Abstract

In this paper we propose and experimentally demonstrate a reconfigurable 10Gbps frequency-encoded (1D) encoder/decoder structure for optical code division multiple access (OCDMA). The encoder is constructed using a single semiconductor optical amplifier (SOA) and 1D reflective Opto-VLSI processor. The SOA generates broadband amplified spontaneous emission that is dynamically sliced using digital phase holograms loaded onto the Opto-VLSI processor to generate 1D codewords. The selected wavelengths are injected back into the same SOA for amplifications. The decoder is constructed using single Opto-VLSI processor only. The encoded signal can successfully be retrieved at the decoder side only when the digital phase holograms of the encoder and the decoder are matched. The system performance is measured in terms of the auto-correlation and cross-correlation functions as well as the eye diagram.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Fsaifes, C. Lepers, A.-F. Obaton, and P. Gallion, "DS-OCDMA encoder/decoder performance analysis using optical low-coherence reflectometry," J. Lightwave Technol. 24, 3121-3128 (2006).
    [CrossRef]
  2. M. Rochette, S. Ayotte, and L. A. Rusch, "Analysis of the spectral efficiency of frequency-encoded OCDMA systems with incoherent sources," J. Lightwave Technol. 23, 1610-1619 (2005).
    [CrossRef]
  3. H. Fathallah, L. A. Rusch, and S. LaRochelle, "Passive optical fast frequency-hop CDMA communications system," J. Lightwave Technol. 17, 397-405 (1999).
    [CrossRef]
  4. S. Ayotte, M. Rochette, J. Magne, L. A. Rusch, S. LaRochelle, "Experimental verification and capacity prediction of FE-OCDMA using superimposed FBG," J. Lightwave Technol. 23, 724 - 731 (2005).
    [CrossRef]
  5. A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe and J. N. Sweetser, "Fibre Bragg grating based spectral encoder/ decoder for lightwave CDMA," Electron. Lett. 35, 1096-1097 (1999).
    [CrossRef]
  6. Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, "Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems," J. Lightwave Technol. 19, 1274-1281 (2001).
    [CrossRef]
  7. P. Wang, and T. Le-Ngoc, "2-D optical CDMA networks using MWPM double hard limiters and modified carrier-hopping prime sequence," J. Lightwave Technol. 23, 2902-2913 (2005).
    [CrossRef]
  8. J. E. McGeehan, S. M. R. Motaghian Nezam, P. Saghari, A. E. Willner, R. Omrani, and P. V. Kumar, "Experimental demonstration of OCDMA transmission using a three-dimensional (time-wavelength-polarization) codeset," J. Lightwave Technol. 23, 3282-3289 (2005).
    [CrossRef]
  9. M. Aljada and K. Alameh, "Wavelength-encoded OCDMA system using Opto-VLSI processors," Opt. Lett. 32, 1782-1784 (2007).
    [CrossRef] [PubMed]
  10. M. Aljada, R. Zheng, K. Alameh, and Y.-T. Lee, "Experimental demonstration of a tunable laser using an SOA and an Opto-VLSI Processor," Opt. Express,  15, 9666-9671 (2007).
    [CrossRef] [PubMed]
  11. M. Aljada and K. Alameh, "Passive and active optical bit-pattern recognition structures for multiwavelength optical packet switching networks," Opt. Express. 15, 6914-6925 (2007).
    [CrossRef] [PubMed]
  12. M. Aljada, K. Alameh, Y.-T. Lee, and I.-S. Chung, "High-speed (2.5Gbps) reconfigurable inter-chip optical interconnects using Opto-VLSI processors," Opt. Express. 14, 6823-6836 (2006).
    [CrossRef] [PubMed]
  13. M. Aljada, K. E. Alameh, and K. Al-Begain, "Opto-VLSI-based correlator architecture for multi-wavelength optical header recognition," J. Lightwave Technol. 24, 2779-2785 (2006).
    [CrossRef]
  14. I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, "Reconfigurable multilevel phase holograms for optical switches," IEEE Photon. Technol. Lett. 14, 801-803 (2002).
    [CrossRef]

2007 (3)

2006 (3)

2005 (4)

2002 (1)

I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, "Reconfigurable multilevel phase holograms for optical switches," IEEE Photon. Technol. Lett. 14, 801-803 (2002).
[CrossRef]

2001 (1)

1999 (2)

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe and J. N. Sweetser, "Fibre Bragg grating based spectral encoder/ decoder for lightwave CDMA," Electron. Lett. 35, 1096-1097 (1999).
[CrossRef]

H. Fathallah, L. A. Rusch, and S. LaRochelle, "Passive optical fast frequency-hop CDMA communications system," J. Lightwave Technol. 17, 397-405 (1999).
[CrossRef]

Alameh, K.

M. Aljada and K. Alameh, "Passive and active optical bit-pattern recognition structures for multiwavelength optical packet switching networks," Opt. Express. 15, 6914-6925 (2007).
[CrossRef] [PubMed]

M. Aljada and K. Alameh, "Wavelength-encoded OCDMA system using Opto-VLSI processors," Opt. Lett. 32, 1782-1784 (2007).
[CrossRef] [PubMed]

M. Aljada, R. Zheng, K. Alameh, and Y.-T. Lee, "Experimental demonstration of a tunable laser using an SOA and an Opto-VLSI Processor," Opt. Express,  15, 9666-9671 (2007).
[CrossRef] [PubMed]

M. Aljada, K. Alameh, Y.-T. Lee, and I.-S. Chung, "High-speed (2.5Gbps) reconfigurable inter-chip optical interconnects using Opto-VLSI processors," Opt. Express. 14, 6823-6836 (2006).
[CrossRef] [PubMed]

Alameh, K. E.

Al-Begain, K.

Aljada, M.

Ayotte, S.

Chung, I.-S.

M. Aljada, K. Alameh, Y.-T. Lee, and I.-S. Chung, "High-speed (2.5Gbps) reconfigurable inter-chip optical interconnects using Opto-VLSI processors," Opt. Express. 14, 6823-6836 (2006).
[CrossRef] [PubMed]

Crossland, W. A.

I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, "Reconfigurable multilevel phase holograms for optical switches," IEEE Photon. Technol. Lett. 14, 801-803 (2002).
[CrossRef]

Fathallah, H.

Fsaifes, I.

Gallion, P.

Ghafouri-Shiraz, H.

Grunnet-Jepsen, A.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe and J. N. Sweetser, "Fibre Bragg grating based spectral encoder/ decoder for lightwave CDMA," Electron. Lett. 35, 1096-1097 (1999).
[CrossRef]

Johnson, A. E.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe and J. N. Sweetser, "Fibre Bragg grating based spectral encoder/ decoder for lightwave CDMA," Electron. Lett. 35, 1096-1097 (1999).
[CrossRef]

Kumar, P. V.

LaRochelle, S.

Lee, Y.-T.

M. Aljada, R. Zheng, K. Alameh, and Y.-T. Lee, "Experimental demonstration of a tunable laser using an SOA and an Opto-VLSI Processor," Opt. Express,  15, 9666-9671 (2007).
[CrossRef] [PubMed]

M. Aljada, K. Alameh, Y.-T. Lee, and I.-S. Chung, "High-speed (2.5Gbps) reconfigurable inter-chip optical interconnects using Opto-VLSI processors," Opt. Express. 14, 6823-6836 (2006).
[CrossRef] [PubMed]

Le-Ngoc, T.

Lepers, C.

Magne, J.

Maniloff, E. S.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe and J. N. Sweetser, "Fibre Bragg grating based spectral encoder/ decoder for lightwave CDMA," Electron. Lett. 35, 1096-1097 (1999).
[CrossRef]

Manolis, I. G.

I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, "Reconfigurable multilevel phase holograms for optical switches," IEEE Photon. Technol. Lett. 14, 801-803 (2002).
[CrossRef]

McGeehan, J. E.

Mossberg, T. W.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe and J. N. Sweetser, "Fibre Bragg grating based spectral encoder/ decoder for lightwave CDMA," Electron. Lett. 35, 1096-1097 (1999).
[CrossRef]

Motaghian Nezam, S. M. R.

Munroe, M. J.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe and J. N. Sweetser, "Fibre Bragg grating based spectral encoder/ decoder for lightwave CDMA," Electron. Lett. 35, 1096-1097 (1999).
[CrossRef]

Obaton, A.-F.

Omrani, R.

Redmond, M. M.

I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, "Reconfigurable multilevel phase holograms for optical switches," IEEE Photon. Technol. Lett. 14, 801-803 (2002).
[CrossRef]

Rochette, M.

Rusch, L. A.

Rusch, L.A.

Saghari, P.

Shalaby, H. M. H.

Sweetser, J. N.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe and J. N. Sweetser, "Fibre Bragg grating based spectral encoder/ decoder for lightwave CDMA," Electron. Lett. 35, 1096-1097 (1999).
[CrossRef]

Wang, P.

Wei, Z.

Wilkinson, T. D.

I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, "Reconfigurable multilevel phase holograms for optical switches," IEEE Photon. Technol. Lett. 14, 801-803 (2002).
[CrossRef]

Willner, A. E.

Zheng, R.

Electron. Lett. (1)

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe and J. N. Sweetser, "Fibre Bragg grating based spectral encoder/ decoder for lightwave CDMA," Electron. Lett. 35, 1096-1097 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, "Reconfigurable multilevel phase holograms for optical switches," IEEE Photon. Technol. Lett. 14, 801-803 (2002).
[CrossRef]

J. Lightwave Technol. (8)

M. Aljada, K. E. Alameh, and K. Al-Begain, "Opto-VLSI-based correlator architecture for multi-wavelength optical header recognition," J. Lightwave Technol. 24, 2779-2785 (2006).
[CrossRef]

Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, "Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems," J. Lightwave Technol. 19, 1274-1281 (2001).
[CrossRef]

P. Wang, and T. Le-Ngoc, "2-D optical CDMA networks using MWPM double hard limiters and modified carrier-hopping prime sequence," J. Lightwave Technol. 23, 2902-2913 (2005).
[CrossRef]

J. E. McGeehan, S. M. R. Motaghian Nezam, P. Saghari, A. E. Willner, R. Omrani, and P. V. Kumar, "Experimental demonstration of OCDMA transmission using a three-dimensional (time-wavelength-polarization) codeset," J. Lightwave Technol. 23, 3282-3289 (2005).
[CrossRef]

I. Fsaifes, C. Lepers, A.-F. Obaton, and P. Gallion, "DS-OCDMA encoder/decoder performance analysis using optical low-coherence reflectometry," J. Lightwave Technol. 24, 3121-3128 (2006).
[CrossRef]

M. Rochette, S. Ayotte, and L. A. Rusch, "Analysis of the spectral efficiency of frequency-encoded OCDMA systems with incoherent sources," J. Lightwave Technol. 23, 1610-1619 (2005).
[CrossRef]

H. Fathallah, L. A. Rusch, and S. LaRochelle, "Passive optical fast frequency-hop CDMA communications system," J. Lightwave Technol. 17, 397-405 (1999).
[CrossRef]

S. Ayotte, M. Rochette, J. Magne, L. A. Rusch, S. LaRochelle, "Experimental verification and capacity prediction of FE-OCDMA using superimposed FBG," J. Lightwave Technol. 23, 724 - 731 (2005).
[CrossRef]

Opt. Express (1)

Opt. Express. (2)

M. Aljada and K. Alameh, "Passive and active optical bit-pattern recognition structures for multiwavelength optical packet switching networks," Opt. Express. 15, 6914-6925 (2007).
[CrossRef] [PubMed]

M. Aljada, K. Alameh, Y.-T. Lee, and I.-S. Chung, "High-speed (2.5Gbps) reconfigurable inter-chip optical interconnects using Opto-VLSI processors," Opt. Express. 14, 6823-6836 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Opto-VLSI processor and LC cell structure design.(b) phase level versus pixel number for blazed grating synthesis, (c) corresponding steering phase holograms of the various pixel blocks, and (d) principle of beam steering using an Opto-VLSI processor.

Fig.2.
Fig.2.

Experiment setup for demonstrating the reconfigurable 1D OCDMA structure.

Fig. 3.
Fig. 3.

Photograph of the encoder setup used to demonstrate the principle of the FE-OCDMA structure. (b) ASE spectrum generated by the SOA. Driving current=400 mA.

Fig. 4.
Fig. 4.

(a). schematic of the phase holograms loaded on the 1st Opto-VLSI processor to generate a codeword employing λ1, λ2, λ4, λ5, and λ8. (b). Measured spectrum of the coupled back signal. (c). Received signal with a high-peak autocorrelation function. (d) The eye diagram of an error-free transmission.

Fig. 5.
Fig. 5.

(a). Phase holograms loaded on 1st Opto-VLSI processor to generate a codeword employing λ1, λ3, λ6, λ7, and λ8. (b) Measured spectrum of coupled-back signal. (c) Received signal exhibiting a low-peak cross-correlation function.

Metrics