Abstract

Continuous real-time measurements are shown from a coherent 40 Gb/s transmission system that uses Dual-Polarization Quadrature Phase Shift Keying (DP-QPSK) modulation. Digital compensation is used for dispersion and polarization effects, with little performance degradation created by 150 ps of rapidly varying 1st-order PMD.

© 2008 Optical Society of America

Full Article  |  PDF Article

Errata

Erik Agrell, Alex Alvarado, Giuseppe Durisi, and Magnus Karlsson, "Capacity of a Nonlinear Optical Channel With Finite Memory," J. Lightwave Technol. 32, 2862-2876 (2014)
https://www.osapublishing.org/jlt/abstract.cfm?uri=jlt-32-16-2862

References

  • View by:
  • |
  • |
  • |

  1. J. McNicol, M. O'Sullivan, K. Roberts, A. Comeau, D. McGhan, and L. Strawczynski, " Electronic Domain Compensation of Optical Dispersion," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OThJ3. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2005-OThJ3.
  2. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, "Electronic compensation of chromatic dispersion using a digital coherent receiver," Opt. Express 15,2120-2126 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2120
    [CrossRef] [PubMed]
  3. C. Laperle, B. Villeneuve, Z. Zhang, D. McGhan, H. Sun, and M. O'Sullivan, " Wavelength Division Multiplexing (WDM) and Polarization Mode Dispersion (PMD) Performance of a Coherent 40Gbit/s Dual-Polarization Quadrature Phase Shift Keying (DP-QPSK) Transceiver," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP16. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-PDP16.
  4. K. Roberts, "Electronic Dispersion Compensation beyond 10 Gb/s," 2007 Digest of the LEOS Summer Topical Meetings, pp. 9-10, Jul., 2007.
  5. R. Noe, "PLL-Free Synchronous QPSK Polarization Multiplex/Diversity Receiver Concept with Digital I&Q Baseband Processing," IEEE Photonics Technol. Lett. 17,887-889 (2005).
    [CrossRef]
  6. C. R. Fludger, T. Duthel, D. van den Borne, C. Schulien, E. -D. Schmidt, T. Wuth, E. de Man, G. D. Khoe, and H. de Waardt, " 10 x 111 Gbit/s, 50 GHz Spaced, POLMUX-RZ-DQPSK Transmission over 2375 km Employing Coherent Equalisation," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP22. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-PDP22.
  7. K. Roberts, "Coherent 40 Gb/s transmission and prospects for 100 Gb/s," ECOC Workshop 5, Sept 16, 2007.
  8. K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, I. Hardcastle, "Electronic Precompensation of Optical Nonlinearity," IEEE Photonics Technol. Lett. 18,403-405 (2006).
    [CrossRef]
  9. F.M. Gardner, "A BPSK/QPSK Timing-Error Detector for Sampled Receivers," IEEE Trans. Commun. 34,423- 429 (1986).
    [CrossRef]
  10. JohnG.  Proakis, Digital Communications, 2nd Edition, (McGraw-Hill, 1989) Chapter 6.

2007

2006

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, I. Hardcastle, "Electronic Precompensation of Optical Nonlinearity," IEEE Photonics Technol. Lett. 18,403-405 (2006).
[CrossRef]

2005

R. Noe, "PLL-Free Synchronous QPSK Polarization Multiplex/Diversity Receiver Concept with Digital I&Q Baseband Processing," IEEE Photonics Technol. Lett. 17,887-889 (2005).
[CrossRef]

1986

F.M. Gardner, "A BPSK/QPSK Timing-Error Detector for Sampled Receivers," IEEE Trans. Commun. 34,423- 429 (1986).
[CrossRef]

Bayvel, P.

Gardner, F.M.

F.M. Gardner, "A BPSK/QPSK Timing-Error Detector for Sampled Receivers," IEEE Trans. Commun. 34,423- 429 (1986).
[CrossRef]

Gavioli, G.

Hardcastle, I.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, I. Hardcastle, "Electronic Precompensation of Optical Nonlinearity," IEEE Photonics Technol. Lett. 18,403-405 (2006).
[CrossRef]

Killey, R. I.

Li, C.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, I. Hardcastle, "Electronic Precompensation of Optical Nonlinearity," IEEE Photonics Technol. Lett. 18,403-405 (2006).
[CrossRef]

Noe, R.

R. Noe, "PLL-Free Synchronous QPSK Polarization Multiplex/Diversity Receiver Concept with Digital I&Q Baseband Processing," IEEE Photonics Technol. Lett. 17,887-889 (2005).
[CrossRef]

O’Sullivan, M.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, I. Hardcastle, "Electronic Precompensation of Optical Nonlinearity," IEEE Photonics Technol. Lett. 18,403-405 (2006).
[CrossRef]

Roberts, K.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, I. Hardcastle, "Electronic Precompensation of Optical Nonlinearity," IEEE Photonics Technol. Lett. 18,403-405 (2006).
[CrossRef]

Savory, S. J.

Strawczynski, L.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, I. Hardcastle, "Electronic Precompensation of Optical Nonlinearity," IEEE Photonics Technol. Lett. 18,403-405 (2006).
[CrossRef]

IEEE Photonics Technol. Lett.

R. Noe, "PLL-Free Synchronous QPSK Polarization Multiplex/Diversity Receiver Concept with Digital I&Q Baseband Processing," IEEE Photonics Technol. Lett. 17,887-889 (2005).
[CrossRef]

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, I. Hardcastle, "Electronic Precompensation of Optical Nonlinearity," IEEE Photonics Technol. Lett. 18,403-405 (2006).
[CrossRef]

IEEE Trans. Commun.

F.M. Gardner, "A BPSK/QPSK Timing-Error Detector for Sampled Receivers," IEEE Trans. Commun. 34,423- 429 (1986).
[CrossRef]

Opt. Express

Other

C. Laperle, B. Villeneuve, Z. Zhang, D. McGhan, H. Sun, and M. O'Sullivan, " Wavelength Division Multiplexing (WDM) and Polarization Mode Dispersion (PMD) Performance of a Coherent 40Gbit/s Dual-Polarization Quadrature Phase Shift Keying (DP-QPSK) Transceiver," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP16. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-PDP16.

K. Roberts, "Electronic Dispersion Compensation beyond 10 Gb/s," 2007 Digest of the LEOS Summer Topical Meetings, pp. 9-10, Jul., 2007.

C. R. Fludger, T. Duthel, D. van den Borne, C. Schulien, E. -D. Schmidt, T. Wuth, E. de Man, G. D. Khoe, and H. de Waardt, " 10 x 111 Gbit/s, 50 GHz Spaced, POLMUX-RZ-DQPSK Transmission over 2375 km Employing Coherent Equalisation," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP22. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-PDP22.

K. Roberts, "Coherent 40 Gb/s transmission and prospects for 100 Gb/s," ECOC Workshop 5, Sept 16, 2007.

JohnG.  Proakis, Digital Communications, 2nd Edition, (McGraw-Hill, 1989) Chapter 6.

J. McNicol, M. O'Sullivan, K. Roberts, A. Comeau, D. McGhan, and L. Strawczynski, " Electronic Domain Compensation of Optical Dispersion," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OThJ3. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2005-OThJ3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

DP-QPSK transmitter block diagram

Fig. 2. (a)
Fig. 2. (a)

DP-QPSK receiver block diagram

Fig. 2. (b)
Fig. 2. (b)

CMOS Rx ASIC with four 20 Gs/s A/Ds and 12 trillion (12×1012) operations per second

Fig. 3.
Fig. 3.

The 40G coherent transceiver card

Fig. 4.
Fig. 4.

PDL and PMD test configuration

Fig. 5.
Fig. 5.

PSD of the electrical waveform after characterizing the Agilent 11896A polarization rotator

Fig. 6.
Fig. 6.

Real-time 40Gb/s modem performance

Fig. 7.
Fig. 7.

PMD test setup with a 900 km NDSF link

Fig. 8.
Fig. 8.

Measured BER with single channel in a link of 900 km NDSF without DCM’s

Fig. 9.
Fig. 9.

Measured ROSNR at FEC Threshold vs. Peak DGD

Metrics