponding to the absorption peaks in Fig. 3(a) (with the corresponding reflectivity). Third column: phenomenological value hn explained in the text.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S 1 ( α p ) D = 0 ,

Metrics