Abstract

We have investigated the transmission properties of a photonic crystal waveguide (PCW) formed by holographic lithography for the first time with a two-dimensional (2D) triangular holographic photonic crystal (PhC) including a line defect with two 60° bends. Calculations have shown that for this PCW high transmission (>90%) through sharp corners can be obtained in a wide frequency range from 0.298 to 0.310 (ωa/2πc) with the relative band gap of 4% when the dielectric contrast is 7.6:1. As far as we know, this result should be the widest frequency range with high transmission (>90%) in the waveguide of similar 2D triangular PhCs ever reported. We have also found that the specific holographic designs of PhC have strong influence on the resonance between the two waveguide bends, and thus this fact can be used as an effective means to improve the transmission property of 2D holographic PCW. In addition to the simplicity and low cost of holographic fabrication of PhCs, these features may reveal the possibly better guiding ability of holographic PCW than the conventional waveguide and the promising potential of the former in the application of photonic integrated circuits.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals-Molding the Flow of Light (Princeton University Press, 1995).
  2. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).
  3. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
    [CrossRef]
  4. A.  Mekis, J. C.  Chen, I.  Kurland, S.  Fan, P. R.  Villeneuve, and J. D.  Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
    [CrossRef] [PubMed]
  5. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
    [CrossRef] [PubMed]
  6. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
    [CrossRef]
  7. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, "Design and fabrication of silicon photonic crystal optical waveguides," J. Lightwave Technol. 18, 1402-1411 (2000).
    [CrossRef]
  8. J. García, P. Sanchis, and J. Martí, "Detailed analysis of the influence of structure length on pulse propagation through finite-size photonic crystal waveguides," Opt. Express 14, 6879-6893 (2006).
    [CrossRef] [PubMed]
  9. A. Chutinan and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (2000).
    [CrossRef]
  10. A. Talneau, L. L. Gouezigou, N. Bouadma, M. Kafesaki, and C. M. Soukoulis, "Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55?m," Appl. Phys. Lett. 80, 547-549 (2002).
    [CrossRef]
  11. J. Smajic, C. Hafner, and D. Erni, "Design and optimization of an achromatic photonic crystal bend," Opt. Express 11, 1378-1384 (2003).
    [CrossRef] [PubMed]
  12. X. D. Cui, C. Hafner, R. Vahldieck, and F. Robin, "Sharp trench waveguide bends in dual mode operation with ultra-small photonic crystals for suppressing radiation," Opt. Express 14, 4351-4356 (2006).
    [CrossRef]
  13. J. García, P. Sanchis, and J. Martí, "Detailed analysis of the influence of structure length on pulse propagation through finite-size photonic crystal waveguides," Opt. Express 14, 6879-6893 (2006).
    [CrossRef] [PubMed]
  14. A. Chutinan, M. Okano, and S. Noda, "Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 80, 1698-1700 (2002).
    [CrossRef]
  15. A. Talneau, P. Lalanne, M. Agio, and C.M. Soukoulis, "Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths," Opt. Lett. 27, 1522-1524 (2002).
    [CrossRef]
  16. X. X. Shen, X. Q. Yu, X. L. Yang, L. Z. Cai, Y. R. Wang, G. Y. Dong, X. F. Meng, and X. F. Xu, "Fabrication of periodic microstructures by holographic photopolymerization with a low-power continuous-wave laser of 532 nm," J. Opt. A: Pure Appl. Opt. 8, 672-676 (2006).
    [CrossRef]
  17. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
    [CrossRef] [PubMed]
  18. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
    [CrossRef] [PubMed]
  19. X. L. Yang, L. Z. Cai, and Q. Liu, "Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams," Opt. Express 11, 1050-1055 (2003).
    [CrossRef] [PubMed]
  20. F. Ramos-Mendieta and P. Halevi, "Electromagnetic surface modes of a dielectric superlattice: the supercell method," J. Opt. Soc. Am. B 14, 370-381 (1997).
    [CrossRef]
  21. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures" Phys. Rev. Lett. 65, 3152 -3155 (1990).
    [CrossRef] [PubMed]
  22. M. Qiu and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," J. Appl. Phys. 87, 8268-8275 (2000).
    [CrossRef]
  23. T. Y. M. Chan, O. Toader, and S. John, "Photonic bandgap templating using optical interference lithography," Phys. Rev. E 71, 046605 (2005).
    [CrossRef]

2006 (4)

2005 (1)

T. Y. M. Chan, O. Toader, and S. John, "Photonic bandgap templating using optical interference lithography," Phys. Rev. E 71, 046605 (2005).
[CrossRef]

2003 (2)

2002 (3)

A. Talneau, P. Lalanne, M. Agio, and C.M. Soukoulis, "Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths," Opt. Lett. 27, 1522-1524 (2002).
[CrossRef]

A. Chutinan, M. Okano, and S. Noda, "Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 80, 1698-1700 (2002).
[CrossRef]

A. Talneau, L. L. Gouezigou, N. Bouadma, M. Kafesaki, and C. M. Soukoulis, "Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55?m," Appl. Phys. Lett. 80, 547-549 (2002).
[CrossRef]

2000 (6)

A. Chutinan and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (2000).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

M. Qiu and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," J. Appl. Phys. 87, 8268-8275 (2000).
[CrossRef]

M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, "Design and fabrication of silicon photonic crystal optical waveguides," J. Lightwave Technol. 18, 1402-1411 (2000).
[CrossRef]

1998 (1)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

1997 (1)

1996 (1)

A.  Mekis, J. C.  Chen, I.  Kurland, S.  Fan, P. R.  Villeneuve, and J. D.  Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

1991 (1)

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

1990 (1)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures" Phys. Rev. Lett. 65, 3152 -3155 (1990).
[CrossRef] [PubMed]

Agio, M.

Biswas, R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Blanco, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Bouadma, N.

A. Talneau, L. L. Gouezigou, N. Bouadma, M. Kafesaki, and C. M. Soukoulis, "Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55?m," Appl. Phys. Lett. 80, 547-549 (2002).
[CrossRef]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Cai, L. Z.

X. X. Shen, X. Q. Yu, X. L. Yang, L. Z. Cai, Y. R. Wang, G. Y. Dong, X. F. Meng, and X. F. Xu, "Fabrication of periodic microstructures by holographic photopolymerization with a low-power continuous-wave laser of 532 nm," J. Opt. A: Pure Appl. Opt. 8, 672-676 (2006).
[CrossRef]

X. L. Yang, L. Z. Cai, and Q. Liu, "Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams," Opt. Express 11, 1050-1055 (2003).
[CrossRef] [PubMed]

Chan, C. T.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures" Phys. Rev. Lett. 65, 3152 -3155 (1990).
[CrossRef] [PubMed]

Chan, T. Y. M.

T. Y. M. Chan, O. Toader, and S. John, "Photonic bandgap templating using optical interference lithography," Phys. Rev. E 71, 046605 (2005).
[CrossRef]

Chen, J. C.

A.  Mekis, J. C.  Chen, I.  Kurland, S.  Fan, P. R.  Villeneuve, and J. D.  Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Chomski, E.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Chutinan, A.

A. Chutinan, M. Okano, and S. Noda, "Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 80, 1698-1700 (2002).
[CrossRef]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

A. Chutinan and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (2000).
[CrossRef]

Cui, X. D.

Doll, T.

Dong, G. Y.

X. X. Shen, X. Q. Yu, X. L. Yang, L. Z. Cai, Y. R. Wang, G. Y. Dong, X. F. Meng, and X. F. Xu, "Fabrication of periodic microstructures by holographic photopolymerization with a low-power continuous-wave laser of 532 nm," J. Opt. A: Pure Appl. Opt. 8, 672-676 (2006).
[CrossRef]

Erni, D.

Fan, S.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
[CrossRef]

A.  Mekis, J. C.  Chen, I.  Kurland, S.  Fan, P. R.  Villeneuve, and J. D.  Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

García, J.

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

Gouezigou, L. L.

A. Talneau, L. L. Gouezigou, N. Bouadma, M. Kafesaki, and C. M. Soukoulis, "Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55?m," Appl. Phys. Lett. 80, 547-549 (2002).
[CrossRef]

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Hafner, C.

Halevi, P.

He, S.

M. Qiu and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," J. Appl. Phys. 87, 8268-8275 (2000).
[CrossRef]

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures" Phys. Rev. Lett. 65, 3152 -3155 (1990).
[CrossRef] [PubMed]

Ibisate, M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
[CrossRef]

A.  Mekis, J. C.  Chen, I.  Kurland, S.  Fan, P. R.  Villeneuve, and J. D.  Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

John, S.

T. Y. M. Chan, O. Toader, and S. John, "Photonic bandgap templating using optical interference lithography," Phys. Rev. E 71, 046605 (2005).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Johnson, S. G.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
[CrossRef]

Kafesaki, M.

A. Talneau, L. L. Gouezigou, N. Bouadma, M. Kafesaki, and C. M. Soukoulis, "Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55?m," Appl. Phys. Lett. 80, 547-549 (2002).
[CrossRef]

Kurland, I.

A.  Mekis, J. C.  Chen, I.  Kurland, S.  Fan, P. R.  Villeneuve, and J. D.  Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Lalanne, P.

Leonard, S.W.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Leung, K. M.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Liu, Q.

Loncar, M.

Lopez, C.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Martí, J.

Mekis, A.

A.  Mekis, J. C.  Chen, I.  Kurland, S.  Fan, P. R.  Villeneuve, and J. D.  Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Meng, X. F.

X. X. Shen, X. Q. Yu, X. L. Yang, L. Z. Cai, Y. R. Wang, G. Y. Dong, X. F. Meng, and X. F. Xu, "Fabrication of periodic microstructures by holographic photopolymerization with a low-power continuous-wave laser of 532 nm," J. Opt. A: Pure Appl. Opt. 8, 672-676 (2006).
[CrossRef]

Meseguer, F.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Miguez, H.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Mondia, J. P.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Noda, S.

A. Chutinan, M. Okano, and S. Noda, "Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 80, 1698-1700 (2002).
[CrossRef]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

A. Chutinan and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (2000).
[CrossRef]

Okano, M.

A. Chutinan, M. Okano, and S. Noda, "Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 80, 1698-1700 (2002).
[CrossRef]

Ozin, G. A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Qiu, M.

M. Qiu and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," J. Appl. Phys. 87, 8268-8275 (2000).
[CrossRef]

Ramos-Mendieta, F.

Robin, F.

Sanchis, P.

Scherer, A.

Shen, X. X.

X. X. Shen, X. Q. Yu, X. L. Yang, L. Z. Cai, Y. R. Wang, G. Y. Dong, X. F. Meng, and X. F. Xu, "Fabrication of periodic microstructures by holographic photopolymerization with a low-power continuous-wave laser of 532 nm," J. Opt. A: Pure Appl. Opt. 8, 672-676 (2006).
[CrossRef]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Smajic, J.

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Soukoulis, C. M.

A. Talneau, L. L. Gouezigou, N. Bouadma, M. Kafesaki, and C. M. Soukoulis, "Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55?m," Appl. Phys. Lett. 80, 547-549 (2002).
[CrossRef]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures" Phys. Rev. Lett. 65, 3152 -3155 (1990).
[CrossRef] [PubMed]

Soukoulis, C.M.

Talneau, A.

A. Talneau, P. Lalanne, M. Agio, and C.M. Soukoulis, "Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths," Opt. Lett. 27, 1522-1524 (2002).
[CrossRef]

A. Talneau, L. L. Gouezigou, N. Bouadma, M. Kafesaki, and C. M. Soukoulis, "Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55?m," Appl. Phys. Lett. 80, 547-549 (2002).
[CrossRef]

Toader, O.

T. Y. M. Chan, O. Toader, and S. John, "Photonic bandgap templating using optical interference lithography," Phys. Rev. E 71, 046605 (2005).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Vahldieck, R.

van Driel, H. M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
[CrossRef]

A.  Mekis, J. C.  Chen, I.  Kurland, S.  Fan, P. R.  Villeneuve, and J. D.  Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Vuckovic, J.

Wang, Y. R.

X. X. Shen, X. Q. Yu, X. L. Yang, L. Z. Cai, Y. R. Wang, G. Y. Dong, X. F. Meng, and X. F. Xu, "Fabrication of periodic microstructures by holographic photopolymerization with a low-power continuous-wave laser of 532 nm," J. Opt. A: Pure Appl. Opt. 8, 672-676 (2006).
[CrossRef]

Xu, X. F.

X. X. Shen, X. Q. Yu, X. L. Yang, L. Z. Cai, Y. R. Wang, G. Y. Dong, X. F. Meng, and X. F. Xu, "Fabrication of periodic microstructures by holographic photopolymerization with a low-power continuous-wave laser of 532 nm," J. Opt. A: Pure Appl. Opt. 8, 672-676 (2006).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Yang, X. L.

X. X. Shen, X. Q. Yu, X. L. Yang, L. Z. Cai, Y. R. Wang, G. Y. Dong, X. F. Meng, and X. F. Xu, "Fabrication of periodic microstructures by holographic photopolymerization with a low-power continuous-wave laser of 532 nm," J. Opt. A: Pure Appl. Opt. 8, 672-676 (2006).
[CrossRef]

X. L. Yang, L. Z. Cai, and Q. Liu, "Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams," Opt. Express 11, 1050-1055 (2003).
[CrossRef] [PubMed]

Yu, X. Q.

X. X. Shen, X. Q. Yu, X. L. Yang, L. Z. Cai, Y. R. Wang, G. Y. Dong, X. F. Meng, and X. F. Xu, "Fabrication of periodic microstructures by holographic photopolymerization with a low-power continuous-wave laser of 532 nm," J. Opt. A: Pure Appl. Opt. 8, 672-676 (2006).
[CrossRef]

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

A. Talneau, L. L. Gouezigou, N. Bouadma, M. Kafesaki, and C. M. Soukoulis, "Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55?m," Appl. Phys. Lett. 80, 547-549 (2002).
[CrossRef]

A. Chutinan, M. Okano, and S. Noda, "Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 80, 1698-1700 (2002).
[CrossRef]

J. Appl. Phys. (1)

M. Qiu and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," J. Appl. Phys. 87, 8268-8275 (2000).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A: Pure Appl. Opt. (1)

X. X. Shen, X. Q. Yu, X. L. Yang, L. Z. Cai, Y. R. Wang, G. Y. Dong, X. F. Meng, and X. F. Xu, "Fabrication of periodic microstructures by holographic photopolymerization with a low-power continuous-wave laser of 532 nm," J. Opt. A: Pure Appl. Opt. 8, 672-676 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (2)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (2)

A. Chutinan and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (2000).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
[CrossRef]

Phys. Rev. E (1)

T. Y. M. Chan, O. Toader, and S. John, "Photonic bandgap templating using optical interference lithography," Phys. Rev. E 71, 046605 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures" Phys. Rev. Lett. 65, 3152 -3155 (1990).
[CrossRef] [PubMed]

A.  Mekis, J. C.  Chen, I.  Kurland, S.  Fan, P. R.  Villeneuve, and J. D.  Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

Science (1)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Other (2)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals-Molding the Flow of Light (Princeton University Press, 1995).

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).

Supplementary Material (1)

» Media 1: AVI (3304 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Different cross section shapes of the considered inverse structures corresponding to (a) It =3.0, f=61.2%; (b) It =2.5, f=48.7%; (c) It =2.1, f=32.8%; where the black parts denote the dielectric areas and the white parts air.

Fig. 2.
Fig. 2.

Schematic of a 2D PhC waveguide with two 60° bends. Two arrows indicate the Γ-J and Γ-X direction of the crystal respectively.

Fig. 3.
Fig. 3.

Band diagrams for TE-like modes of (a) the triangular lattice configuration with f=48.7% and (b) the selected single-line-defect waveguide in this configuration. The gray areas show the PhC modes that can propagate inside the PhC configuration; the solid color lines show waveguide modes.

Fig. 4.
Fig. 4.

Transmission (red curve) and reflection spectra (blue curve) of the PhC waveguide (a) with two 60° bends and (b) with one 60° bend when It =2.5, f=48.7% and ε=7.6.

Fig. 5.
Fig. 5.

Variation of transmission spectrum with different filling ratios for the triangular configuration through the waveguide with two 60° bends.

Fig. 6.
Fig. 6.

(Media 1) Snapshot of the TE polarization wave propagation at the frequency of 0.305 (ωa/2πc) in the inverse structure of It=2.5 or f=48.7 % with dielectric contrast of 7.6 :1. The linked movie shows how the pulse with frequency spanning from 0.298 to 0.308 (ωa/2πc) travels through the waveguide as time increases.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I = 3 + cos [ 2 π a ( x y 3 ) ] + cos [ 2 π a ( x + y 3 ) ] + cos ( 4 π 3 a y ) .

Metrics