Abstract

We describe 1 Gsymbol/s, 64 and 128 coherent quadrature amplitude modulation (QAM) transmissions over 150 km, in which we employ a frequency-stabilized C2H2 fiber laser, an optical phase-looked loop (OPLL), and a heterodyne detection circuit.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Tsukamoto, D. S. Ly-Gagnon, K. Katoh, and K. Kikuchi, "Coherent demodulation of 40-Gbit/s polarization-multiplexed QPSK signals with 16-GHz spacing after 200-km transmission," in Tech. Digest of the Conference on Optical Fiber Communication, 2005, Postdeadline paper PDP29.
    [CrossRef]
  2. S. Hayase, N. Kikuchi, K. Sekine, and S. Sasaki, "Proposal of 8-state per symbol (binary ASK and QPSK) 30-Gbit/s optical modulation/demodulation scheme," in Tech. Digest of European Conference on Optical Communication, 2003, Paper Th2.6.4.
  3. N. Kikuchi, K. Mandai, K. Sekine, and S. Sasaki, "First experimental demonstration of single-polarization 50-Gbit/s 32-level (QASK and 8-DPSK) incoherent optical multilevel transmission," in Tech. Digest of the Conference on Optical Fiber Communication, 2007, Postdeadline paper PDP21.
  4. K. Kikuchi, "Coherent detection of phase-shift-keying signals using digital carrier-phase estimation," in Tech. Digest of the Conference on Optical Fiber Communication, 2006, Paper OTuI4.
  5. M. Nakazawa, M. Yoshida, K. Kasai and J. Hongou, "20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser," Electron. Lett. 42, 710-712 (2006).
    [CrossRef]
  6. H. H. Lu and W. S. Tsai, "A hybrid CATV/256-QAM/OC-48 DWDM system over an 80-km LEAF transport," IEEE Trans. Broadcast. 49, 97-102 (2003).
    [CrossRef]
  7. E. Ip and J. M. Kahn, "Carrier synchronization for 3- and 4-bit-per-symbol optical transmission," J. Lightwave Technol. 23, 4110-4124 (2005).
    [CrossRef]
  8. S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi and M. Izutsu, "Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides," IEEE Photon. Technol. Lett. 13, 364-366 (2001).
    [CrossRef]
  9. R. C. Steele, "Optical phase-locked loop using semiconductor laser diodes," Electron. Lett. 19, 69-71 (1983).
    [CrossRef]
  10. O. Ishida, H. Toba, and Y. Tohmori, "0.04 Hz relative optical-frequency stability in a 1.5 μm distributed-Bragg-reflector (DBR) laser," IEEE Photon. Technol. Lett. 1, 452-454 (1989).
    [CrossRef]
  11. K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, "Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser," IEICE Electronics Express 3, 487-492 (2006). http://www.jstage.jst.go.jp/article/elex/3/22/3_487/_article
    [CrossRef]
  12. A. Suzuki, Y. Takahashi, and M. Nakazawa, "A polarization-maintained, ultranarrow FBG filter with a linewidth of 1.3 GHz", IEICE Electronics Express 3, 469-473 (2006). http://www.jstage.jst.go.jp/article/elex/3/22/3_469/_article
    [CrossRef]
  13. D. W. Allan, "Statistics of atomic frequency standards," Proc. IEEE 54, 221-230 (1966).
    [CrossRef]
  14. T. Okoshi, K. Kikuchi, and A. Nakayama, "Novel method for high resolution measurement of laser output spectrum," Electron. Lett. 16, 630-631 (1980).
    [CrossRef]
  15. J. Hongo, K. Kasai, M. Yoshida and M. Nakazawa, "1 Gsymbol/s, 64 QAM coherent optical transmission over 150 km with a spectral efficiency of 3 bit/s/Hz," in Tech. Digest of the Conference on Optical Fiber Communication, 2007, Paper OMP3.
  16. M. Nakazawa, J. Hongo, K. Kasai, and M. Yoshida "Polarization-multiplexed 1 Gsymbol/s, 64 QAM (12 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 2 GHz," in Tech. Digest of the Conference on Optical Fiber Communication, 2007, Postdeadline paper PDP 26 (2007).
  17. H. Nyquist, "Certain topics in telegraph transmission theory," AIEE Trans. 47, 617-644 (1928).
  18. I. Horikawa, T. Murase, and Y. Saito, "Design and performance of a 200 Mbit/s 16 QAM digital radio system," IEEE Trans. Commun. COM- 27, 1953-1958 (1979).
    [CrossRef]
  19. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, San Diego, Calif., 2001).

2006 (1)

M. Nakazawa, M. Yoshida, K. Kasai and J. Hongou, "20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser," Electron. Lett. 42, 710-712 (2006).
[CrossRef]

2005 (1)

2003 (1)

H. H. Lu and W. S. Tsai, "A hybrid CATV/256-QAM/OC-48 DWDM system over an 80-km LEAF transport," IEEE Trans. Broadcast. 49, 97-102 (2003).
[CrossRef]

2001 (1)

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi and M. Izutsu, "Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides," IEEE Photon. Technol. Lett. 13, 364-366 (2001).
[CrossRef]

1989 (1)

O. Ishida, H. Toba, and Y. Tohmori, "0.04 Hz relative optical-frequency stability in a 1.5 μm distributed-Bragg-reflector (DBR) laser," IEEE Photon. Technol. Lett. 1, 452-454 (1989).
[CrossRef]

1983 (1)

R. C. Steele, "Optical phase-locked loop using semiconductor laser diodes," Electron. Lett. 19, 69-71 (1983).
[CrossRef]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, "Novel method for high resolution measurement of laser output spectrum," Electron. Lett. 16, 630-631 (1980).
[CrossRef]

1979 (1)

I. Horikawa, T. Murase, and Y. Saito, "Design and performance of a 200 Mbit/s 16 QAM digital radio system," IEEE Trans. Commun. COM- 27, 1953-1958 (1979).
[CrossRef]

1966 (1)

D. W. Allan, "Statistics of atomic frequency standards," Proc. IEEE 54, 221-230 (1966).
[CrossRef]

1928 (1)

H. Nyquist, "Certain topics in telegraph transmission theory," AIEE Trans. 47, 617-644 (1928).

Allan, D. W.

D. W. Allan, "Statistics of atomic frequency standards," Proc. IEEE 54, 221-230 (1966).
[CrossRef]

Hongou, J.

M. Nakazawa, M. Yoshida, K. Kasai and J. Hongou, "20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser," Electron. Lett. 42, 710-712 (2006).
[CrossRef]

Horikawa, I.

I. Horikawa, T. Murase, and Y. Saito, "Design and performance of a 200 Mbit/s 16 QAM digital radio system," IEEE Trans. Commun. COM- 27, 1953-1958 (1979).
[CrossRef]

Ip, E.

Ishida, O.

O. Ishida, H. Toba, and Y. Tohmori, "0.04 Hz relative optical-frequency stability in a 1.5 μm distributed-Bragg-reflector (DBR) laser," IEEE Photon. Technol. Lett. 1, 452-454 (1989).
[CrossRef]

Izutsu, M.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi and M. Izutsu, "Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides," IEEE Photon. Technol. Lett. 13, 364-366 (2001).
[CrossRef]

Kahn, J. M.

Kasai, K.

M. Nakazawa, M. Yoshida, K. Kasai and J. Hongou, "20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser," Electron. Lett. 42, 710-712 (2006).
[CrossRef]

Kawanishi, T.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi and M. Izutsu, "Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides," IEEE Photon. Technol. Lett. 13, 364-366 (2001).
[CrossRef]

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, "Novel method for high resolution measurement of laser output spectrum," Electron. Lett. 16, 630-631 (1980).
[CrossRef]

Kubodera, K.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi and M. Izutsu, "Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides," IEEE Photon. Technol. Lett. 13, 364-366 (2001).
[CrossRef]

Lu, H. H.

H. H. Lu and W. S. Tsai, "A hybrid CATV/256-QAM/OC-48 DWDM system over an 80-km LEAF transport," IEEE Trans. Broadcast. 49, 97-102 (2003).
[CrossRef]

Mitsugi, N.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi and M. Izutsu, "Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides," IEEE Photon. Technol. Lett. 13, 364-366 (2001).
[CrossRef]

Murase, T.

I. Horikawa, T. Murase, and Y. Saito, "Design and performance of a 200 Mbit/s 16 QAM digital radio system," IEEE Trans. Commun. COM- 27, 1953-1958 (1979).
[CrossRef]

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, "Novel method for high resolution measurement of laser output spectrum," Electron. Lett. 16, 630-631 (1980).
[CrossRef]

Nakazawa, M.

M. Nakazawa, M. Yoshida, K. Kasai and J. Hongou, "20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser," Electron. Lett. 42, 710-712 (2006).
[CrossRef]

Nyquist, H.

H. Nyquist, "Certain topics in telegraph transmission theory," AIEE Trans. 47, 617-644 (1928).

Oikawa, S.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi and M. Izutsu, "Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides," IEEE Photon. Technol. Lett. 13, 364-366 (2001).
[CrossRef]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, "Novel method for high resolution measurement of laser output spectrum," Electron. Lett. 16, 630-631 (1980).
[CrossRef]

Saito, Y.

I. Horikawa, T. Murase, and Y. Saito, "Design and performance of a 200 Mbit/s 16 QAM digital radio system," IEEE Trans. Commun. COM- 27, 1953-1958 (1979).
[CrossRef]

Saitou, T.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi and M. Izutsu, "Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides," IEEE Photon. Technol. Lett. 13, 364-366 (2001).
[CrossRef]

Shimotsu, S.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi and M. Izutsu, "Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides," IEEE Photon. Technol. Lett. 13, 364-366 (2001).
[CrossRef]

Steele, R. C.

R. C. Steele, "Optical phase-locked loop using semiconductor laser diodes," Electron. Lett. 19, 69-71 (1983).
[CrossRef]

Toba, H.

O. Ishida, H. Toba, and Y. Tohmori, "0.04 Hz relative optical-frequency stability in a 1.5 μm distributed-Bragg-reflector (DBR) laser," IEEE Photon. Technol. Lett. 1, 452-454 (1989).
[CrossRef]

Tohmori, Y.

O. Ishida, H. Toba, and Y. Tohmori, "0.04 Hz relative optical-frequency stability in a 1.5 μm distributed-Bragg-reflector (DBR) laser," IEEE Photon. Technol. Lett. 1, 452-454 (1989).
[CrossRef]

Tsai, W. S.

H. H. Lu and W. S. Tsai, "A hybrid CATV/256-QAM/OC-48 DWDM system over an 80-km LEAF transport," IEEE Trans. Broadcast. 49, 97-102 (2003).
[CrossRef]

Yoshida, M.

M. Nakazawa, M. Yoshida, K. Kasai and J. Hongou, "20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser," Electron. Lett. 42, 710-712 (2006).
[CrossRef]

AIEE Trans. (1)

H. Nyquist, "Certain topics in telegraph transmission theory," AIEE Trans. 47, 617-644 (1928).

Electron. Lett. (3)

T. Okoshi, K. Kikuchi, and A. Nakayama, "Novel method for high resolution measurement of laser output spectrum," Electron. Lett. 16, 630-631 (1980).
[CrossRef]

M. Nakazawa, M. Yoshida, K. Kasai and J. Hongou, "20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser," Electron. Lett. 42, 710-712 (2006).
[CrossRef]

R. C. Steele, "Optical phase-locked loop using semiconductor laser diodes," Electron. Lett. 19, 69-71 (1983).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

O. Ishida, H. Toba, and Y. Tohmori, "0.04 Hz relative optical-frequency stability in a 1.5 μm distributed-Bragg-reflector (DBR) laser," IEEE Photon. Technol. Lett. 1, 452-454 (1989).
[CrossRef]

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi and M. Izutsu, "Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides," IEEE Photon. Technol. Lett. 13, 364-366 (2001).
[CrossRef]

IEEE Trans. Broadcast. (1)

H. H. Lu and W. S. Tsai, "A hybrid CATV/256-QAM/OC-48 DWDM system over an 80-km LEAF transport," IEEE Trans. Broadcast. 49, 97-102 (2003).
[CrossRef]

IEEE Trans. Commun. COM (1)

I. Horikawa, T. Murase, and Y. Saito, "Design and performance of a 200 Mbit/s 16 QAM digital radio system," IEEE Trans. Commun. COM- 27, 1953-1958 (1979).
[CrossRef]

J. Lightwave Technol. (1)

Proc. IEEE (1)

D. W. Allan, "Statistics of atomic frequency standards," Proc. IEEE 54, 221-230 (1966).
[CrossRef]

Other (9)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, San Diego, Calif., 2001).

J. Hongo, K. Kasai, M. Yoshida and M. Nakazawa, "1 Gsymbol/s, 64 QAM coherent optical transmission over 150 km with a spectral efficiency of 3 bit/s/Hz," in Tech. Digest of the Conference on Optical Fiber Communication, 2007, Paper OMP3.

M. Nakazawa, J. Hongo, K. Kasai, and M. Yoshida "Polarization-multiplexed 1 Gsymbol/s, 64 QAM (12 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 2 GHz," in Tech. Digest of the Conference on Optical Fiber Communication, 2007, Postdeadline paper PDP 26 (2007).

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, "Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser," IEICE Electronics Express 3, 487-492 (2006). http://www.jstage.jst.go.jp/article/elex/3/22/3_487/_article
[CrossRef]

A. Suzuki, Y. Takahashi, and M. Nakazawa, "A polarization-maintained, ultranarrow FBG filter with a linewidth of 1.3 GHz", IEICE Electronics Express 3, 469-473 (2006). http://www.jstage.jst.go.jp/article/elex/3/22/3_469/_article
[CrossRef]

S. Tsukamoto, D. S. Ly-Gagnon, K. Katoh, and K. Kikuchi, "Coherent demodulation of 40-Gbit/s polarization-multiplexed QPSK signals with 16-GHz spacing after 200-km transmission," in Tech. Digest of the Conference on Optical Fiber Communication, 2005, Postdeadline paper PDP29.
[CrossRef]

S. Hayase, N. Kikuchi, K. Sekine, and S. Sasaki, "Proposal of 8-state per symbol (binary ASK and QPSK) 30-Gbit/s optical modulation/demodulation scheme," in Tech. Digest of European Conference on Optical Communication, 2003, Paper Th2.6.4.

N. Kikuchi, K. Mandai, K. Sekine, and S. Sasaki, "First experimental demonstration of single-polarization 50-Gbit/s 32-level (QASK and 8-DPSK) incoherent optical multilevel transmission," in Tech. Digest of the Conference on Optical Fiber Communication, 2007, Postdeadline paper PDP21.

K. Kikuchi, "Coherent detection of phase-shift-keying signals using digital carrier-phase estimation," in Tech. Digest of the Conference on Optical Fiber Communication, 2006, Paper OTuI4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Block diagram of QAM coherent optical transmission system

Fig. 2.
Fig. 2.

13C2H2 frequency-stabilized erbium-doped fiber ring laser.

Fig. 3.
Fig. 3.

Experimental OPLL setup for coherent transmission.

Fig. 4.
Fig. 4.

Diagram of digital signal processor.

Fig. 5.
Fig. 5.

Experimental setup for 64 QAM coherent transmission over 150 km.

Fig. 6.
Fig. 6.

Electrical (IF) spectrum of a beat signal between a pilot signal and a local oscillator under PLL operation.

Fig. 7.
Fig. 7.

Electrical spectrum of the IF signal. Inset: diagram of relationship between optical frequency and QAM data-modulated signal, pilot signal, and local oscillator.

Fig. 8.
Fig. 8.

BER as a function of the received power.

Fig. 9.
Fig. 9.

Back-to-back constellations and eye patterns for a 1 Gsymbol/s, 64 QAM signal as a function of the received power.

Fig. 10.
Fig. 10.

Constellations and eye patterns for a 1 Gsymbol/s, 64 QAM signal after a 150 km transmission as a function of the received power.

Fig. 11.
Fig. 11.

Experimental setup for polarization-multiplexed 1 Gsymbol/s, 64 QAM coherent optical transmission over 150 km.

Fig. 12.
Fig. 12.

BER as a function of the received power.

Fig. 13.
Fig. 13.

Constellations and eye patterns for the back-to-back case (a) and after 150 km transmissions with (b) orthogonal and (c) parallel polarization.

Fig. 14.
Fig. 14.

Electrical spectrum of the IF data signal with Nyquist filter. Inset: relationship between optical frequencies of QAM data-modulated signals, pilot signal and LO signal.

Fig. 15.
Fig. 15.

BER as a function of received power.

Fig. 16.
Fig. 16.

Back-to-back constellations and eye patterns for a 128 QAM signal with orthogonal polarization as a function of the received power.

Fig. 17.
Fig. 17.

Constellations and eye patterns for a 128 QAM signal with orthogonal polarization after a 160 km transmission as a function of the received power.

Metrics