Abstract

We designed and fabricated silicon-on-insulator based Michelson interferometer (MI) thermo-optical switches with deep etched trenches for heat-isolation. Switch power was reduced ~20% for the switch with deep etched trenches, and the MI saved ~50% power than that of the Mach-Zehnder interferometer. 10.6 mW switch power, ~42 µs switch time for the MI with deep trenches, 13.14 mW switch power and ~34 µs switch time for the MI without deep trenches were achieved.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, "The Past, Present, and Future of Silicon Photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
    [CrossRef]
  2. B. Jalali and S. Fathpour, "Silicon Photonics," J. Lightwave Technol. 24, 4600-4615 (2006).
    [CrossRef]
  3. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama and S. Itabashi, "Low-Loss Si Wire Waveguides and their Application to Thermooptic Switches," Jpn. J. Appl. Phys. 45, 6658-6662 (2006).
    [CrossRef]
  4. R. L. Espinol, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, Jr., "Fast and Low-Power Thermooptic Switch on Thin Silicon-on-Insulator,"IEEE Photon. Technol. Lett. 15, 1366-1368 (2003).
    [CrossRef]
  5. T. Chu, H. Yamada, S. Ishida and Y. Arakawa, "Compact 1 x N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express 13,10109-10114 (2005).
    [CrossRef] [PubMed]
  6. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, "Maximizing the Thermo-Optic Tuning Range of Silicon Photonic Structures," Optical Switch 2007 IEEE, (San Francisco, 2007), pp.153-154.
  7. M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, "Sub-?s Switching Time in Silicon-on-Insulator Mach-Zehnder Thermooptic Switch," IEEE Photon. Technol. Lett. 16, 2039-2041 (2004).
    [CrossRef]
  8. M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch," IEEE Photon. Technol. Lett. 16, 2514-2516 (2004).
    [CrossRef]
  9. T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, "Thermooptic Switch Based on Photonic-Crystal Line-Defect Waveguides," IEEE Photon. Technol. Lett. 17, 2083-2085 (2005).
    [CrossRef]
  10. L. Gu, W. Jiang, X. Chen, and R. T. Chen, " Thermooptically Tuned Photonic Crystal Waveguide Silicon-on-Insulator Mach-Zehnder Interferometers," IEEE Photon. Technol. Lett. 19, 342-344 (2007).
    [CrossRef]
  11. I. Kiyat, A. Aydinli, and N. Dagli, "Low-Power Thermooptical Tuning of SOI Resonator Switch," IEEE Photon. Technol. Lett. 18, 364-366 (2006).
    [CrossRef]
  12. M. W. Pruessner, T. H. Stievater, M. S. Ferraro, and W. S. Rabinovich, "Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities," Opt. Express 15,7557-7563 (2007).
    [CrossRef] [PubMed]
  13. S.-L. Tsao and P.-C. Peng, "An SOI Michelson Interferometer Sensor with Waveguide Bragg Reflective Gratings for temperature monitoring," Microwave Opt. Technol. Let. 30321-322 (2001).
    [CrossRef]
  14. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires," Opt. Express 14, 3853-3863 (2006).
    [CrossRef] [PubMed]

2007 (2)

L. Gu, W. Jiang, X. Chen, and R. T. Chen, " Thermooptically Tuned Photonic Crystal Waveguide Silicon-on-Insulator Mach-Zehnder Interferometers," IEEE Photon. Technol. Lett. 19, 342-344 (2007).
[CrossRef]

M. W. Pruessner, T. H. Stievater, M. S. Ferraro, and W. S. Rabinovich, "Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities," Opt. Express 15,7557-7563 (2007).
[CrossRef] [PubMed]

2006 (5)

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires," Opt. Express 14, 3853-3863 (2006).
[CrossRef] [PubMed]

I. Kiyat, A. Aydinli, and N. Dagli, "Low-Power Thermooptical Tuning of SOI Resonator Switch," IEEE Photon. Technol. Lett. 18, 364-366 (2006).
[CrossRef]

R. Soref, "The Past, Present, and Future of Silicon Photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
[CrossRef]

B. Jalali and S. Fathpour, "Silicon Photonics," J. Lightwave Technol. 24, 4600-4615 (2006).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama and S. Itabashi, "Low-Loss Si Wire Waveguides and their Application to Thermooptic Switches," Jpn. J. Appl. Phys. 45, 6658-6662 (2006).
[CrossRef]

2005 (2)

T. Chu, H. Yamada, S. Ishida and Y. Arakawa, "Compact 1 x N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express 13,10109-10114 (2005).
[CrossRef] [PubMed]

T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, "Thermooptic Switch Based on Photonic-Crystal Line-Defect Waveguides," IEEE Photon. Technol. Lett. 17, 2083-2085 (2005).
[CrossRef]

2004 (2)

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, "Sub-?s Switching Time in Silicon-on-Insulator Mach-Zehnder Thermooptic Switch," IEEE Photon. Technol. Lett. 16, 2039-2041 (2004).
[CrossRef]

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch," IEEE Photon. Technol. Lett. 16, 2514-2516 (2004).
[CrossRef]

2003 (1)

R. L. Espinol, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, Jr., "Fast and Low-Power Thermooptic Switch on Thin Silicon-on-Insulator,"IEEE Photon. Technol. Lett. 15, 1366-1368 (2003).
[CrossRef]

2001 (1)

S.-L. Tsao and P.-C. Peng, "An SOI Michelson Interferometer Sensor with Waveguide Bragg Reflective Gratings for temperature monitoring," Microwave Opt. Technol. Let. 30321-322 (2001).
[CrossRef]

Aalto, T.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, "Sub-?s Switching Time in Silicon-on-Insulator Mach-Zehnder Thermooptic Switch," IEEE Photon. Technol. Lett. 16, 2039-2041 (2004).
[CrossRef]

Arakawa, Y.

T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, "Thermooptic Switch Based on Photonic-Crystal Line-Defect Waveguides," IEEE Photon. Technol. Lett. 17, 2083-2085 (2005).
[CrossRef]

T. Chu, H. Yamada, S. Ishida and Y. Arakawa, "Compact 1 x N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express 13,10109-10114 (2005).
[CrossRef] [PubMed]

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, "Low-Power Thermooptical Tuning of SOI Resonator Switch," IEEE Photon. Technol. Lett. 18, 364-366 (2006).
[CrossRef]

Chen, R. T.

L. Gu, W. Jiang, X. Chen, and R. T. Chen, " Thermooptically Tuned Photonic Crystal Waveguide Silicon-on-Insulator Mach-Zehnder Interferometers," IEEE Photon. Technol. Lett. 19, 342-344 (2007).
[CrossRef]

Chen, X.

L. Gu, W. Jiang, X. Chen, and R. T. Chen, " Thermooptically Tuned Photonic Crystal Waveguide Silicon-on-Insulator Mach-Zehnder Interferometers," IEEE Photon. Technol. Lett. 19, 342-344 (2007).
[CrossRef]

Chu, T.

T. Chu, H. Yamada, S. Ishida and Y. Arakawa, "Compact 1 x N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express 13,10109-10114 (2005).
[CrossRef] [PubMed]

T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, "Thermooptic Switch Based on Photonic-Crystal Line-Defect Waveguides," IEEE Photon. Technol. Lett. 17, 2083-2085 (2005).
[CrossRef]

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, "Low-Power Thermooptical Tuning of SOI Resonator Switch," IEEE Photon. Technol. Lett. 18, 364-366 (2006).
[CrossRef]

Dulkeith, E.

Espinol, R. L.

R. L. Espinol, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, Jr., "Fast and Low-Power Thermooptic Switch on Thin Silicon-on-Insulator,"IEEE Photon. Technol. Lett. 15, 1366-1368 (2003).
[CrossRef]

Fathpour, S.

Ferraro, M. S.

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama and S. Itabashi, "Low-Loss Si Wire Waveguides and their Application to Thermooptic Switches," Jpn. J. Appl. Phys. 45, 6658-6662 (2006).
[CrossRef]

Geis, M. W.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch," IEEE Photon. Technol. Lett. 16, 2514-2516 (2004).
[CrossRef]

Green, W. M. J.

Gu, L.

L. Gu, W. Jiang, X. Chen, and R. T. Chen, " Thermooptically Tuned Photonic Crystal Waveguide Silicon-on-Insulator Mach-Zehnder Interferometers," IEEE Photon. Technol. Lett. 19, 342-344 (2007).
[CrossRef]

Harjanne, M.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, "Sub-?s Switching Time in Silicon-on-Insulator Mach-Zehnder Thermooptic Switch," IEEE Photon. Technol. Lett. 16, 2039-2041 (2004).
[CrossRef]

Heimala, P.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, "Sub-?s Switching Time in Silicon-on-Insulator Mach-Zehnder Thermooptic Switch," IEEE Photon. Technol. Lett. 16, 2039-2041 (2004).
[CrossRef]

Ishida, S.

T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, "Thermooptic Switch Based on Photonic-Crystal Line-Defect Waveguides," IEEE Photon. Technol. Lett. 17, 2083-2085 (2005).
[CrossRef]

T. Chu, H. Yamada, S. Ishida and Y. Arakawa, "Compact 1 x N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express 13,10109-10114 (2005).
[CrossRef] [PubMed]

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama and S. Itabashi, "Low-Loss Si Wire Waveguides and their Application to Thermooptic Switches," Jpn. J. Appl. Phys. 45, 6658-6662 (2006).
[CrossRef]

Jalali, B.

James, M.-C.

R. L. Espinol, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, Jr., "Fast and Low-Power Thermooptic Switch on Thin Silicon-on-Insulator,"IEEE Photon. Technol. Lett. 15, 1366-1368 (2003).
[CrossRef]

Jiang, W.

L. Gu, W. Jiang, X. Chen, and R. T. Chen, " Thermooptically Tuned Photonic Crystal Waveguide Silicon-on-Insulator Mach-Zehnder Interferometers," IEEE Photon. Technol. Lett. 19, 342-344 (2007).
[CrossRef]

Kapulainen, M.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, "Sub-?s Switching Time in Silicon-on-Insulator Mach-Zehnder Thermooptic Switch," IEEE Photon. Technol. Lett. 16, 2039-2041 (2004).
[CrossRef]

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, "Low-Power Thermooptical Tuning of SOI Resonator Switch," IEEE Photon. Technol. Lett. 18, 364-366 (2006).
[CrossRef]

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch," IEEE Photon. Technol. Lett. 16, 2514-2516 (2004).
[CrossRef]

Osgood, R. M.

R. L. Espinol, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, Jr., "Fast and Low-Power Thermooptic Switch on Thin Silicon-on-Insulator,"IEEE Photon. Technol. Lett. 15, 1366-1368 (2003).
[CrossRef]

Peng, P.-C.

S.-L. Tsao and P.-C. Peng, "An SOI Michelson Interferometer Sensor with Waveguide Bragg Reflective Gratings for temperature monitoring," Microwave Opt. Technol. Let. 30321-322 (2001).
[CrossRef]

Pruessner, M. W.

Rabinovich, W. S.

Schares, L.

Soref, R.

R. Soref, "The Past, Present, and Future of Silicon Photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
[CrossRef]

Spector, S. J.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch," IEEE Photon. Technol. Lett. 16, 2514-2516 (2004).
[CrossRef]

Stievater, T. H.

Tsai, M.-C.

R. L. Espinol, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, Jr., "Fast and Low-Power Thermooptic Switch on Thin Silicon-on-Insulator,"IEEE Photon. Technol. Lett. 15, 1366-1368 (2003).
[CrossRef]

Tsao, S.-L.

S.-L. Tsao and P.-C. Peng, "An SOI Michelson Interferometer Sensor with Waveguide Bragg Reflective Gratings for temperature monitoring," Microwave Opt. Technol. Let. 30321-322 (2001).
[CrossRef]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama and S. Itabashi, "Low-Loss Si Wire Waveguides and their Application to Thermooptic Switches," Jpn. J. Appl. Phys. 45, 6658-6662 (2006).
[CrossRef]

Uchiyama, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama and S. Itabashi, "Low-Loss Si Wire Waveguides and their Application to Thermooptic Switches," Jpn. J. Appl. Phys. 45, 6658-6662 (2006).
[CrossRef]

Vlasov, Y. A.

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama and S. Itabashi, "Low-Loss Si Wire Waveguides and their Application to Thermooptic Switches," Jpn. J. Appl. Phys. 45, 6658-6662 (2006).
[CrossRef]

Williamson, R. C.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch," IEEE Photon. Technol. Lett. 16, 2514-2516 (2004).
[CrossRef]

Xia, F.

Yamada, H.

T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, "Thermooptic Switch Based on Photonic-Crystal Line-Defect Waveguides," IEEE Photon. Technol. Lett. 17, 2083-2085 (2005).
[CrossRef]

T. Chu, H. Yamada, S. Ishida and Y. Arakawa, "Compact 1 x N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express 13,10109-10114 (2005).
[CrossRef] [PubMed]

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama and S. Itabashi, "Low-Loss Si Wire Waveguides and their Application to Thermooptic Switches," Jpn. J. Appl. Phys. 45, 6658-6662 (2006).
[CrossRef]

Yardley, T.

R. L. Espinol, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, Jr., "Fast and Low-Power Thermooptic Switch on Thin Silicon-on-Insulator,"IEEE Photon. Technol. Lett. 15, 1366-1368 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, "The Past, Present, and Future of Silicon Photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

R. L. Espinol, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, Jr., "Fast and Low-Power Thermooptic Switch on Thin Silicon-on-Insulator,"IEEE Photon. Technol. Lett. 15, 1366-1368 (2003).
[CrossRef]

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, "Sub-?s Switching Time in Silicon-on-Insulator Mach-Zehnder Thermooptic Switch," IEEE Photon. Technol. Lett. 16, 2039-2041 (2004).
[CrossRef]

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch," IEEE Photon. Technol. Lett. 16, 2514-2516 (2004).
[CrossRef]

T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, "Thermooptic Switch Based on Photonic-Crystal Line-Defect Waveguides," IEEE Photon. Technol. Lett. 17, 2083-2085 (2005).
[CrossRef]

L. Gu, W. Jiang, X. Chen, and R. T. Chen, " Thermooptically Tuned Photonic Crystal Waveguide Silicon-on-Insulator Mach-Zehnder Interferometers," IEEE Photon. Technol. Lett. 19, 342-344 (2007).
[CrossRef]

I. Kiyat, A. Aydinli, and N. Dagli, "Low-Power Thermooptical Tuning of SOI Resonator Switch," IEEE Photon. Technol. Lett. 18, 364-366 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama and S. Itabashi, "Low-Loss Si Wire Waveguides and their Application to Thermooptic Switches," Jpn. J. Appl. Phys. 45, 6658-6662 (2006).
[CrossRef]

Microwave Opt. Technol. Let. (1)

S.-L. Tsao and P.-C. Peng, "An SOI Michelson Interferometer Sensor with Waveguide Bragg Reflective Gratings for temperature monitoring," Microwave Opt. Technol. Let. 30321-322 (2001).
[CrossRef]

Opt. Express (3)

Other (1)

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, "Maximizing the Thermo-Optic Tuning Range of Silicon Photonic Structures," Optical Switch 2007 IEEE, (San Francisco, 2007), pp.153-154.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic layouts of 2×2 MZI and MI structures. (a) is a typical directional coupler MZI structure; (b) is a typical MI structure, where the blue boxes denote the mirrors; (c) the MI structure on SOI. Two loop waveguides are used, instead two mirrors. The yellow region denotes the modulating region.

Fig. 2.
Fig. 2.

(a) is SEM picture of a full MI structure after silicon etching. The two arms are 110 µm and 10 µm long, respectively. The length of the 3-dB DC is 11µm. (b) is the loop silicon wire. The top is a semicircle with diameter of 23.5 µm. The length of the two S-shape curves is 28µm. (c) is the gap of the 3-dB DC. The gap width is 0.3µm and the waveguide width is 0.4 µm. (d) is the arm heater pattern. (e) is 3-dB DC heater pattern. The heater wire is 0.5 µm wide and the gap is 0.5 µm. (f) is SEM picture of coupling section with fiber. (g) is microscope picture of the MI structure. (h) is microscope picture of the MZI structure.

Fig. 3.
Fig. 3.

The sketch map of the measurement setup. POL.: polarization controller;

Fig. 4.
Fig. 4.

Deep trench MI structure. (a). The transmission spectra with different electric power. Wavelength is from 1552 nm to 1555 nm, and electric power is from 0 to 16 mW by step 2 mW. (b). The destructive frequency as a function of electric power. The blue circles are experiment data, and the red line is fitting line.

Fig. 5.
Fig. 5.

The MI structure without deep trenches. (a) The transmission spectra with different electric powers. Wavelength is from 1553 nm to 1556 nm, and electric power is from 0 to 16 mW by step 2 mW. (b) The destructive frequency with electric power. The blue circles are experiment data, and the red line is fitting line.

Fig. 6.
Fig. 6.

The MZI structure with deep trench. (a). The transmission spectra with different electric powers. Wavelength is from 1551.5 nm to 1554.5 nm, and electric power is from 0 to 28 mW by step 2 mW. (b). The destructive frequency versus electric power. The blue circles are experiment data, and the red line is fitting line.

Fig. 7.
Fig. 7.

The MZI structure without deep trench. (a) The transmission spectra with different electric powers. Wavelength is from 1549 nm to 1552 nm, and electric power is from 0 to 28 mW by step 2 mW. (b) The destructive frequency versus electric power. The blue circles are experiment data, and the red line is fitting line.

Fig. 8.
Fig. 8.

The MI structure with deep trench. (a). Related intensity of output power versus static voltage. (b). Waveforms of electric signal and optical response. The rise- and fall- time are 10.9 µs and 34.9 µs, respectively.

Fig. 9.
Fig. 9.

The MI structure without deep trench. (a) Related intensity of output power versus static voltage. (b) Waveforms of electric signal and optical response. The rise- and fall- time are 10.6 µs and 23.2 µs, respectively.

Tables (1)

Tables Icon

Table 1. Recent silicon based thermo-optical switches

Metrics