Abstract

A large optical birefringence of oriented Ag nanoellipsoids embedded in silica was measured using an ellipsometric technique. The two main surface plasmon resonances associated with the axes of the ellipsoid were tuned, allowing us to quantify the light transmission through the samples when placed and rotated between crossed and parallel polarizers. This birefringence can be physically associated with the selective optical absorption of one component of the linear polarization of the incident light with respect to the anisotropic axis of the sample, depending on the wavelength used to perform the measurement.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Noguez, "Surface plasmons on metal nanoparticles: the influence of shape and physical environment," J. Phys. Chem. C. 111, 3806-3819 (2007).
    [CrossRef]
  2. A. L. Gonzalez, C. Noguez, G. P. Ortíz, and G. Rodríguez-Gattorno, "Optical absorbance of colloidal suspensions of silver polyhedral nanoparticles," J. Phys. Chem. B. 109, 17512-17517 (2005).
    [CrossRef]
  3. A. Tao, P. Sinsermsuksakul, and P. Yang, "Polyhedral silver nanoparticles with distinct scattering signatures," Angew. Chem. Int. Ed. 45, 4597-4601 (2006).
    [CrossRef]
  4. J. Zhang, H. Liu, Z. Wang, and N. Ming, "Synthesis of gold regular octahedra with controlled size and plasmon resonance," Appl. Phys. Lett. 90, 163122 (2007).
    [CrossRef]
  5. M. Maillard, S. Giorgio, and M.-P. Pileni, "Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties," J. Phys. Chem. B 107, 2466-2470 (2003).
    [CrossRef]
  6. A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, "Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation," Phys. Rev. B 74, 245425 (2006).
    [CrossRef]
  7. M. Grzelczak, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, "Optical properties of platinum-coated gold nanorods," J. Phys. Chem. C 111, 6183-6188 (2007).
    [CrossRef]
  8. R. Bukasov and J. S. Shumaker-Parry, "Highly tunable infrared extinction properties of gold nanocrescents," Nano Lett. 7, 1113-1118 (2007).
    [CrossRef]
  9. Z.-Y. Zhang and Y.-P. Zhao, "Optical properties of helical Ag nanostructures calculated by discrete dipole approximation method," Appl. Phys. Lett. 90, 221501 (2007).
    [CrossRef]
  10. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui and C. M. Lieber, "Highly polarized photoluminescence and photodetection from single indium phosphide nanowires," Science 293, 1455-1457 (2001).
    [CrossRef] [PubMed]
  11. N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Yu. Timoshenko, G. Polisski, F. Koch, and M. Fujii, "Giant birefringence in anisotropically nanostructured silicon," Opt. Lett. 26, 1265-1267 (2001).
    [CrossRef]
  12. F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, "Large birefringence in two-dimensional silicon photonic crystals," Phys. Rev. B 63, 161101(R) (2001).
    [CrossRef]
  13. O. L. Muskens, M. T. Borgström, E. P. A. M. Bakkers, and J. Gómez Rivas, "Giant optical birefringence in ensembles of semiconductor nanowires," Appl. Phys. Lett. 89, 233117 (2006).
    [CrossRef]
  14. H. E. Ruda and A. Shik, "Nonlinear optical phenomena in nanowires," J. Appl. Phys. 101, 034312 (2007).
    [CrossRef]
  15. T. P. SewardIII, "Elongation and spheroidization of phase-separated particles in glass," J. Non Cryst. Solids 15, 487-504 (1974).
    [CrossRef]
  16. K. Hasui, D. G. Grossman, L. G. Mann, H. Takahashi, and N. F. Borrelli, "A high performance dichroic glass polarizer with a thickness of 15-35 μm," Jpn. J. Appl. Phys. 39, 1494-1496 (2000).
    [CrossRef]
  17. S. Matsuda, Y. Yasuda, and S. Ando, "Fabrication of polyimide-blend thin films containing uniformly oriented silver nanorods and their use as flexible, linear polarizers," Adv. Mater. 17, 2221-2224 (2005).
    [CrossRef]
  18. X. D. Hoa, A. G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress," Biosens. Bioelectron. 23,151-160 (2007).
    [CrossRef] [PubMed]
  19. A. L. González, J. A. Reyes-Esqueda, and C. Noguez, "Surface plasmon resonances of elongated noble metal nanoparticles," to be published.
  20. B. E. A. Saleh and M. C. Teich, Fundamental of Photonics, (Wiley-Interscience, John Wiley & sons, Inc, 1991). This equation differs with respect to the classical one shown into the reference just because in this case we performed our analysis taking the angle that makes the wavevector with respect to the NP’s normal, and not with respect to its optical axis as it is usual. Anyway, both angles are related since their sum gives π/2, which explains the difference in this equation.
    [CrossRef]
  21. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  22. J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, "Gold nanorods: synthesis, characterization and applications," Coord. Chem. Rev. 249,1870-1901 (2005).
    [CrossRef]

2007

C. Noguez, "Surface plasmons on metal nanoparticles: the influence of shape and physical environment," J. Phys. Chem. C. 111, 3806-3819 (2007).
[CrossRef]

J. Zhang, H. Liu, Z. Wang, and N. Ming, "Synthesis of gold regular octahedra with controlled size and plasmon resonance," Appl. Phys. Lett. 90, 163122 (2007).
[CrossRef]

M. Grzelczak, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, "Optical properties of platinum-coated gold nanorods," J. Phys. Chem. C 111, 6183-6188 (2007).
[CrossRef]

R. Bukasov and J. S. Shumaker-Parry, "Highly tunable infrared extinction properties of gold nanocrescents," Nano Lett. 7, 1113-1118 (2007).
[CrossRef]

Z.-Y. Zhang and Y.-P. Zhao, "Optical properties of helical Ag nanostructures calculated by discrete dipole approximation method," Appl. Phys. Lett. 90, 221501 (2007).
[CrossRef]

H. E. Ruda and A. Shik, "Nonlinear optical phenomena in nanowires," J. Appl. Phys. 101, 034312 (2007).
[CrossRef]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress," Biosens. Bioelectron. 23,151-160 (2007).
[CrossRef] [PubMed]

2006

O. L. Muskens, M. T. Borgström, E. P. A. M. Bakkers, and J. Gómez Rivas, "Giant optical birefringence in ensembles of semiconductor nanowires," Appl. Phys. Lett. 89, 233117 (2006).
[CrossRef]

A. Tao, P. Sinsermsuksakul, and P. Yang, "Polyhedral silver nanoparticles with distinct scattering signatures," Angew. Chem. Int. Ed. 45, 4597-4601 (2006).
[CrossRef]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, "Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation," Phys. Rev. B 74, 245425 (2006).
[CrossRef]

2005

A. L. Gonzalez, C. Noguez, G. P. Ortíz, and G. Rodríguez-Gattorno, "Optical absorbance of colloidal suspensions of silver polyhedral nanoparticles," J. Phys. Chem. B. 109, 17512-17517 (2005).
[CrossRef]

S. Matsuda, Y. Yasuda, and S. Ando, "Fabrication of polyimide-blend thin films containing uniformly oriented silver nanorods and their use as flexible, linear polarizers," Adv. Mater. 17, 2221-2224 (2005).
[CrossRef]

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, "Gold nanorods: synthesis, characterization and applications," Coord. Chem. Rev. 249,1870-1901 (2005).
[CrossRef]

2003

M. Maillard, S. Giorgio, and M.-P. Pileni, "Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties," J. Phys. Chem. B 107, 2466-2470 (2003).
[CrossRef]

2001

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui and C. M. Lieber, "Highly polarized photoluminescence and photodetection from single indium phosphide nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Yu. Timoshenko, G. Polisski, F. Koch, and M. Fujii, "Giant birefringence in anisotropically nanostructured silicon," Opt. Lett. 26, 1265-1267 (2001).
[CrossRef]

2000

K. Hasui, D. G. Grossman, L. G. Mann, H. Takahashi, and N. F. Borrelli, "A high performance dichroic glass polarizer with a thickness of 15-35 μm," Jpn. J. Appl. Phys. 39, 1494-1496 (2000).
[CrossRef]

1974

T. P. SewardIII, "Elongation and spheroidization of phase-separated particles in glass," J. Non Cryst. Solids 15, 487-504 (1974).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Ando, S.

S. Matsuda, Y. Yasuda, and S. Ando, "Fabrication of polyimide-blend thin films containing uniformly oriented silver nanorods and their use as flexible, linear polarizers," Adv. Mater. 17, 2221-2224 (2005).
[CrossRef]

Bakkers, E. P. A. M.

O. L. Muskens, M. T. Borgström, E. P. A. M. Bakkers, and J. Gómez Rivas, "Giant optical birefringence in ensembles of semiconductor nanowires," Appl. Phys. Lett. 89, 233117 (2006).
[CrossRef]

Borgström, M. T.

O. L. Muskens, M. T. Borgström, E. P. A. M. Bakkers, and J. Gómez Rivas, "Giant optical birefringence in ensembles of semiconductor nanowires," Appl. Phys. Lett. 89, 233117 (2006).
[CrossRef]

Borrelli, N. F.

K. Hasui, D. G. Grossman, L. G. Mann, H. Takahashi, and N. F. Borrelli, "A high performance dichroic glass polarizer with a thickness of 15-35 μm," Jpn. J. Appl. Phys. 39, 1494-1496 (2000).
[CrossRef]

Bukasov, R.

R. Bukasov and J. S. Shumaker-Parry, "Highly tunable infrared extinction properties of gold nanocrescents," Nano Lett. 7, 1113-1118 (2007).
[CrossRef]

Cheang-Wong, J. C.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, "Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation," Phys. Rev. B 74, 245425 (2006).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Crespo-Sosa, A.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, "Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation," Phys. Rev. B 74, 245425 (2006).
[CrossRef]

Cui, Y.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui and C. M. Lieber, "Highly polarized photoluminescence and photodetection from single indium phosphide nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

Diener, J.

Duan, X.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui and C. M. Lieber, "Highly polarized photoluminescence and photodetection from single indium phosphide nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

Fujii, M.

García de Abajo, F. J.

M. Grzelczak, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, "Optical properties of platinum-coated gold nanorods," J. Phys. Chem. C 111, 6183-6188 (2007).
[CrossRef]

Giorgio, S.

M. Maillard, S. Giorgio, and M.-P. Pileni, "Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties," J. Phys. Chem. B 107, 2466-2470 (2003).
[CrossRef]

Gómez Rivas, J.

O. L. Muskens, M. T. Borgström, E. P. A. M. Bakkers, and J. Gómez Rivas, "Giant optical birefringence in ensembles of semiconductor nanowires," Appl. Phys. Lett. 89, 233117 (2006).
[CrossRef]

Gonzalez, A. L.

A. L. Gonzalez, C. Noguez, G. P. Ortíz, and G. Rodríguez-Gattorno, "Optical absorbance of colloidal suspensions of silver polyhedral nanoparticles," J. Phys. Chem. B. 109, 17512-17517 (2005).
[CrossRef]

Gross, E.

Grossman, D. G.

K. Hasui, D. G. Grossman, L. G. Mann, H. Takahashi, and N. F. Borrelli, "A high performance dichroic glass polarizer with a thickness of 15-35 μm," Jpn. J. Appl. Phys. 39, 1494-1496 (2000).
[CrossRef]

Grzelczak, M.

M. Grzelczak, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, "Optical properties of platinum-coated gold nanorods," J. Phys. Chem. C 111, 6183-6188 (2007).
[CrossRef]

Gudiksen, M. S.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui and C. M. Lieber, "Highly polarized photoluminescence and photodetection from single indium phosphide nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

Hasui, K.

K. Hasui, D. G. Grossman, L. G. Mann, H. Takahashi, and N. F. Borrelli, "A high performance dichroic glass polarizer with a thickness of 15-35 μm," Jpn. J. Appl. Phys. 39, 1494-1496 (2000).
[CrossRef]

Hoa, X. D.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress," Biosens. Bioelectron. 23,151-160 (2007).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kirk, A. G.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress," Biosens. Bioelectron. 23,151-160 (2007).
[CrossRef] [PubMed]

Koch, F.

Kovalev, D.

Künzner, N.

Lieber, C. M.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui and C. M. Lieber, "Highly polarized photoluminescence and photodetection from single indium phosphide nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

Liu, H.

J. Zhang, H. Liu, Z. Wang, and N. Ming, "Synthesis of gold regular octahedra with controlled size and plasmon resonance," Appl. Phys. Lett. 90, 163122 (2007).
[CrossRef]

Liz-Marzán, L. M.

M. Grzelczak, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, "Optical properties of platinum-coated gold nanorods," J. Phys. Chem. C 111, 6183-6188 (2007).
[CrossRef]

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, "Gold nanorods: synthesis, characterization and applications," Coord. Chem. Rev. 249,1870-1901 (2005).
[CrossRef]

Maillard, M.

M. Maillard, S. Giorgio, and M.-P. Pileni, "Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties," J. Phys. Chem. B 107, 2466-2470 (2003).
[CrossRef]

Mann, L. G.

K. Hasui, D. G. Grossman, L. G. Mann, H. Takahashi, and N. F. Borrelli, "A high performance dichroic glass polarizer with a thickness of 15-35 μm," Jpn. J. Appl. Phys. 39, 1494-1496 (2000).
[CrossRef]

Matsuda, S.

S. Matsuda, Y. Yasuda, and S. Ando, "Fabrication of polyimide-blend thin films containing uniformly oriented silver nanorods and their use as flexible, linear polarizers," Adv. Mater. 17, 2221-2224 (2005).
[CrossRef]

Ming, N.

J. Zhang, H. Liu, Z. Wang, and N. Ming, "Synthesis of gold regular octahedra with controlled size and plasmon resonance," Appl. Phys. Lett. 90, 163122 (2007).
[CrossRef]

Mulvaney, P.

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, "Gold nanorods: synthesis, characterization and applications," Coord. Chem. Rev. 249,1870-1901 (2005).
[CrossRef]

Muskens, O. L.

O. L. Muskens, M. T. Borgström, E. P. A. M. Bakkers, and J. Gómez Rivas, "Giant optical birefringence in ensembles of semiconductor nanowires," Appl. Phys. Lett. 89, 233117 (2006).
[CrossRef]

Noguez, C.

C. Noguez, "Surface plasmons on metal nanoparticles: the influence of shape and physical environment," J. Phys. Chem. C. 111, 3806-3819 (2007).
[CrossRef]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, "Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation," Phys. Rev. B 74, 245425 (2006).
[CrossRef]

A. L. Gonzalez, C. Noguez, G. P. Ortíz, and G. Rodríguez-Gattorno, "Optical absorbance of colloidal suspensions of silver polyhedral nanoparticles," J. Phys. Chem. B. 109, 17512-17517 (2005).
[CrossRef]

Oliver, A.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, "Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation," Phys. Rev. B 74, 245425 (2006).
[CrossRef]

Ortíz, G. P.

A. L. Gonzalez, C. Noguez, G. P. Ortíz, and G. Rodríguez-Gattorno, "Optical absorbance of colloidal suspensions of silver polyhedral nanoparticles," J. Phys. Chem. B. 109, 17512-17517 (2005).
[CrossRef]

Pastoriza-Santos, I.

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, "Gold nanorods: synthesis, characterization and applications," Coord. Chem. Rev. 249,1870-1901 (2005).
[CrossRef]

Pérez-Juste, J.

M. Grzelczak, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, "Optical properties of platinum-coated gold nanorods," J. Phys. Chem. C 111, 6183-6188 (2007).
[CrossRef]

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, "Gold nanorods: synthesis, characterization and applications," Coord. Chem. Rev. 249,1870-1901 (2005).
[CrossRef]

Pileni, M.-P.

M. Maillard, S. Giorgio, and M.-P. Pileni, "Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties," J. Phys. Chem. B 107, 2466-2470 (2003).
[CrossRef]

Polisski, G.

Reyes-Esqueda, J. A.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, "Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation," Phys. Rev. B 74, 245425 (2006).
[CrossRef]

Rodríguez-Fernández, L.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, "Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation," Phys. Rev. B 74, 245425 (2006).
[CrossRef]

Rodríguez-Gattorno, G.

A. L. Gonzalez, C. Noguez, G. P. Ortíz, and G. Rodríguez-Gattorno, "Optical absorbance of colloidal suspensions of silver polyhedral nanoparticles," J. Phys. Chem. B. 109, 17512-17517 (2005).
[CrossRef]

Román-Velázquez, C. E.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, "Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation," Phys. Rev. B 74, 245425 (2006).
[CrossRef]

Ruda, H. E.

H. E. Ruda and A. Shik, "Nonlinear optical phenomena in nanowires," J. Appl. Phys. 101, 034312 (2007).
[CrossRef]

Seman, J. A.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, "Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation," Phys. Rev. B 74, 245425 (2006).
[CrossRef]

Seward, T. P.

T. P. SewardIII, "Elongation and spheroidization of phase-separated particles in glass," J. Non Cryst. Solids 15, 487-504 (1974).
[CrossRef]

Shik, A.

H. E. Ruda and A. Shik, "Nonlinear optical phenomena in nanowires," J. Appl. Phys. 101, 034312 (2007).
[CrossRef]

Shumaker-Parry, J. S.

R. Bukasov and J. S. Shumaker-Parry, "Highly tunable infrared extinction properties of gold nanocrescents," Nano Lett. 7, 1113-1118 (2007).
[CrossRef]

Sinsermsuksakul, P.

A. Tao, P. Sinsermsuksakul, and P. Yang, "Polyhedral silver nanoparticles with distinct scattering signatures," Angew. Chem. Int. Ed. 45, 4597-4601 (2006).
[CrossRef]

Tabrizian, M.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress," Biosens. Bioelectron. 23,151-160 (2007).
[CrossRef] [PubMed]

Takahashi, H.

K. Hasui, D. G. Grossman, L. G. Mann, H. Takahashi, and N. F. Borrelli, "A high performance dichroic glass polarizer with a thickness of 15-35 μm," Jpn. J. Appl. Phys. 39, 1494-1496 (2000).
[CrossRef]

Tao, A.

A. Tao, P. Sinsermsuksakul, and P. Yang, "Polyhedral silver nanoparticles with distinct scattering signatures," Angew. Chem. Int. Ed. 45, 4597-4601 (2006).
[CrossRef]

Timoshenko, V. Yu.

Wang, J.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui and C. M. Lieber, "Highly polarized photoluminescence and photodetection from single indium phosphide nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

Wang, Z.

J. Zhang, H. Liu, Z. Wang, and N. Ming, "Synthesis of gold regular octahedra with controlled size and plasmon resonance," Appl. Phys. Lett. 90, 163122 (2007).
[CrossRef]

Yang, P.

A. Tao, P. Sinsermsuksakul, and P. Yang, "Polyhedral silver nanoparticles with distinct scattering signatures," Angew. Chem. Int. Ed. 45, 4597-4601 (2006).
[CrossRef]

Yasuda, Y.

S. Matsuda, Y. Yasuda, and S. Ando, "Fabrication of polyimide-blend thin films containing uniformly oriented silver nanorods and their use as flexible, linear polarizers," Adv. Mater. 17, 2221-2224 (2005).
[CrossRef]

Zhang, J.

J. Zhang, H. Liu, Z. Wang, and N. Ming, "Synthesis of gold regular octahedra with controlled size and plasmon resonance," Appl. Phys. Lett. 90, 163122 (2007).
[CrossRef]

Zhang, Z.-Y.

Z.-Y. Zhang and Y.-P. Zhao, "Optical properties of helical Ag nanostructures calculated by discrete dipole approximation method," Appl. Phys. Lett. 90, 221501 (2007).
[CrossRef]

Zhao, Y.-P.

Z.-Y. Zhang and Y.-P. Zhao, "Optical properties of helical Ag nanostructures calculated by discrete dipole approximation method," Appl. Phys. Lett. 90, 221501 (2007).
[CrossRef]

Adv. Mater.

S. Matsuda, Y. Yasuda, and S. Ando, "Fabrication of polyimide-blend thin films containing uniformly oriented silver nanorods and their use as flexible, linear polarizers," Adv. Mater. 17, 2221-2224 (2005).
[CrossRef]

Angew. Chem. Int. Ed.

A. Tao, P. Sinsermsuksakul, and P. Yang, "Polyhedral silver nanoparticles with distinct scattering signatures," Angew. Chem. Int. Ed. 45, 4597-4601 (2006).
[CrossRef]

Appl. Phys. Lett.

J. Zhang, H. Liu, Z. Wang, and N. Ming, "Synthesis of gold regular octahedra with controlled size and plasmon resonance," Appl. Phys. Lett. 90, 163122 (2007).
[CrossRef]

Z.-Y. Zhang and Y.-P. Zhao, "Optical properties of helical Ag nanostructures calculated by discrete dipole approximation method," Appl. Phys. Lett. 90, 221501 (2007).
[CrossRef]

O. L. Muskens, M. T. Borgström, E. P. A. M. Bakkers, and J. Gómez Rivas, "Giant optical birefringence in ensembles of semiconductor nanowires," Appl. Phys. Lett. 89, 233117 (2006).
[CrossRef]

Biosens. Bioelectron.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress," Biosens. Bioelectron. 23,151-160 (2007).
[CrossRef] [PubMed]

Coord. Chem. Rev.

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, "Gold nanorods: synthesis, characterization and applications," Coord. Chem. Rev. 249,1870-1901 (2005).
[CrossRef]

J. Appl. Phys.

H. E. Ruda and A. Shik, "Nonlinear optical phenomena in nanowires," J. Appl. Phys. 101, 034312 (2007).
[CrossRef]

J. Non Cryst. Solids

T. P. SewardIII, "Elongation and spheroidization of phase-separated particles in glass," J. Non Cryst. Solids 15, 487-504 (1974).
[CrossRef]

J. Phys. Chem. B

M. Maillard, S. Giorgio, and M.-P. Pileni, "Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties," J. Phys. Chem. B 107, 2466-2470 (2003).
[CrossRef]

J. Phys. Chem. B.

A. L. Gonzalez, C. Noguez, G. P. Ortíz, and G. Rodríguez-Gattorno, "Optical absorbance of colloidal suspensions of silver polyhedral nanoparticles," J. Phys. Chem. B. 109, 17512-17517 (2005).
[CrossRef]

J. Phys. Chem. C

M. Grzelczak, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, "Optical properties of platinum-coated gold nanorods," J. Phys. Chem. C 111, 6183-6188 (2007).
[CrossRef]

J. Phys. Chem. C.

C. Noguez, "Surface plasmons on metal nanoparticles: the influence of shape and physical environment," J. Phys. Chem. C. 111, 3806-3819 (2007).
[CrossRef]

Jpn. J. Appl. Phys.

K. Hasui, D. G. Grossman, L. G. Mann, H. Takahashi, and N. F. Borrelli, "A high performance dichroic glass polarizer with a thickness of 15-35 μm," Jpn. J. Appl. Phys. 39, 1494-1496 (2000).
[CrossRef]

Nano Lett.

R. Bukasov and J. S. Shumaker-Parry, "Highly tunable infrared extinction properties of gold nanocrescents," Nano Lett. 7, 1113-1118 (2007).
[CrossRef]

Opt. Lett.

Phys. Rev. B

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, "Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation," Phys. Rev. B 74, 245425 (2006).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Science

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui and C. M. Lieber, "Highly polarized photoluminescence and photodetection from single indium phosphide nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

Other

F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, "Large birefringence in two-dimensional silicon photonic crystals," Phys. Rev. B 63, 161101(R) (2001).
[CrossRef]

A. L. González, J. A. Reyes-Esqueda, and C. Noguez, "Surface plasmon resonances of elongated noble metal nanoparticles," to be published.

B. E. A. Saleh and M. C. Teich, Fundamental of Photonics, (Wiley-Interscience, John Wiley & sons, Inc, 1991). This equation differs with respect to the classical one shown into the reference just because in this case we performed our analysis taking the angle that makes the wavevector with respect to the NP’s normal, and not with respect to its optical axis as it is usual. Anyway, both angles are related since their sum gives π/2, which explains the difference in this equation.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Experimental setup for birefringence measurements. L stands for a lens, PD for a photodiode, BS for beam splitter, P for polarizer, A for analyzer and λ/2 for a half-wave retarder. (b) Projection into the incidence plane of the NP and the index ellipsoid associated with the anisotropic nanocomposite.

Fig. 2.
Fig. 2.

Optical absorption spectra of the nanocomposite a) after Ag-ion implantation and thermal annealing; b) and c) after a subsequent Si-ion irradiation; d) extinction ratio for this sample (see below). The spectra for the deformed NPs were taken for polarizations nearly b) perpendicular and c) parallel to the major axis of the nanocomposite, respectively.

Fig. 3.
Fig. 3.

Typical birefringence measurement obtained at 532 nm with setup shown in Fig. 1. The data were averaged over three consecutive measurements, taken within a given window of stability for the laser system by using a reference beam. Solid curves are the theoretical calculations given for Eqs. (4) and (5) by taking the birefringence calculated with Eq. (6).

Tables (1)

Tables Icon

Table 1. Measured birefringence of the anisotropic silver nanoparticles with the corresponding measurement propagated uncertainties.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

N ̂ NP = ( sin ψ 0 cos ψ ) .
s ̂ = ( 0 1 0 ) , p ̂ = ( 1 0 0 ) ,
E s ( α ) = A s exp ( i π L Δ n α λ ) E s s ̂ and E p ( α ) = A p exp ( i π L Δ n α λ ) E p P ̂ ,
I ( α , 0 ) = A s 2 sin 4 α + A p 2 cos 4 α + 1 2 A s A p sin 2 2 α cos 2 π L Δ n α λ ,
I ( α , π 2 ) = 1 4 sin 2 2 α [ A s 2 + A p 2 2 A s A p cos 2 π L Δ n α λ ] .
Δ n max = λ 2 π L cos 1 [ A s 2 + A p 2 2 A s A p 2 I meas max A s A p ] .
n e n o = Δ n max cos 2 ψ = Δ n max cos 2 [ sin 1 ( n host n NP eff sin ψ 1 ) ] .
I ( α , 0 ) = I ( α , 0 ) = A s 2 cos 4 α + A p 2 sin 4 α + 1 2 A s A p sin 2 2 α cos 2 π L Δ n α λ ,
extinction ratio = 10 log 10 ( T T ) = 10 { abs ( A A ) } [ dB ] ,

Metrics