Abstract

Optical Orthogonal Frequency Division Multiplexing (O-OFDM) systems use electronic digital computation to provide dispersion compensation that can be rapidly adapted to changes in the optical link or optical network. Recent demonstrations have shown compensation of several thousand kilometers. Earlier simulations and analysis showed better sensitivities than non-return to zero systems; however, they assumed optical filters with very narrow bandwidths and narrow-linewidth lasers. This paper explores the effect of the optical filter bandwidths and laser linewidths for both coherent and direct-detection systems using analysis and simulations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Nielsen and S. Chandrasekhar, "OFC 2004 workshop on optical and electronic mitigation of impairments," J. Lightwave Technol. 23,131-142 (2005).
    [CrossRef]
  2. Q. Yu and A. Shanbhag, "Electronic data processing for error and dispersion compensation," J. Lightwave Technol. 24,4514-4525 (2006).
    [CrossRef]
  3. J. McNicol, M. O’Sullivan, K. Roberts, A. Comeau, D. McGhan, and L. Strawczynski, "Electrical domain compensation of optical dispersion," in Tech. Digest of the Conference on Optical Fiber Communication (Optical Society of America, 2005) 5, 269 - 271.
  4. R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayval, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
    [CrossRef]
  5. A. J. Lowery and J. Armstrong, "Orthogonal frequency division multiplexing for dispersion compensation of long-haul optical systems," Opt. Express 14, 2079-2084 (2006).
    [CrossRef] [PubMed]
  6. B. J. C. Schmidt, A. J. Lowery and J. Armstrong, "Experimental demonstrations of 20 Gbit/s direct-detection optical OFDM and 12 Gbit/s with a colorless transmitter," in Tech. Digest of the Conference on Optical Fiber Communication, (Optical Society of America, 2007), Postdeadline Paper PDP18.
  7. T. H. Williams, "System for transmission of digital data using orthogonal frequency division multiplexing," U.S. Patent 5 371 548, December 6, 1994.
  8. R. Feced, R. Rickard, and E. Richard, "Reference phase and amplitude estimation for coherent optical receiver," U.S. Patent Application 20050180760, August 18, 2005.
  9. W. Shieh, X. Yi and Y. Tang, "Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000-km SSF fiber," Electron. Lett. 43,183-185 (2007).
    [CrossRef]
  10. S. L. Jansen, I. Mortita, N. Takeda, and H. Tanaka, "20-Gb/s OFDM transmission over 4,160 km SSMF enabled by RF-pilot tone phase noise compensation," in Tech. Digest of the Conference on Optical Fiber Communication, (Optical Society of America, 2007), Postdeadline Paper PDP15.
  11. W. Shieh, X. Yi, Y. Ma, and Y. Tang, "Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems," Opt. Express 15, 9936-9947 (2007).
    [CrossRef] [PubMed]
  12. A. J. Lowery, L. B. Y. Du and J. Armstrong, "Performance of optical OFDM in ultralong-haul WDM lightwave systems," J. Lightwave Technol. 25,131-138 (2007).
    [CrossRef]
  13. B. F. Jørgensen, B. Mikkelsen, and C. J. Mahon, "Analysis of optical amplifier noise in coherent optical communications systems with optical image rejection receivers," J. Lightwave Technol. 10,660-671 (1992).
    [CrossRef]
  14. M. Mayrock and H. Haunstein, "Polarization dependence in optical OFDM transmission," in Proceedings of the 8th ITG-Fachtagung Photonische Netze, Leipzig, May 2007.
  15. S. Jansen, I. Morito, and H. Tanaka, "Carrier-to-signal power in fiber-optic SSB-OFDM transmission systems," IEICE General Conference, Nagoya, Japan (Institute of Electronics, Information and Communication Engineers, 20-23 March, 2007) Paper number: B-10-24, 363.
  16. S. Yamashita and T. Okoshi, "Suppression of beat noise from optical amplifiers using coherent receivers," J. Lightwave Technol. 12,1029-1035 (1994).
    [CrossRef]
  17. L. G. Kazovsky, "Phase- and polarization-diversity coherent optical receiver techniques," J. Lightwave Technol. 7,279-292 (1989).
    [CrossRef]
  18. J. Armstrong, "Analysis of new and existing methods of reducing intercarrier interference due to carrier frequency offset in OFDM," IEEE Trans. Commun. 47,365-369 (1999).
    [CrossRef]
  19. S. L. Jansen, I. Morita, and H. Tanaka, "Experimental demonstration of a 23.6-Gb/s OFDM with a colorless transmitter," Optoelectronics and Communications Conference (OECC) 2007, 9-13 July 2007, Yokohama, Japan. Postdeadline Paper PD1-5.

2007 (3)

2006 (2)

2005 (2)

T. Nielsen and S. Chandrasekhar, "OFC 2004 workshop on optical and electronic mitigation of impairments," J. Lightwave Technol. 23,131-142 (2005).
[CrossRef]

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayval, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

1999 (1)

J. Armstrong, "Analysis of new and existing methods of reducing intercarrier interference due to carrier frequency offset in OFDM," IEEE Trans. Commun. 47,365-369 (1999).
[CrossRef]

1994 (1)

S. Yamashita and T. Okoshi, "Suppression of beat noise from optical amplifiers using coherent receivers," J. Lightwave Technol. 12,1029-1035 (1994).
[CrossRef]

1992 (1)

B. F. Jørgensen, B. Mikkelsen, and C. J. Mahon, "Analysis of optical amplifier noise in coherent optical communications systems with optical image rejection receivers," J. Lightwave Technol. 10,660-671 (1992).
[CrossRef]

1989 (1)

L. G. Kazovsky, "Phase- and polarization-diversity coherent optical receiver techniques," J. Lightwave Technol. 7,279-292 (1989).
[CrossRef]

Armstrong, J.

Bayval, P.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayval, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

Chandrasekhar, S.

Du, L. B. Y.

Glick, M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayval, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

Jørgensen, B. F.

B. F. Jørgensen, B. Mikkelsen, and C. J. Mahon, "Analysis of optical amplifier noise in coherent optical communications systems with optical image rejection receivers," J. Lightwave Technol. 10,660-671 (1992).
[CrossRef]

Kazovsky, L. G.

L. G. Kazovsky, "Phase- and polarization-diversity coherent optical receiver techniques," J. Lightwave Technol. 7,279-292 (1989).
[CrossRef]

Killey, R. I.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayval, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

Lowery, A. J.

Ma, Y.

Mahon, C. J.

B. F. Jørgensen, B. Mikkelsen, and C. J. Mahon, "Analysis of optical amplifier noise in coherent optical communications systems with optical image rejection receivers," J. Lightwave Technol. 10,660-671 (1992).
[CrossRef]

Mikhailov, V.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayval, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

Mikkelsen, B.

B. F. Jørgensen, B. Mikkelsen, and C. J. Mahon, "Analysis of optical amplifier noise in coherent optical communications systems with optical image rejection receivers," J. Lightwave Technol. 10,660-671 (1992).
[CrossRef]

Nielsen, T.

Okoshi, T.

S. Yamashita and T. Okoshi, "Suppression of beat noise from optical amplifiers using coherent receivers," J. Lightwave Technol. 12,1029-1035 (1994).
[CrossRef]

Shanbhag, A.

Shieh, W.

W. Shieh, X. Yi, Y. Ma, and Y. Tang, "Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems," Opt. Express 15, 9936-9947 (2007).
[CrossRef] [PubMed]

W. Shieh, X. Yi and Y. Tang, "Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000-km SSF fiber," Electron. Lett. 43,183-185 (2007).
[CrossRef]

Tang, Y.

W. Shieh, X. Yi and Y. Tang, "Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000-km SSF fiber," Electron. Lett. 43,183-185 (2007).
[CrossRef]

W. Shieh, X. Yi, Y. Ma, and Y. Tang, "Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems," Opt. Express 15, 9936-9947 (2007).
[CrossRef] [PubMed]

Watts, P. M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayval, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

Yamashita, S.

S. Yamashita and T. Okoshi, "Suppression of beat noise from optical amplifiers using coherent receivers," J. Lightwave Technol. 12,1029-1035 (1994).
[CrossRef]

Yi, X.

W. Shieh, X. Yi and Y. Tang, "Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000-km SSF fiber," Electron. Lett. 43,183-185 (2007).
[CrossRef]

W. Shieh, X. Yi, Y. Ma, and Y. Tang, "Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems," Opt. Express 15, 9936-9947 (2007).
[CrossRef] [PubMed]

Yu, Q.

Electron. Lett. (1)

W. Shieh, X. Yi and Y. Tang, "Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000-km SSF fiber," Electron. Lett. 43,183-185 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayval, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

IEEE Trans. Commun. (1)

J. Armstrong, "Analysis of new and existing methods of reducing intercarrier interference due to carrier frequency offset in OFDM," IEEE Trans. Commun. 47,365-369 (1999).
[CrossRef]

J. Lightwave Technol. (6)

S. Yamashita and T. Okoshi, "Suppression of beat noise from optical amplifiers using coherent receivers," J. Lightwave Technol. 12,1029-1035 (1994).
[CrossRef]

L. G. Kazovsky, "Phase- and polarization-diversity coherent optical receiver techniques," J. Lightwave Technol. 7,279-292 (1989).
[CrossRef]

T. Nielsen and S. Chandrasekhar, "OFC 2004 workshop on optical and electronic mitigation of impairments," J. Lightwave Technol. 23,131-142 (2005).
[CrossRef]

Q. Yu and A. Shanbhag, "Electronic data processing for error and dispersion compensation," J. Lightwave Technol. 24,4514-4525 (2006).
[CrossRef]

A. J. Lowery, L. B. Y. Du and J. Armstrong, "Performance of optical OFDM in ultralong-haul WDM lightwave systems," J. Lightwave Technol. 25,131-138 (2007).
[CrossRef]

B. F. Jørgensen, B. Mikkelsen, and C. J. Mahon, "Analysis of optical amplifier noise in coherent optical communications systems with optical image rejection receivers," J. Lightwave Technol. 10,660-671 (1992).
[CrossRef]

Opt. Express (2)

Other (8)

S. L. Jansen, I. Morita, and H. Tanaka, "Experimental demonstration of a 23.6-Gb/s OFDM with a colorless transmitter," Optoelectronics and Communications Conference (OECC) 2007, 9-13 July 2007, Yokohama, Japan. Postdeadline Paper PD1-5.

M. Mayrock and H. Haunstein, "Polarization dependence in optical OFDM transmission," in Proceedings of the 8th ITG-Fachtagung Photonische Netze, Leipzig, May 2007.

S. Jansen, I. Morito, and H. Tanaka, "Carrier-to-signal power in fiber-optic SSB-OFDM transmission systems," IEICE General Conference, Nagoya, Japan (Institute of Electronics, Information and Communication Engineers, 20-23 March, 2007) Paper number: B-10-24, 363.

S. L. Jansen, I. Mortita, N. Takeda, and H. Tanaka, "20-Gb/s OFDM transmission over 4,160 km SSMF enabled by RF-pilot tone phase noise compensation," in Tech. Digest of the Conference on Optical Fiber Communication, (Optical Society of America, 2007), Postdeadline Paper PDP15.

B. J. C. Schmidt, A. J. Lowery and J. Armstrong, "Experimental demonstrations of 20 Gbit/s direct-detection optical OFDM and 12 Gbit/s with a colorless transmitter," in Tech. Digest of the Conference on Optical Fiber Communication, (Optical Society of America, 2007), Postdeadline Paper PDP18.

T. H. Williams, "System for transmission of digital data using orthogonal frequency division multiplexing," U.S. Patent 5 371 548, December 6, 1994.

R. Feced, R. Rickard, and E. Richard, "Reference phase and amplitude estimation for coherent optical receiver," U.S. Patent Application 20050180760, August 18, 2005.

J. McNicol, M. O’Sullivan, K. Roberts, A. Comeau, D. McGhan, and L. Strawczynski, "Electrical domain compensation of optical dispersion," in Tech. Digest of the Conference on Optical Fiber Communication (Optical Society of America, 2005) 5, 269 - 271.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Direct-detection OFDM received optical spectrum (left), its components (middle) and the results (right) of photodetection in the electrical domain.

Fig. 2.
Fig. 2.

Simulations of the electrical SNRs obtained coherent and direct-detection systems with varying optical filter bandwidths.

Fig. 3.
Fig. 3.

Effect of non-zero linewidth lasers on direct-detection and coherent systems.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

PSD ASE = P ASE B m = ( P subcarriers + P DDcarrier ) OSNR · B m
P SC , RF = 2 ( R 2 R L ) P SC P carrier
P noise , RF = 2 ( R 2 R L ) ( Δ f · PSD ASE 2 ) ( k Car · P carrier + k SC · P subcarriers )
SNR elec , power = OSNR ( 2 P SC P subcarriers + P DDcarrier ) · ( P carrier k Car · P carrier + k SC · P subcarriers ) B m Δ f
SNR elec , power = 2 × OSNR ( B m B SC )

Metrics