Abstract

We investigate the design of electronic dispersion compensation (EDC) using full optical-field reconstruction in 10Gbit/s on-off keyed transmission systems limited by optical signal-to-noise ratio (OSNR). By effectively suppressing the impairment due to low-frequency component amplification in phase reconstruction, properly designing the transmission system configuration to combat fiber nonlinearity, and successfully reducing the vulnerability to thermal noise, a 4.8dB OSNR margin can be achieved for 2160km single-mode fiber transmission without any optical dispersion compensation. We also investigate the performance sensitivity of the scheme to various system parameters, and propose a novel method to greatly enhance the tolerance to differential phase misalignment of the asymmetric Mach-Zehnder interferometer. This numerical study provides important design guidelines which will enable full optical-field EDC to become a cost-effective dispersion compensation solution for future transparent optical networks.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Schube and M. Mazzini, "Testing and interoperability of 10GBASE-LRM optical interfaces," IEEE Commun. Mag. 45, s26-s31 (2007).
    [CrossRef]
  2. F. Buchali, H. Bulow, W. Baumert, R. Ballentin, and T. Wehren, "Reduction of the chromatic dispersion penalty at 10Gbit/s by integrated electronic equalizers," in Proc. Optical Fiber Communication Conference (2000), paper ThS1-1.
  3. A. Farbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien, J.-P. Elbers, H. Wernz, H. Griesser, and C. Glingener, "Performance of a 10.7 Gb/s receiver with digital equaliser using maximum likelihood sequence estimation," European Conference on Optical Communication (2004), PDP Th4.1.5.
  4. D. McGhan, M. O'Sullivan, M. Sotoodeh, A. Savchenko, C. Bontu, M. Belanger, and K. Roberts, "Electronic dispersion compensation," in Proc. Optical Fiber Communication Conference (2006), paper OWK1.
    [CrossRef]
  5. G. Bosco and P. Poggiolini, "Long-distance effectiveness of MLSE IMDD receivers," IEEE Photo. Technol. Lett. 18, 1037-1039 (2006).
    [CrossRef]
  6. M. G. Taylor, "Coherent detection for optical communications using digital signal processing," in Proc. Optical Fiber Communication Conference (2007), paper OMP1.
  7. A. D. Ellis and M. E. McCarthy, "Receiver-side electronic dispersion compensation using passive optical field detection for low cost 10Gbit/s 600 km-reach applications," in Proc. Optical Fiber Communication Conference (2006), paper OTuE4.
  8. X. Liu, S. Chandrasekhar, and A. Leven, "Digital self-coherent detection", Opt. Express 16, 792-803 (2008).
    [CrossRef] [PubMed]
  9. N. Kikuchi, K. Mandai, S. Sasaki, and K. Sekine, "Proposal and first experimental demonstration of digital incoherent optical field detector for chromatic dispersion compensation," European Conference on Optical Communication (2006), PDP Th4.4.4.
  10. A. Polley and S. E. Ralph, "Receiver-side adaptive opto-electronic chromatic dispersion compensation," in Proc. Optical Fiber Communication Conference (2007), paper JThA51.
  11. J. Zhao, M. E. McCarthy, P. Gunning, and A. D. Ellis, "Dispersion tolerance enhancement in electronic dispersion compensation using full optical-field reconstruction," in Proc. Optical Fiber Communication Conference (2008), paper OWL3.
  12. H. Haunstein and R. Urbansky, "Application of electronic equalization and error correction in lightwave systems," European Conference on Optical Communication (2004), paper Th1.5.1.
  13. M. C. Jeruchim, "Techniques for estimating the bit error rate in the simulation of digital communication systems," IEEE J. Sel. Areas Commun. SAC-2, 153-170 (1984).
    [CrossRef]
  14. X. Liu and D. A. Fishman, "A fast and reliable algorithm for electronic pre-equalization of SPM and chromatic dispersion," in Proc. Optical Fiber Communication Conference (2006), paper OThD4.
  15. B. Franz, F. Buchali, D. Rosener, and H. Bulow, "Adaptation techniques for electronic equalizers for the mitigation of time-variant distortions in 43Gbit/s optical transmission systems," in Proc. Optical Fiber Communication Conference (2007), paper OMG1.

2008 (1)

2007 (1)

S. Schube and M. Mazzini, "Testing and interoperability of 10GBASE-LRM optical interfaces," IEEE Commun. Mag. 45, s26-s31 (2007).
[CrossRef]

2006 (1)

G. Bosco and P. Poggiolini, "Long-distance effectiveness of MLSE IMDD receivers," IEEE Photo. Technol. Lett. 18, 1037-1039 (2006).
[CrossRef]

1984 (1)

M. C. Jeruchim, "Techniques for estimating the bit error rate in the simulation of digital communication systems," IEEE J. Sel. Areas Commun. SAC-2, 153-170 (1984).
[CrossRef]

Bosco, G.

G. Bosco and P. Poggiolini, "Long-distance effectiveness of MLSE IMDD receivers," IEEE Photo. Technol. Lett. 18, 1037-1039 (2006).
[CrossRef]

Chandrasekhar, S.

Jeruchim, M. C.

M. C. Jeruchim, "Techniques for estimating the bit error rate in the simulation of digital communication systems," IEEE J. Sel. Areas Commun. SAC-2, 153-170 (1984).
[CrossRef]

Leven, A.

Liu, X.

Mazzini, M.

S. Schube and M. Mazzini, "Testing and interoperability of 10GBASE-LRM optical interfaces," IEEE Commun. Mag. 45, s26-s31 (2007).
[CrossRef]

Poggiolini, P.

G. Bosco and P. Poggiolini, "Long-distance effectiveness of MLSE IMDD receivers," IEEE Photo. Technol. Lett. 18, 1037-1039 (2006).
[CrossRef]

Schube, S.

S. Schube and M. Mazzini, "Testing and interoperability of 10GBASE-LRM optical interfaces," IEEE Commun. Mag. 45, s26-s31 (2007).
[CrossRef]

IEEE Commun. Mag. (1)

S. Schube and M. Mazzini, "Testing and interoperability of 10GBASE-LRM optical interfaces," IEEE Commun. Mag. 45, s26-s31 (2007).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

M. C. Jeruchim, "Techniques for estimating the bit error rate in the simulation of digital communication systems," IEEE J. Sel. Areas Commun. SAC-2, 153-170 (1984).
[CrossRef]

IEEE Photo. Technol. Lett. (1)

G. Bosco and P. Poggiolini, "Long-distance effectiveness of MLSE IMDD receivers," IEEE Photo. Technol. Lett. 18, 1037-1039 (2006).
[CrossRef]

Opt. Express (1)

Other (11)

X. Liu and D. A. Fishman, "A fast and reliable algorithm for electronic pre-equalization of SPM and chromatic dispersion," in Proc. Optical Fiber Communication Conference (2006), paper OThD4.

B. Franz, F. Buchali, D. Rosener, and H. Bulow, "Adaptation techniques for electronic equalizers for the mitigation of time-variant distortions in 43Gbit/s optical transmission systems," in Proc. Optical Fiber Communication Conference (2007), paper OMG1.

M. G. Taylor, "Coherent detection for optical communications using digital signal processing," in Proc. Optical Fiber Communication Conference (2007), paper OMP1.

A. D. Ellis and M. E. McCarthy, "Receiver-side electronic dispersion compensation using passive optical field detection for low cost 10Gbit/s 600 km-reach applications," in Proc. Optical Fiber Communication Conference (2006), paper OTuE4.

N. Kikuchi, K. Mandai, S. Sasaki, and K. Sekine, "Proposal and first experimental demonstration of digital incoherent optical field detector for chromatic dispersion compensation," European Conference on Optical Communication (2006), PDP Th4.4.4.

A. Polley and S. E. Ralph, "Receiver-side adaptive opto-electronic chromatic dispersion compensation," in Proc. Optical Fiber Communication Conference (2007), paper JThA51.

J. Zhao, M. E. McCarthy, P. Gunning, and A. D. Ellis, "Dispersion tolerance enhancement in electronic dispersion compensation using full optical-field reconstruction," in Proc. Optical Fiber Communication Conference (2008), paper OWL3.

H. Haunstein and R. Urbansky, "Application of electronic equalization and error correction in lightwave systems," European Conference on Optical Communication (2004), paper Th1.5.1.

F. Buchali, H. Bulow, W. Baumert, R. Ballentin, and T. Wehren, "Reduction of the chromatic dispersion penalty at 10Gbit/s by integrated electronic equalizers," in Proc. Optical Fiber Communication Conference (2000), paper ThS1-1.

A. Farbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien, J.-P. Elbers, H. Wernz, H. Griesser, and C. Glingener, "Performance of a 10.7 Gb/s receiver with digital equaliser using maximum likelihood sequence estimation," European Conference on Optical Communication (2004), PDP Th4.1.5.

D. McGhan, M. O'Sullivan, M. Sotoodeh, A. Savchenko, C. Bontu, M. Belanger, and K. Roberts, "Electronic dispersion compensation," in Proc. Optical Fiber Communication Conference (2006), paper OWK1.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Principle of full optical-field EDC

Fig. 2.
Fig. 2.

Simulation model

Fig. 3.
Fig. 3.

Spectra of V f(t), ψ f(ω), [(a)-(c)] and eye diagrams of the signal after dispersion compensation [(d)-(f)] at a fiber length of 2160km [(a) and (d): 25dB ER without a high-pass EF; (b) and (e): 12dB ER without a high-pass EF; (c) and (f): 12dB ER with a 0.85GHz highpass EF].

Fig. 4.
Fig. 4.

(a). Required OSNR versus transmission distance (circles: 25dB ER without a high-pass EF; triangles: 12dB ER without a high-pass EF; squares: 12dB ER with a 0.85GHz high-pass EF). (b) Required OSNR versus 3dB bandwidth of the high-pass EF at a system length of 2160km and 12dB ER.

Fig. 5.
Fig. 5.

Required OSNR without (circles) and with (triangles) fiber nonlinearity and the maximum achievable OSNR (squares) for 80km SMF and -3dBm signal launch power per span. The ER was 12dB and a 0.85GHz Gaussian-shaped high-pass EF was employed. The differential time delay of the AMZI and the bias of V x(t) were assumed to be 10ps and 0V respectively, and the photodiode thermal noise was neglected.

Fig. 6.
Fig. 6.

Required OSNR (circles) and maximum achievable OSNR (triangles) versus signal launch power at a fiber length of 2160km with (a) 80km per span and (b) 120km per span.

Fig. 7.
Fig. 7.

(a). Required OSNR versus system length without (circles) and with (triangles) thermal noise for 0V V x(t) bias and 10ps AMZI DTD. (b) Required OSNR versus system length with various levels of thermal noise mitigation (squares: 0.1M V x(t) bias and 10ps AMZI DTD, M is defined in the text; crosses: 0V V x(t) bias and 30ps AMZI DTD; triangles: 0.1M V x(t) bias and 30ps AMZI DTD). Circles represent the case without thermal noise for 0.1M V x(t) bias and 30ps AMZI DTD. In (a) and (b), the total received optical powers of the balanced detector and direct detector were both 0dBm.

Fig. 8.
Fig. 8.

Required OSNR versus normalized bias for 30ps AMZI differential time delay at a transmission length of 2160km with the total received optical powers of the balanced detector and direct detector both 0dBm.

Fig. 9.
Fig. 9.

Required OSNR versus total received optical power at a system length of 2160km without thermal noise mitigation and with various levels of mitigation (circles: 0V bias and 10ps AMZI DTD; squares: 0.1M bias and 10ps AMZI DTD; crosses: 0V bias and 30ps AMZI DTD; triangles: 0.1M bias and 30ps AMZI DTD).

Fig. 10.
Fig. 10.

Required OSNR versus differential phase misalignment at a system length of 2160km without (circles) and with (triangles) the proposed compensator for (a) 0.1M and (b) 0.3M bias.

Fig. 11.
Fig. 11.

Required OSNR versus delay error (D x-t/2+D y)) at a system length of 2160km.

Fig. 12.
Fig. 12.

Required OSNR versus sampling rate at a system length of 2160km (circles), 960km (triangles), and 480km (squares).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( t ) = ( E ( t ) E ( t + Δ t ) e ( j π 2 ) ) 2 E ( t + Δ t 2 ) e ( j π 4 ) [ e ( j Δ ω ( t ) Δ t 2 j π 4 ) e ( j Δ ω ( t ) Δ t 2 + j π 4 ) ] 2
E 2 ( t ) = ( E ( t ) + E ( t + Δ t ) e ( j π 2 ) ) 2 E ( t + Δ t 2 ) e ( j π 4 ) [ e ( j Δ ω ( t ) Δ t 2 j π 4 ) + e ( j Δ ω ( t ) Δ t 2 + j π 4 ) ] 2
V 1 ( t ) = α 1 E ( t + Δ t 2 ) 2 sin 2 ( Δ ω ( t ) Δ t 2 + π 4 )
V 2 ( t ) = α 2 E ( t + Δ t 2 ) 2 cos 2 ( Δ ω ( t ) Δ t 2 + π 4 )
V A ( t ) = [ V 1 ( t ) + V 2 ( t ) ] 1 2 = E ( t + Δ t 2 )
V f ( t ) = [ V 1 ( t ) V 2 ( t ) ] [ 2 πΔt V 1 ( t ) + 2 π Δt V 2 ( t ) ] = sin ( Δω ( t ) Δt ) ( 2 π Δt ) Δω ( t ) 2 π
V p ( t ) = 2 π V f ( τ ) d τ φ ( t )
V p ( t ) = 2 π 0 t V f ( τ ) d τ F ψ p ( ω ) = 2 π ψ f ( ω ) ( j ω )
V y ( t ) E ( t ) 2 Δ ω ( t ) Δ t + n th _ y
V x ( t ) E ( t ) 2 + n th _ x
V f ( t ) = α V y ( t ) ( V x ( t ) + bias ) = E ( t ) 2 Δ ω ( t ) + n th _ y Δ t 2 π ( E ( t ) 2 + bias + n th _ x )
V x ( t ) E ( t ) 2
V f ( t ) = E ( t ) 2 2 π ( E ( t ) 2 + bias ) ( Δ ω ( t ) + Δ ς Δ t ) = E ( t ) 2 2 π ( E ( t ) 2 + bias ) Δ ω ( t ) + E ( t ) 2 2 π ( E ( t ) 2 + bias ) Δ ς Δ t

Metrics