Abstract

We report on the optical characterization of three-dimensional opal-like photonic crystals made by self-organized nanospheres of poly[styrene-(co-2-hydroxyethyl methacrylate)] having a face centred cubic (fcc) structure oriented along the [111] direction. A detailed optical characterization of the samples is presented using angle resolved reflection spectroscopy in specular geometry. The investigated energies are between a/λ=0.5 and a/λ=1.5 (where a is the lattice parameter and λ is the light wavelength), a region in which both first and second-order Bragg diffraction are expected. Some interesting features as branching of the Bragg peak dispersion and high energy reflection peaks are revealed. We compare the experimental data with theoretical calculations using both Bragg diffraction and band structure approach. A comparison with recent results reported in the literature is also presented.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. G. Pan, R. Kesavamoorthy, and S. A. Asher, “Optically nonlinear Bragg diffracting nanosecond optical switches,” Phys. Rev. Lett. 78, 3860–3863 (1997).
    [CrossRef]
  4. K. Vynck, D. Cassagne, and E. Centeno, “Superlattice for photonic band gap opening in monolayers of dielectric spheres,” Opt. Express 14, 6668–6674 (2006).
    [CrossRef] [PubMed]
  5. Y. Nishijima, K. Ueno, S. Joudkazis, V. Mizeikis, H. Misawa, T. Tanimura, and K. Maeda, “Inverse silica opal photonic crystal for optical sensing applications,” Opt. Express 15, 12979–12988 (2007).
    [CrossRef] [PubMed]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
    [CrossRef] [PubMed]
  7. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
    [CrossRef]
  8. V. Yannopapas, N. Stefanou, and A. Modinos, “Theoretical analysis of the photonic band structure of face-centred cubic colloidal crystals,” J. Phys.: Condens. Matter 9, 10261–10270 (1997).
    [CrossRef]
  9. E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 045102 1–9 (2005).
    [CrossRef]
  10. M. Botey, M. Maymó, and J. Martorell, “Band-structure determination for finite 3-D photonic crystals,” Appl. Phys. B 81, 277–281 (2005).
    [CrossRef]
  11. A. Balestreri, L.C. Andreani, and M. Agio, “Optical properties and diffraction effects in opal photonic crystals,” Phys. Rev. E 74, 036603 1–8 (2006).
    [CrossRef]
  12. L.A. Dorado, R.A. Depine, and H. Míguez, “Effect of extinction on the high-energy optical response of photonic crystals,” Phys. Rev. B 75, 241101(R) 1–4 (2007).
    [CrossRef]
  13. A. Reynolds, F. López-Tejeira, D. Cassagne, F.J. García-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 11422–11426 (1999).
    [CrossRef]
  14. H.M. van Driel and W.L. Vos, “Multiple Bragg wave coupling in photonic band-gap crystals,” Phys. Rev. B 62, 9872–9875 (2000).
    [CrossRef]
  15. Y.A. Vlasov, M. Deutsch, and D.J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett. 76, 1627–1629 (2000).
    [CrossRef]
  16. S.G. Romanov, T. Maka, C.M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmetacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603 1–5 (2001).
    [CrossRef]
  17. J.F. Galisteo-López and W.L. Vos, “Angle-resolved reflectivity of single-domain photonic crystals: Effects of disorder,” Phys. Rev. E 66, 036616 1–5 (2002).
    [CrossRef]
  18. J.F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68, 115109 1–8 (2003).
    [CrossRef]
  19. F. García-Santamaría, J.F. Galisteo-López, P.V. Braun, and C. López, “Optical diffraction and high-energy features in three-dimensional photonic crystals,” Phys. Rev. B71, 195112 1–5 (2005).
    [CrossRef]
  20. J.F. Galisteo-López, M. Galli, M. Patrini, A Balestreri, L.C. Andreani, and C. López, “Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry,” Phys. Rev. B73, 125103 1–9 (2006).
    [CrossRef]
  21. A.V. Baryshev, A.B. Khanikaev, H. Uchida, M. Inoue, and M.F. Limonov, “Interaction of polarized light with three-dimensional opal-based photonic crystals,” Phys. Rev. B73, 033103 1–4 (2006).
    [CrossRef]
  22. S. Wong, V. Kitaev, and G. A. Ozin, “Colloidal crystal films: Advances in universality and perfection,” J. Am. Chem. Soc. 125, 15589–15598 (2003).
    [CrossRef] [PubMed]
  23. K. Wostyn, Y. Zhao, G. de Schaetzen, L. Hellemans, N. Matsuda, K. Clays, and A. Persoons, “Insertion of two-dimensional cavity into a self-assembled colloidal crystal,” Langmuir 19, 4465–4468 (2003).
    [CrossRef]
  24. A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Matterelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids 353, 674–678 (2007).
    [CrossRef]
  25. O.L.J. Pursiainen, J.J. Baumberg, H. Winkler, B. Viel, B. Spahn, and T. Rhul, “Nanoparticle-tuned structural color from polymer opal,” Opt. Express 15, 9553–9561 (2007).
    [CrossRef] [PubMed]
  26. J.F. Galisteo, F. García-Santamaría, D. Golmayo, B.H. Juárez, C. López, and E. Palacios, “Self-assembly approach to optical metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S244–S254 (2005).
    [CrossRef]
  27. H. Míguez, V. Kitaev, and G. A. Ozin, “Band spectroscopy of colloidal photonic crystal films,” Appl. Phys. Lett. 84, 1239–1241 (2004).
    [CrossRef]
  28. C. López, “Materials aspects of photonic crystals,” Adv. Mater. 15, 1679–1704 (2003).
    [CrossRef]
  29. C. Reese and S. Asher, “Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals,” J. Colloid Interface Sci. 248, 41–46 (2002).
    [CrossRef]
  30. M. Okubo, T. Suzuki, and Y. Fukuhara, “Estimation of heterogeneous surface structure of submicron-sized, composite polymer particles consisting of hydrophobic and hydrophilic components by atomic force microcopy,” Colloid. Polym. Sci. 281, 569–574 (2003).
    [CrossRef]
  31. N.W. Ashcroft and N.D. Mermin, Solid State Physics, (Saunders, New York, 1976).
  32. K. Wostyn, Y. Zhao, B. Yee, K Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys. 118, 10752–10757 (2003).
    [CrossRef]
  33. J.F. Galisteo-López and C. López, “High-energy optical response of artificial opals,” Phys. Rev. B70, 035108 1–6 (2004).
    [CrossRef]
  34. W. L. Vos and H. M. van Driel, “Higher order Bragg diffraction by strongly photonic fcc crystals: onset of a photonic bandgap,” Phys. Lett. A 272, 101–106 (2000).
    [CrossRef]
  35. M. Egen and R. Zentel, “Surfactant-free emulsion polymerization of various methacrylates: towards monodisperse colloids for polymer opals,” Macromol. Chem Phys.205, 1479–1488 (2004).
    [CrossRef]
  36. I. Venditti, PhD Thesis (University of Rome La Sapienza, 2007).
  37. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, Chichester, 2007).
  38. S. Middleman and A.K. Hochberg, Process Engineering Analysis in Semiconductor Device Fabrication, (McGraw-Hill, New York, 1993)
  39. S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, “A general-purpose software for optical characterization of thin films: specific features for microelectronic applications,” Solid State Elec. 45, 703–709 (2001).
    [CrossRef]
  40. P. Jiang, G.N. Ostojic, R. Narat, D.M. Mittleman, and V.L. Colvin, “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater. 13, 389–393 (2001).
    [CrossRef]
  41. http://ab-initio.mit.edu/mpb/.
  42. S.G. Johnson and J.D. Joannopoulos, “Bloch-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef] [PubMed]

2007 (4)

Y. Nishijima, K. Ueno, S. Joudkazis, V. Mizeikis, H. Misawa, T. Tanimura, and K. Maeda, “Inverse silica opal photonic crystal for optical sensing applications,” Opt. Express 15, 12979–12988 (2007).
[CrossRef] [PubMed]

L.A. Dorado, R.A. Depine, and H. Míguez, “Effect of extinction on the high-energy optical response of photonic crystals,” Phys. Rev. B 75, 241101(R) 1–4 (2007).
[CrossRef]

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Matterelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids 353, 674–678 (2007).
[CrossRef]

O.L.J. Pursiainen, J.J. Baumberg, H. Winkler, B. Viel, B. Spahn, and T. Rhul, “Nanoparticle-tuned structural color from polymer opal,” Opt. Express 15, 9553–9561 (2007).
[CrossRef] [PubMed]

2006 (2)

A. Balestreri, L.C. Andreani, and M. Agio, “Optical properties and diffraction effects in opal photonic crystals,” Phys. Rev. E 74, 036603 1–8 (2006).
[CrossRef]

K. Vynck, D. Cassagne, and E. Centeno, “Superlattice for photonic band gap opening in monolayers of dielectric spheres,” Opt. Express 14, 6668–6674 (2006).
[CrossRef] [PubMed]

2005 (3)

E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 045102 1–9 (2005).
[CrossRef]

M. Botey, M. Maymó, and J. Martorell, “Band-structure determination for finite 3-D photonic crystals,” Appl. Phys. B 81, 277–281 (2005).
[CrossRef]

J.F. Galisteo, F. García-Santamaría, D. Golmayo, B.H. Juárez, C. López, and E. Palacios, “Self-assembly approach to optical metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S244–S254 (2005).
[CrossRef]

2004 (1)

H. Míguez, V. Kitaev, and G. A. Ozin, “Band spectroscopy of colloidal photonic crystal films,” Appl. Phys. Lett. 84, 1239–1241 (2004).
[CrossRef]

2003 (5)

C. López, “Materials aspects of photonic crystals,” Adv. Mater. 15, 1679–1704 (2003).
[CrossRef]

S. Wong, V. Kitaev, and G. A. Ozin, “Colloidal crystal films: Advances in universality and perfection,” J. Am. Chem. Soc. 125, 15589–15598 (2003).
[CrossRef] [PubMed]

K. Wostyn, Y. Zhao, G. de Schaetzen, L. Hellemans, N. Matsuda, K. Clays, and A. Persoons, “Insertion of two-dimensional cavity into a self-assembled colloidal crystal,” Langmuir 19, 4465–4468 (2003).
[CrossRef]

M. Okubo, T. Suzuki, and Y. Fukuhara, “Estimation of heterogeneous surface structure of submicron-sized, composite polymer particles consisting of hydrophobic and hydrophilic components by atomic force microcopy,” Colloid. Polym. Sci. 281, 569–574 (2003).
[CrossRef]

K. Wostyn, Y. Zhao, B. Yee, K Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys. 118, 10752–10757 (2003).
[CrossRef]

2002 (2)

C. Reese and S. Asher, “Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals,” J. Colloid Interface Sci. 248, 41–46 (2002).
[CrossRef]

J.F. Galisteo-López and W.L. Vos, “Angle-resolved reflectivity of single-domain photonic crystals: Effects of disorder,” Phys. Rev. E 66, 036616 1–5 (2002).
[CrossRef]

2001 (4)

S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, “A general-purpose software for optical characterization of thin films: specific features for microelectronic applications,” Solid State Elec. 45, 703–709 (2001).
[CrossRef]

P. Jiang, G.N. Ostojic, R. Narat, D.M. Mittleman, and V.L. Colvin, “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater. 13, 389–393 (2001).
[CrossRef]

S.G. Johnson and J.D. Joannopoulos, “Bloch-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef] [PubMed]

S.G. Romanov, T. Maka, C.M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmetacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603 1–5 (2001).
[CrossRef]

2000 (3)

H.M. van Driel and W.L. Vos, “Multiple Bragg wave coupling in photonic band-gap crystals,” Phys. Rev. B 62, 9872–9875 (2000).
[CrossRef]

Y.A. Vlasov, M. Deutsch, and D.J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett. 76, 1627–1629 (2000).
[CrossRef]

W. L. Vos and H. M. van Driel, “Higher order Bragg diffraction by strongly photonic fcc crystals: onset of a photonic bandgap,” Phys. Lett. A 272, 101–106 (2000).
[CrossRef]

1999 (2)

A. Reynolds, F. López-Tejeira, D. Cassagne, F.J. García-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 11422–11426 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

1998 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

1997 (2)

V. Yannopapas, N. Stefanou, and A. Modinos, “Theoretical analysis of the photonic band structure of face-centred cubic colloidal crystals,” J. Phys.: Condens. Matter 9, 10261–10270 (1997).
[CrossRef]

G. Pan, R. Kesavamoorthy, and S. A. Asher, “Optically nonlinear Bragg diffracting nanosecond optical switches,” Phys. Rev. Lett. 78, 3860–3863 (1997).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Agio, M.

A. Balestreri, L.C. Andreani, and M. Agio, “Optical properties and diffraction effects in opal photonic crystals,” Phys. Rev. E 74, 036603 1–8 (2006).
[CrossRef]

Almeida, R. M.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Matterelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids 353, 674–678 (2007).
[CrossRef]

Andreani, L. C.

E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 045102 1–9 (2005).
[CrossRef]

Andreani, L.C.

A. Balestreri, L.C. Andreani, and M. Agio, “Optical properties and diffraction effects in opal photonic crystals,” Phys. Rev. E 74, 036603 1–8 (2006).
[CrossRef]

J.F. Galisteo-López, M. Galli, M. Patrini, A Balestreri, L.C. Andreani, and C. López, “Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry,” Phys. Rev. B73, 125103 1–9 (2006).
[CrossRef]

Armellini, C.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Matterelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids 353, 674–678 (2007).
[CrossRef]

Ashcroft, N.W.

N.W. Ashcroft and N.D. Mermin, Solid State Physics, (Saunders, New York, 1976).

Asher, S.

C. Reese and S. Asher, “Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals,” J. Colloid Interface Sci. 248, 41–46 (2002).
[CrossRef]

Asher, S. A.

G. Pan, R. Kesavamoorthy, and S. A. Asher, “Optically nonlinear Bragg diffracting nanosecond optical switches,” Phys. Rev. Lett. 78, 3860–3863 (1997).
[CrossRef]

Balestreri, A

J.F. Galisteo-López, M. Galli, M. Patrini, A Balestreri, L.C. Andreani, and C. López, “Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry,” Phys. Rev. B73, 125103 1–9 (2006).
[CrossRef]

Balestreri, A.

A. Balestreri, L.C. Andreani, and M. Agio, “Optical properties and diffraction effects in opal photonic crystals,” Phys. Rev. E 74, 036603 1–8 (2006).
[CrossRef]

Baryshev, A.V.

A.V. Baryshev, A.B. Khanikaev, H. Uchida, M. Inoue, and M.F. Limonov, “Interaction of polarized light with three-dimensional opal-based photonic crystals,” Phys. Rev. B73, 033103 1–4 (2006).
[CrossRef]

Baumberg, J.J.

Bosch, S.

S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, “A general-purpose software for optical characterization of thin films: specific features for microelectronic applications,” Solid State Elec. 45, 703–709 (2001).
[CrossRef]

Botey, M.

M. Botey, M. Maymó, and J. Martorell, “Band-structure determination for finite 3-D photonic crystals,” Appl. Phys. B 81, 277–281 (2005).
[CrossRef]

Braun, P.V.

F. García-Santamaría, J.F. Galisteo-López, P.V. Braun, and C. López, “Optical diffraction and high-energy features in three-dimensional photonic crystals,” Phys. Rev. B71, 195112 1–5 (2005).
[CrossRef]

Cassagne, D.

K. Vynck, D. Cassagne, and E. Centeno, “Superlattice for photonic band gap opening in monolayers of dielectric spheres,” Opt. Express 14, 6668–6674 (2006).
[CrossRef] [PubMed]

S.G. Romanov, T. Maka, C.M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmetacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603 1–5 (2001).
[CrossRef]

A. Reynolds, F. López-Tejeira, D. Cassagne, F.J. García-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 11422–11426 (1999).
[CrossRef]

Castillo-Martínez, E.

J.F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68, 115109 1–8 (2003).
[CrossRef]

Centeno, E.

Chiappini, A.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Matterelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids 353, 674–678 (2007).
[CrossRef]

Chiasera, A.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Matterelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids 353, 674–678 (2007).
[CrossRef]

Clays, K

K. Wostyn, Y. Zhao, B. Yee, K Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys. 118, 10752–10757 (2003).
[CrossRef]

Clays, K.

K. Wostyn, Y. Zhao, G. de Schaetzen, L. Hellemans, N. Matsuda, K. Clays, and A. Persoons, “Insertion of two-dimensional cavity into a self-assembled colloidal crystal,” Langmuir 19, 4465–4468 (2003).
[CrossRef]

Colvin, V.L.

P. Jiang, G.N. Ostojic, R. Narat, D.M. Mittleman, and V.L. Colvin, “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater. 13, 389–393 (2001).
[CrossRef]

Comoretto, D.

E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 045102 1–9 (2005).
[CrossRef]

Conti, G. Nunzi

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Matterelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids 353, 674–678 (2007).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

de Schaetzen, G.

K. Wostyn, Y. Zhao, G. de Schaetzen, L. Hellemans, N. Matsuda, K. Clays, and A. Persoons, “Insertion of two-dimensional cavity into a self-assembled colloidal crystal,” Langmuir 19, 4465–4468 (2003).
[CrossRef]

K. Wostyn, Y. Zhao, B. Yee, K Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys. 118, 10752–10757 (2003).
[CrossRef]

Depine, R.A.

L.A. Dorado, R.A. Depine, and H. Míguez, “Effect of extinction on the high-energy optical response of photonic crystals,” Phys. Rev. B 75, 241101(R) 1–4 (2007).
[CrossRef]

Deutsch, M.

Y.A. Vlasov, M. Deutsch, and D.J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett. 76, 1627–1629 (2000).
[CrossRef]

Dorado, L.A.

L.A. Dorado, R.A. Depine, and H. Míguez, “Effect of extinction on the high-energy optical response of photonic crystals,” Phys. Rev. B 75, 241101(R) 1–4 (2007).
[CrossRef]

Egen, M.

M. Egen and R. Zentel, “Surfactant-free emulsion polymerization of various methacrylates: towards monodisperse colloids for polymer opals,” Macromol. Chem Phys.205, 1479–1488 (2004).
[CrossRef]

Ferrari, M.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Matterelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids 353, 674–678 (2007).
[CrossRef]

Ferré-Borrull, J.

S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, “A general-purpose software for optical characterization of thin films: specific features for microelectronic applications,” Solid State Elec. 45, 703–709 (2001).
[CrossRef]

Fujiwara, H.

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, Chichester, 2007).

Fukuhara, Y.

M. Okubo, T. Suzuki, and Y. Fukuhara, “Estimation of heterogeneous surface structure of submicron-sized, composite polymer particles consisting of hydrophobic and hydrophilic components by atomic force microcopy,” Colloid. Polym. Sci. 281, 569–574 (2003).
[CrossRef]

Galisteo, J.F.

J.F. Galisteo, F. García-Santamaría, D. Golmayo, B.H. Juárez, C. López, and E. Palacios, “Self-assembly approach to optical metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S244–S254 (2005).
[CrossRef]

Galisteo-López, J.F.

J.F. Galisteo-López and W.L. Vos, “Angle-resolved reflectivity of single-domain photonic crystals: Effects of disorder,” Phys. Rev. E 66, 036616 1–5 (2002).
[CrossRef]

J.F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68, 115109 1–8 (2003).
[CrossRef]

J.F. Galisteo-López and C. López, “High-energy optical response of artificial opals,” Phys. Rev. B70, 035108 1–6 (2004).
[CrossRef]

F. García-Santamaría, J.F. Galisteo-López, P.V. Braun, and C. López, “Optical diffraction and high-energy features in three-dimensional photonic crystals,” Phys. Rev. B71, 195112 1–5 (2005).
[CrossRef]

J.F. Galisteo-López, M. Galli, M. Patrini, A Balestreri, L.C. Andreani, and C. López, “Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry,” Phys. Rev. B73, 125103 1–9 (2006).
[CrossRef]

Galli, M.

E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 045102 1–9 (2005).
[CrossRef]

J.F. Galisteo-López, M. Galli, M. Patrini, A Balestreri, L.C. Andreani, and C. López, “Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry,” Phys. Rev. B73, 125103 1–9 (2006).
[CrossRef]

García-Santamaría, F.

J.F. Galisteo, F. García-Santamaría, D. Golmayo, B.H. Juárez, C. López, and E. Palacios, “Self-assembly approach to optical metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S244–S254 (2005).
[CrossRef]

F. García-Santamaría, J.F. Galisteo-López, P.V. Braun, and C. López, “Optical diffraction and high-energy features in three-dimensional photonic crystals,” Phys. Rev. B71, 195112 1–5 (2005).
[CrossRef]

García-Vidal, F.J.

A. Reynolds, F. López-Tejeira, D. Cassagne, F.J. García-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 11422–11426 (1999).
[CrossRef]

Golmayo, D.

J.F. Galisteo, F. García-Santamaría, D. Golmayo, B.H. Juárez, C. López, and E. Palacios, “Self-assembly approach to optical metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S244–S254 (2005).
[CrossRef]

Gonçalves, M. Clara

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Matterelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids 353, 674–678 (2007).
[CrossRef]

Hellemans, L.

K. Wostyn, Y. Zhao, B. Yee, K Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys. 118, 10752–10757 (2003).
[CrossRef]

K. Wostyn, Y. Zhao, G. de Schaetzen, L. Hellemans, N. Matsuda, K. Clays, and A. Persoons, “Insertion of two-dimensional cavity into a self-assembled colloidal crystal,” Langmuir 19, 4465–4468 (2003).
[CrossRef]

Hochberg, A.K.

S. Middleman and A.K. Hochberg, Process Engineering Analysis in Semiconductor Device Fabrication, (McGraw-Hill, New York, 1993)

Inoue, M.

A.V. Baryshev, A.B. Khanikaev, H. Uchida, M. Inoue, and M.F. Limonov, “Interaction of polarized light with three-dimensional opal-based photonic crystals,” Phys. Rev. B73, 033103 1–4 (2006).
[CrossRef]

Jestin, Y.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Matterelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids 353, 674–678 (2007).
[CrossRef]

Jiang, P.

P. Jiang, G.N. Ostojic, R. Narat, D.M. Mittleman, and V.L. Colvin, “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater. 13, 389–393 (2001).
[CrossRef]

Joannopoulos, J.D.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Johnson, S.G.

Jouanin, C.

S.G. Romanov, T. Maka, C.M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmetacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603 1–5 (2001).
[CrossRef]

A. Reynolds, F. López-Tejeira, D. Cassagne, F.J. García-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 11422–11426 (1999).
[CrossRef]

Joudkazis, S.

Juárez, B.H.

J.F. Galisteo, F. García-Santamaría, D. Golmayo, B.H. Juárez, C. López, and E. Palacios, “Self-assembly approach to optical metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S244–S254 (2005).
[CrossRef]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Kesavamoorthy, R.

G. Pan, R. Kesavamoorthy, and S. A. Asher, “Optically nonlinear Bragg diffracting nanosecond optical switches,” Phys. Rev. Lett. 78, 3860–3863 (1997).
[CrossRef]

Khanikaev, A.B.

A.V. Baryshev, A.B. Khanikaev, H. Uchida, M. Inoue, and M.F. Limonov, “Interaction of polarized light with three-dimensional opal-based photonic crystals,” Phys. Rev. B73, 033103 1–4 (2006).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Kitaev, V.

H. Míguez, V. Kitaev, and G. A. Ozin, “Band spectroscopy of colloidal photonic crystal films,” Appl. Phys. Lett. 84, 1239–1241 (2004).
[CrossRef]

S. Wong, V. Kitaev, and G. A. Ozin, “Colloidal crystal films: Advances in universality and perfection,” J. Am. Chem. Soc. 125, 15589–15598 (2003).
[CrossRef] [PubMed]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Limonov, M.F.

A.V. Baryshev, A.B. Khanikaev, H. Uchida, M. Inoue, and M.F. Limonov, “Interaction of polarized light with three-dimensional opal-based photonic crystals,” Phys. Rev. B73, 033103 1–4 (2006).
[CrossRef]

López, C.

J.F. Galisteo, F. García-Santamaría, D. Golmayo, B.H. Juárez, C. López, and E. Palacios, “Self-assembly approach to optical metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S244–S254 (2005).
[CrossRef]

C. López, “Materials aspects of photonic crystals,” Adv. Mater. 15, 1679–1704 (2003).
[CrossRef]

J.F. Galisteo-López and C. López, “High-energy optical response of artificial opals,” Phys. Rev. B70, 035108 1–6 (2004).
[CrossRef]

J.F. Galisteo-López, M. Galli, M. Patrini, A Balestreri, L.C. Andreani, and C. López, “Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry,” Phys. Rev. B73, 125103 1–9 (2006).
[CrossRef]

J.F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68, 115109 1–8 (2003).
[CrossRef]

F. García-Santamaría, J.F. Galisteo-López, P.V. Braun, and C. López, “Optical diffraction and high-energy features in three-dimensional photonic crystals,” Phys. Rev. B71, 195112 1–5 (2005).
[CrossRef]

López-Tejeira, F.

A. Reynolds, F. López-Tejeira, D. Cassagne, F.J. García-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 11422–11426 (1999).
[CrossRef]

Maeda, K.

Maka, T.

S.G. Romanov, T. Maka, C.M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmetacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603 1–5 (2001).
[CrossRef]

Manzanares-Martinez, J.

S.G. Romanov, T. Maka, C.M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmetacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603 1–5 (2001).
[CrossRef]

Marabelli, F.

E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 045102 1–9 (2005).
[CrossRef]

Martorell, J.

M. Botey, M. Maymó, and J. Martorell, “Band-structure determination for finite 3-D photonic crystals,” Appl. Phys. B 81, 277–281 (2005).
[CrossRef]

Matsuda, N.

K. Wostyn, Y. Zhao, G. de Schaetzen, L. Hellemans, N. Matsuda, K. Clays, and A. Persoons, “Insertion of two-dimensional cavity into a self-assembled colloidal crystal,” Langmuir 19, 4465–4468 (2003).
[CrossRef]

Matterelli, M.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Matterelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids 353, 674–678 (2007).
[CrossRef]

Maymó, M.

M. Botey, M. Maymó, and J. Martorell, “Band-structure determination for finite 3-D photonic crystals,” Appl. Phys. B 81, 277–281 (2005).
[CrossRef]

Mermin, N.D.

N.W. Ashcroft and N.D. Mermin, Solid State Physics, (Saunders, New York, 1976).

Middleman, S.

S. Middleman and A.K. Hochberg, Process Engineering Analysis in Semiconductor Device Fabrication, (McGraw-Hill, New York, 1993)

Míguez, H.

L.A. Dorado, R.A. Depine, and H. Míguez, “Effect of extinction on the high-energy optical response of photonic crystals,” Phys. Rev. B 75, 241101(R) 1–4 (2007).
[CrossRef]

H. Míguez, V. Kitaev, and G. A. Ozin, “Band spectroscopy of colloidal photonic crystal films,” Appl. Phys. Lett. 84, 1239–1241 (2004).
[CrossRef]

Misawa, H.

Mittleman, D.M.

P. Jiang, G.N. Ostojic, R. Narat, D.M. Mittleman, and V.L. Colvin, “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater. 13, 389–393 (2001).
[CrossRef]

Mizeikis, V.

Modinos, A.

V. Yannopapas, N. Stefanou, and A. Modinos, “Theoretical analysis of the photonic band structure of face-centred cubic colloidal crystals,” J. Phys.: Condens. Matter 9, 10261–10270 (1997).
[CrossRef]

Montagna, M.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Matterelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids 353, 674–678 (2007).
[CrossRef]

Moser, E.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Matterelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids 353, 674–678 (2007).
[CrossRef]

Müller, M.

S.G. Romanov, T. Maka, C.M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmetacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603 1–5 (2001).
[CrossRef]

Narat, R.

P. Jiang, G.N. Ostojic, R. Narat, D.M. Mittleman, and V.L. Colvin, “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater. 13, 389–393 (2001).
[CrossRef]

Nishijima, Y.

Norris, D.J.

Y.A. Vlasov, M. Deutsch, and D.J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett. 76, 1627–1629 (2000).
[CrossRef]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Okubo, M.

M. Okubo, T. Suzuki, and Y. Fukuhara, “Estimation of heterogeneous surface structure of submicron-sized, composite polymer particles consisting of hydrophobic and hydrophilic components by atomic force microcopy,” Colloid. Polym. Sci. 281, 569–574 (2003).
[CrossRef]

Ostojic, G.N.

P. Jiang, G.N. Ostojic, R. Narat, D.M. Mittleman, and V.L. Colvin, “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater. 13, 389–393 (2001).
[CrossRef]

Ozin, G. A.

H. Míguez, V. Kitaev, and G. A. Ozin, “Band spectroscopy of colloidal photonic crystal films,” Appl. Phys. Lett. 84, 1239–1241 (2004).
[CrossRef]

S. Wong, V. Kitaev, and G. A. Ozin, “Colloidal crystal films: Advances in universality and perfection,” J. Am. Chem. Soc. 125, 15589–15598 (2003).
[CrossRef] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Palacios, E.

J.F. Galisteo, F. García-Santamaría, D. Golmayo, B.H. Juárez, C. López, and E. Palacios, “Self-assembly approach to optical metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S244–S254 (2005).
[CrossRef]

Palacios-Lidón, E.

J.F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68, 115109 1–8 (2003).
[CrossRef]

Pan, G.

G. Pan, R. Kesavamoorthy, and S. A. Asher, “Optically nonlinear Bragg diffracting nanosecond optical switches,” Phys. Rev. Lett. 78, 3860–3863 (1997).
[CrossRef]

Patrini, M.

J.F. Galisteo-López, M. Galli, M. Patrini, A Balestreri, L.C. Andreani, and C. López, “Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry,” Phys. Rev. B73, 125103 1–9 (2006).
[CrossRef]

Pavarini, E.

E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 045102 1–9 (2005).
[CrossRef]

Pelli, S.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Matterelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids 353, 674–678 (2007).
[CrossRef]

Persoons, A.

K. Wostyn, Y. Zhao, G. de Schaetzen, L. Hellemans, N. Matsuda, K. Clays, and A. Persoons, “Insertion of two-dimensional cavity into a self-assembled colloidal crystal,” Langmuir 19, 4465–4468 (2003).
[CrossRef]

K. Wostyn, Y. Zhao, B. Yee, K Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys. 118, 10752–10757 (2003).
[CrossRef]

Pursiainen, O.L.J.

Reese, C.

C. Reese and S. Asher, “Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals,” J. Colloid Interface Sci. 248, 41–46 (2002).
[CrossRef]

Reynolds, A.

A. Reynolds, F. López-Tejeira, D. Cassagne, F.J. García-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 11422–11426 (1999).
[CrossRef]

Rhul, T.

Righini, G. C.

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Matterelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids 353, 674–678 (2007).
[CrossRef]

Romanov, S.G.

S.G. Romanov, T. Maka, C.M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmetacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603 1–5 (2001).
[CrossRef]

Sánchez-Dehesa, J.

A. Reynolds, F. López-Tejeira, D. Cassagne, F.J. García-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 11422–11426 (1999).
[CrossRef]

Sancho-Parramon, J.

S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, “A general-purpose software for optical characterization of thin films: specific features for microelectronic applications,” Solid State Elec. 45, 703–709 (2001).
[CrossRef]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Soci, C.

E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 045102 1–9 (2005).
[CrossRef]

Spahn, B.

Stefanou, N.

V. Yannopapas, N. Stefanou, and A. Modinos, “Theoretical analysis of the photonic band structure of face-centred cubic colloidal crystals,” J. Phys.: Condens. Matter 9, 10261–10270 (1997).
[CrossRef]

Suzuki, T.

M. Okubo, T. Suzuki, and Y. Fukuhara, “Estimation of heterogeneous surface structure of submicron-sized, composite polymer particles consisting of hydrophobic and hydrophilic components by atomic force microcopy,” Colloid. Polym. Sci. 281, 569–574 (2003).
[CrossRef]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Tanimura, T.

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Torres, C.M. Sotomayor

S.G. Romanov, T. Maka, C.M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmetacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603 1–5 (2001).
[CrossRef]

Uchida, H.

A.V. Baryshev, A.B. Khanikaev, H. Uchida, M. Inoue, and M.F. Limonov, “Interaction of polarized light with three-dimensional opal-based photonic crystals,” Phys. Rev. B73, 033103 1–4 (2006).
[CrossRef]

Ueno, K.

van Driel, H. M.

W. L. Vos and H. M. van Driel, “Higher order Bragg diffraction by strongly photonic fcc crystals: onset of a photonic bandgap,” Phys. Lett. A 272, 101–106 (2000).
[CrossRef]

van Driel, H.M.

H.M. van Driel and W.L. Vos, “Multiple Bragg wave coupling in photonic band-gap crystals,” Phys. Rev. B 62, 9872–9875 (2000).
[CrossRef]

Venditti, I.

I. Venditti, PhD Thesis (University of Rome La Sapienza, 2007).

Viel, B.

Vlasov, Y.A.

Y.A. Vlasov, M. Deutsch, and D.J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett. 76, 1627–1629 (2000).
[CrossRef]

Vos, W. L.

W. L. Vos and H. M. van Driel, “Higher order Bragg diffraction by strongly photonic fcc crystals: onset of a photonic bandgap,” Phys. Lett. A 272, 101–106 (2000).
[CrossRef]

Vos, W.L.

J.F. Galisteo-López and W.L. Vos, “Angle-resolved reflectivity of single-domain photonic crystals: Effects of disorder,” Phys. Rev. E 66, 036616 1–5 (2002).
[CrossRef]

H.M. van Driel and W.L. Vos, “Multiple Bragg wave coupling in photonic band-gap crystals,” Phys. Rev. B 62, 9872–9875 (2000).
[CrossRef]

Vynck, K.

Winkler, H.

Wong, S.

S. Wong, V. Kitaev, and G. A. Ozin, “Colloidal crystal films: Advances in universality and perfection,” J. Am. Chem. Soc. 125, 15589–15598 (2003).
[CrossRef] [PubMed]

Wostyn, K.

K. Wostyn, Y. Zhao, G. de Schaetzen, L. Hellemans, N. Matsuda, K. Clays, and A. Persoons, “Insertion of two-dimensional cavity into a self-assembled colloidal crystal,” Langmuir 19, 4465–4468 (2003).
[CrossRef]

K. Wostyn, Y. Zhao, B. Yee, K Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys. 118, 10752–10757 (2003).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yannopapas, V.

V. Yannopapas, N. Stefanou, and A. Modinos, “Theoretical analysis of the photonic band structure of face-centred cubic colloidal crystals,” J. Phys.: Condens. Matter 9, 10261–10270 (1997).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Yee, B.

K. Wostyn, Y. Zhao, B. Yee, K Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys. 118, 10752–10757 (2003).
[CrossRef]

Zentel, R.

S.G. Romanov, T. Maka, C.M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmetacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603 1–5 (2001).
[CrossRef]

M. Egen and R. Zentel, “Surfactant-free emulsion polymerization of various methacrylates: towards monodisperse colloids for polymer opals,” Macromol. Chem Phys.205, 1479–1488 (2004).
[CrossRef]

Zhao, Y.

K. Wostyn, Y. Zhao, B. Yee, K Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys. 118, 10752–10757 (2003).
[CrossRef]

K. Wostyn, Y. Zhao, G. de Schaetzen, L. Hellemans, N. Matsuda, K. Clays, and A. Persoons, “Insertion of two-dimensional cavity into a self-assembled colloidal crystal,” Langmuir 19, 4465–4468 (2003).
[CrossRef]

Adv. Mater. (2)

C. López, “Materials aspects of photonic crystals,” Adv. Mater. 15, 1679–1704 (2003).
[CrossRef]

P. Jiang, G.N. Ostojic, R. Narat, D.M. Mittleman, and V.L. Colvin, “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater. 13, 389–393 (2001).
[CrossRef]

Appl. Phys. B (1)

M. Botey, M. Maymó, and J. Martorell, “Band-structure determination for finite 3-D photonic crystals,” Appl. Phys. B 81, 277–281 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

Y.A. Vlasov, M. Deutsch, and D.J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett. 76, 1627–1629 (2000).
[CrossRef]

H. Míguez, V. Kitaev, and G. A. Ozin, “Band spectroscopy of colloidal photonic crystal films,” Appl. Phys. Lett. 84, 1239–1241 (2004).
[CrossRef]

Colloid. Polym. Sci. (1)

M. Okubo, T. Suzuki, and Y. Fukuhara, “Estimation of heterogeneous surface structure of submicron-sized, composite polymer particles consisting of hydrophobic and hydrophilic components by atomic force microcopy,” Colloid. Polym. Sci. 281, 569–574 (2003).
[CrossRef]

J. Am. Chem. Soc. (1)

S. Wong, V. Kitaev, and G. A. Ozin, “Colloidal crystal films: Advances in universality and perfection,” J. Am. Chem. Soc. 125, 15589–15598 (2003).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

K. Wostyn, Y. Zhao, B. Yee, K Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys. 118, 10752–10757 (2003).
[CrossRef]

J. Colloid Interface Sci. (1)

C. Reese and S. Asher, “Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals,” J. Colloid Interface Sci. 248, 41–46 (2002).
[CrossRef]

J. Non-Cryst. Solids (1)

A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Matterelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Clara Gonçalves, and R. M. Almeida, “Design of photonic structures by sol-gel-derived silica nanospheres,” J. Non-Cryst. Solids 353, 674–678 (2007).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

J.F. Galisteo, F. García-Santamaría, D. Golmayo, B.H. Juárez, C. López, and E. Palacios, “Self-assembly approach to optical metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S244–S254 (2005).
[CrossRef]

J. Phys.: Condens. Matter (1)

V. Yannopapas, N. Stefanou, and A. Modinos, “Theoretical analysis of the photonic band structure of face-centred cubic colloidal crystals,” J. Phys.: Condens. Matter 9, 10261–10270 (1997).
[CrossRef]

Langmuir (1)

K. Wostyn, Y. Zhao, G. de Schaetzen, L. Hellemans, N. Matsuda, K. Clays, and A. Persoons, “Insertion of two-dimensional cavity into a self-assembled colloidal crystal,” Langmuir 19, 4465–4468 (2003).
[CrossRef]

Opt. Express (4)

Phys. Lett. A (1)

W. L. Vos and H. M. van Driel, “Higher order Bragg diffraction by strongly photonic fcc crystals: onset of a photonic bandgap,” Phys. Lett. A 272, 101–106 (2000).
[CrossRef]

Phys. Rev. B (5)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 045102 1–9 (2005).
[CrossRef]

L.A. Dorado, R.A. Depine, and H. Míguez, “Effect of extinction on the high-energy optical response of photonic crystals,” Phys. Rev. B 75, 241101(R) 1–4 (2007).
[CrossRef]

A. Reynolds, F. López-Tejeira, D. Cassagne, F.J. García-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 11422–11426 (1999).
[CrossRef]

H.M. van Driel and W.L. Vos, “Multiple Bragg wave coupling in photonic band-gap crystals,” Phys. Rev. B 62, 9872–9875 (2000).
[CrossRef]

Phys. Rev. E (3)

S.G. Romanov, T. Maka, C.M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmetacrylate opaline photonic crystals,” Phys. Rev. E 63, 056603 1–5 (2001).
[CrossRef]

J.F. Galisteo-López and W.L. Vos, “Angle-resolved reflectivity of single-domain photonic crystals: Effects of disorder,” Phys. Rev. E 66, 036616 1–5 (2002).
[CrossRef]

A. Balestreri, L.C. Andreani, and M. Agio, “Optical properties and diffraction effects in opal photonic crystals,” Phys. Rev. E 74, 036603 1–8 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

G. Pan, R. Kesavamoorthy, and S. A. Asher, “Optically nonlinear Bragg diffracting nanosecond optical switches,” Phys. Rev. Lett. 78, 3860–3863 (1997).
[CrossRef]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Solid State Elec. (1)

S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, “A general-purpose software for optical characterization of thin films: specific features for microelectronic applications,” Solid State Elec. 45, 703–709 (2001).
[CrossRef]

Other (11)

J.F. Galisteo-López and C. López, “High-energy optical response of artificial opals,” Phys. Rev. B70, 035108 1–6 (2004).
[CrossRef]

M. Egen and R. Zentel, “Surfactant-free emulsion polymerization of various methacrylates: towards monodisperse colloids for polymer opals,” Macromol. Chem Phys.205, 1479–1488 (2004).
[CrossRef]

I. Venditti, PhD Thesis (University of Rome La Sapienza, 2007).

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, Chichester, 2007).

S. Middleman and A.K. Hochberg, Process Engineering Analysis in Semiconductor Device Fabrication, (McGraw-Hill, New York, 1993)

N.W. Ashcroft and N.D. Mermin, Solid State Physics, (Saunders, New York, 1976).

J.F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68, 115109 1–8 (2003).
[CrossRef]

F. García-Santamaría, J.F. Galisteo-López, P.V. Braun, and C. López, “Optical diffraction and high-energy features in three-dimensional photonic crystals,” Phys. Rev. B71, 195112 1–5 (2005).
[CrossRef]

J.F. Galisteo-López, M. Galli, M. Patrini, A Balestreri, L.C. Andreani, and C. López, “Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry,” Phys. Rev. B73, 125103 1–9 (2006).
[CrossRef]

A.V. Baryshev, A.B. Khanikaev, H. Uchida, M. Inoue, and M.F. Limonov, “Interaction of polarized light with three-dimensional opal-based photonic crystals,” Phys. Rev. B73, 033103 1–4 (2006).
[CrossRef]

http://ab-initio.mit.edu/mpb/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

SEM image of one sample showing the high hexagonal order of the surface. The sphere diameter was estimated to be 330 nm.

Fig. 2.
Fig. 2.

Refractive index dispersion of P(S/HEMA) material measured by SE (black line). Refractive index dispersion for fcc opal PhC calculated using Eq.(1) (red line).

Fig. 3.
Fig. 3.

Transmission spectrum at normal incidence for a P(S/HEMA) PhC.

Fig. 4.
Fig. 4.

Normalized reflectance spectrum taken with an angle of incidence θ=20°. Three peaks centred at λ=750 nm (P1), λ=446 nm (P2) and λ=392 nm (P3) can be clearly observed.

Fig. 5.
Fig. 5.

Angle resolved reflectance spectra for incident angle between 20° (bottom) and 70° (top). The spectra are shifted along the intensity axis for clarity.

Fig. 6.
Fig. 6.

Peak splitting with avoided crossing for incident angles between 53° and 58°. In addition to P1, a new peak (P4) appears at lower wavelengths. For larger θ P1 tends to disappear and only P4 remains.

Fig. 7.
Fig. 7.

θ-dependency of the four main peaks wavelengths reported in Fig. 5 and Fig. 6 (red squares). Solid lines indicate the Bragg law predictions for diffraction by (111), (200), (220) and (222) sets of planes using Eq. (2).

Fig. 8.
Fig. 8.

Photonic band structure (solid lines) of P(S/HEMA) opal PhCs along Γ-L, L-U and U-X directions of the reciprocal space. The red squares are the experimental peaks observed in the angle resolved reflectance spectra.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n eff 2 = ( 1 f ) · n air 2 + f · n P ( S HEMA ) 2
λ ( hkl ) = 2 · d ( hkl ) · n eff 1 sin 2 r ( hkl )

Metrics