Abstract

A simple and general approach for controlling optical anisotropy of nanostructured semiconductors is reported. Our design involves the fabrication of liquid crystal devices with built-in semiconductor nanotubes. Quite interestingly, it is found that semiconductor nanotubes can be well aligned along the orientation of liquid crystals molecules automatically, resulting in a very large emission anisotropy with the degree of polarization up to 72%. This intriguing result manifests a way to obtain well aligned semiconductor nanotubes and the emission anisotropy can be easily manipulated by an external bias. The ability to well control the emission anisotropy should open up new opportunities for nanostructured semiconductors, including optical filters, polarized light emitting diodes, flat panel displays, and many other chromogenic smart devices.

©2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Liquid crystal display device for total reflection switching with fluorescent dye addition

Tsuneo Urisu, Takayuki Sugeta, and Yoshihiko Mizushima
Appl. Opt. 20(4) 633-635 (1981)

Dipole radiation within one-dimensional anisotropic microcavities: a simulation method

Lieven Penninck, Patrick De Visschere, Jeroen Beeckman, and Kristiaan Neyts
Opt. Express 19(19) 18558-18576 (2011)

Strain dependent anisotropy in photoluminescence of heteroepitaxial nonpolar a-plane ZnO layers

Jingwen Chen, Jun Zhang, Jiangnan Dai, Feng Wu, Shuai Wang, Hanling Long, Renli Liang, Jin Xu, Changqing Chen, Zhiwu Tang, Yunbin He, Mingkai Li, and Zhechuan Feng
Opt. Mater. Express 7(11) 3944-3951 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Materials Today 9, 18–27 (2006).
    [Crossref]
  2. P. J. Pauzauskie and P. Yang, “Nanowire photonics” Materials Today 9, 36–45 (2006).
    [Crossref]
  3. V. L. Colvin, M. C. Schlamp, and A. P. Alivisato, “Light-emitting-diodes made from cadmium selenidenanocrystals and a semiconducting polymer,” Nature 370, 354–357 (1994).
    [Crossref]
  4. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
    [Crossref] [PubMed]
  5. D. N. Davydov, P. A. Sattari, D. AlMawlawi, A. Osika, T. L. Haslett, and M. Moskovits, “Field emitters based on porous aluminum oxide templates,” J. Appl. Phys. 86, 3983–3987 (1999).
    [Crossref]
  6. W. A. de Heer, A. Chatelain, and D. Ugrte, “A carbon nanotube field-emission electron source,” Science 270, 1179–1180 (1995).
    [Crossref]
  7. D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, “A single-electron transistor made from a cadmium selenide nanocrystal,” Nature 389, 699–701 (1997).
    [Crossref]
  8. M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-effect transistors based on single semiconducting oxide nanobelts,” J. Phys. Chem. B 107, 659–663 (2003).
    [Crossref]
  9. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes - the route toward applications.,” Science 297, 787–792 (2002).
    [Crossref] [PubMed]
  10. B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner, “Electroluminescence from CdSe quantum-dot polymer composites,” Appl. Phys. Lett. 66, 1316–1318 (1995).
    [Crossref]
  11. C. J. Wang, M. Shim, and P. Guyot-Sionnest, “Electrochromic nanocrystal quantum dots,” Science 291, 390–2392 (2001).
    [Crossref]
  12. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).
  13. P. J. Collings and M. Hird, Introduction to Liquid Crystals (Taylor & Francis, London, 1997).
    [Crossref]
  14. M. D. Lynch and D. L. Patrick, “Organizing carbon nanotubes with liquid crystals,” Nano Lett. 2, 1197–1201 (2002).
    [Crossref]
  15. X. C. Jiang, B. Mayer, T. Herricks, and Y. N. Xia, “Direct synthesis of Se@dSe nanocables and CdSe anotubes by reacting cadmium salts with Se nanowires,” Adv. Mater. 15, 1740–1743 (2003).
    [Crossref]
  16. M. Artemyev, B. Moller, and U. Woggon, “Unidirectional alignment of CdSe nanorods,” Nano Lett. 3, 509–512 (2003).
    [Crossref]
  17. J. Q. Hu, Y. Bando, J. H. Zhan, M. Y. Liao, D. Golberg, X. L. Yuan, and T. Sekiguchi, “Single-crystalline nanotubes of IIB-VI semiconductors,” Appl. Phys. Lett. 87, 113107 (2005).
    [Crossref]
  18. L. Qu, G. Shi, X. Wu, and B. Fan, “Facile route to silver nanotubes,” Adv. Mater. 16, 1200–1203 (2004).
    [Crossref]
  19. D. K. Jonathan, D. H. Robert, P. Dean, J. S. Michael, J. B. Charles, and R. M. Charles, “Electrochemical fabrication of cadmium chalcogenide microdiode arrays,” Chem. Mater. 5, 902–904 (1993).
    [Crossref]
  20. S. Yochelis and G. Hodes, “Nanocrystalline CdSe formation by direct reaction between Cd ions and selenosulfate solution,” Chem. Mater. 16, 2740–2744 (2004).
    [Crossref]
  21. D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, Handbook of Liquid Crystals (WILEY-VCH, Weinheim, 1998).
  22. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
    [Crossref] [PubMed]
  23. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-field-induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys.Rev.Lett. 47, 1411–1414 (1981).
    [Crossref]
  24. I. Dierking, G. Scalia, P. Morales, and D. LeClere, “Aligning and reorienting carbon nanotubes with nematic liquid crystals,” Adv. Mater. 16, 865–869 (2004).
    [Crossref]
  25. K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods” Appl. Phys. Lett. 89, 103107 (2006).
    [Crossref]
  26. I. Dierking, G. Scalia, and P. Morales, “Liquid crystal-carbon nanotube dispersions,” J. Appl. Phys. 97, 44309 (2005).
    [Crossref]

2006 (3)

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Materials Today 9, 18–27 (2006).
[Crossref]

P. J. Pauzauskie and P. Yang, “Nanowire photonics” Materials Today 9, 36–45 (2006).
[Crossref]

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods” Appl. Phys. Lett. 89, 103107 (2006).
[Crossref]

2005 (2)

I. Dierking, G. Scalia, and P. Morales, “Liquid crystal-carbon nanotube dispersions,” J. Appl. Phys. 97, 44309 (2005).
[Crossref]

J. Q. Hu, Y. Bando, J. H. Zhan, M. Y. Liao, D. Golberg, X. L. Yuan, and T. Sekiguchi, “Single-crystalline nanotubes of IIB-VI semiconductors,” Appl. Phys. Lett. 87, 113107 (2005).
[Crossref]

2004 (3)

L. Qu, G. Shi, X. Wu, and B. Fan, “Facile route to silver nanotubes,” Adv. Mater. 16, 1200–1203 (2004).
[Crossref]

S. Yochelis and G. Hodes, “Nanocrystalline CdSe formation by direct reaction between Cd ions and selenosulfate solution,” Chem. Mater. 16, 2740–2744 (2004).
[Crossref]

I. Dierking, G. Scalia, P. Morales, and D. LeClere, “Aligning and reorienting carbon nanotubes with nematic liquid crystals,” Adv. Mater. 16, 865–869 (2004).
[Crossref]

2003 (3)

X. C. Jiang, B. Mayer, T. Herricks, and Y. N. Xia, “Direct synthesis of Se@dSe nanocables and CdSe anotubes by reacting cadmium salts with Se nanowires,” Adv. Mater. 15, 1740–1743 (2003).
[Crossref]

M. Artemyev, B. Moller, and U. Woggon, “Unidirectional alignment of CdSe nanorods,” Nano Lett. 3, 509–512 (2003).
[Crossref]

M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-effect transistors based on single semiconducting oxide nanobelts,” J. Phys. Chem. B 107, 659–663 (2003).
[Crossref]

2002 (2)

R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes - the route toward applications.,” Science 297, 787–792 (2002).
[Crossref] [PubMed]

M. D. Lynch and D. L. Patrick, “Organizing carbon nanotubes with liquid crystals,” Nano Lett. 2, 1197–1201 (2002).
[Crossref]

2001 (2)

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[Crossref] [PubMed]

C. J. Wang, M. Shim, and P. Guyot-Sionnest, “Electrochromic nanocrystal quantum dots,” Science 291, 390–2392 (2001).
[Crossref]

2000 (1)

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

1999 (1)

D. N. Davydov, P. A. Sattari, D. AlMawlawi, A. Osika, T. L. Haslett, and M. Moskovits, “Field emitters based on porous aluminum oxide templates,” J. Appl. Phys. 86, 3983–3987 (1999).
[Crossref]

1997 (1)

D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, “A single-electron transistor made from a cadmium selenide nanocrystal,” Nature 389, 699–701 (1997).
[Crossref]

1995 (2)

B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner, “Electroluminescence from CdSe quantum-dot polymer composites,” Appl. Phys. Lett. 66, 1316–1318 (1995).
[Crossref]

W. A. de Heer, A. Chatelain, and D. Ugrte, “A carbon nanotube field-emission electron source,” Science 270, 1179–1180 (1995).
[Crossref]

1994 (1)

V. L. Colvin, M. C. Schlamp, and A. P. Alivisato, “Light-emitting-diodes made from cadmium selenidenanocrystals and a semiconducting polymer,” Nature 370, 354–357 (1994).
[Crossref]

1993 (1)

D. K. Jonathan, D. H. Robert, P. Dean, J. S. Michael, J. B. Charles, and R. M. Charles, “Electrochemical fabrication of cadmium chalcogenide microdiode arrays,” Chem. Mater. 5, 902–904 (1993).
[Crossref]

1981 (1)

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-field-induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys.Rev.Lett. 47, 1411–1414 (1981).
[Crossref]

Alivisato, A. P.

V. L. Colvin, M. C. Schlamp, and A. P. Alivisato, “Light-emitting-diodes made from cadmium selenidenanocrystals and a semiconducting polymer,” Nature 370, 354–357 (1994).
[Crossref]

Alivisatos, A. P.

D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, “A single-electron transistor made from a cadmium selenide nanocrystal,” Nature 389, 699–701 (1997).
[Crossref]

AlMawlawi, D.

D. N. Davydov, P. A. Sattari, D. AlMawlawi, A. Osika, T. L. Haslett, and M. Moskovits, “Field emitters based on porous aluminum oxide templates,” J. Appl. Phys. 86, 3983–3987 (1999).
[Crossref]

Arakelian, S. M.

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-field-induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys.Rev.Lett. 47, 1411–1414 (1981).
[Crossref]

Arnold, M. S.

M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-effect transistors based on single semiconducting oxide nanobelts,” J. Phys. Chem. B 107, 659–663 (2003).
[Crossref]

Artemyev, M.

M. Artemyev, B. Moller, and U. Woggon, “Unidirectional alignment of CdSe nanorods,” Nano Lett. 3, 509–512 (2003).
[Crossref]

Avouris, P.

M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-effect transistors based on single semiconducting oxide nanobelts,” J. Phys. Chem. B 107, 659–663 (2003).
[Crossref]

Bando, Y.

J. Q. Hu, Y. Bando, J. H. Zhan, M. Y. Liao, D. Golberg, X. L. Yuan, and T. Sekiguchi, “Single-crystalline nanotubes of IIB-VI semiconductors,” Appl. Phys. Lett. 87, 113107 (2005).
[Crossref]

Baughman, R. H.

R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes - the route toward applications.,” Science 297, 787–792 (2002).
[Crossref] [PubMed]

Bawendi, M. G.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner, “Electroluminescence from CdSe quantum-dot polymer composites,” Appl. Phys. Lett. 66, 1316–1318 (1995).
[Crossref]

Chao, C. Y.

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods” Appl. Phys. Lett. 89, 103107 (2006).
[Crossref]

Charles, J. B.

D. K. Jonathan, D. H. Robert, P. Dean, J. S. Michael, J. B. Charles, and R. M. Charles, “Electrochemical fabrication of cadmium chalcogenide microdiode arrays,” Chem. Mater. 5, 902–904 (1993).
[Crossref]

Charles, R. M.

D. K. Jonathan, D. H. Robert, P. Dean, J. S. Michael, J. B. Charles, and R. M. Charles, “Electrochemical fabrication of cadmium chalcogenide microdiode arrays,” Chem. Mater. 5, 902–904 (1993).
[Crossref]

Chatelain, A.

W. A. de Heer, A. Chatelain, and D. Ugrte, “A carbon nanotube field-emission electron source,” Science 270, 1179–1180 (1995).
[Crossref]

Chen, C. C.

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods” Appl. Phys. Lett. 89, 103107 (2006).
[Crossref]

Chen, Y. F.

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods” Appl. Phys. Lett. 89, 103107 (2006).
[Crossref]

Chu, K. C.

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods” Appl. Phys. Lett. 89, 103107 (2006).
[Crossref]

Collings, P. J.

P. J. Collings and M. Hird, Introduction to Liquid Crystals (Taylor & Francis, London, 1997).
[Crossref]

Colvin, V. L.

V. L. Colvin, M. C. Schlamp, and A. P. Alivisato, “Light-emitting-diodes made from cadmium selenidenanocrystals and a semiconducting polymer,” Nature 370, 354–357 (1994).
[Crossref]

Cui, Y.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[Crossref] [PubMed]

Dabbousi, B. O.

B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner, “Electroluminescence from CdSe quantum-dot polymer composites,” Appl. Phys. Lett. 66, 1316–1318 (1995).
[Crossref]

Davydov, D. N.

D. N. Davydov, P. A. Sattari, D. AlMawlawi, A. Osika, T. L. Haslett, and M. Moskovits, “Field emitters based on porous aluminum oxide templates,” J. Appl. Phys. 86, 3983–3987 (1999).
[Crossref]

de Gennes, P. G.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).

de Heer, W. A.

R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes - the route toward applications.,” Science 297, 787–792 (2002).
[Crossref] [PubMed]

W. A. de Heer, A. Chatelain, and D. Ugrte, “A carbon nanotube field-emission electron source,” Science 270, 1179–1180 (1995).
[Crossref]

Dean, P.

D. K. Jonathan, D. H. Robert, P. Dean, J. S. Michael, J. B. Charles, and R. M. Charles, “Electrochemical fabrication of cadmium chalcogenide microdiode arrays,” Chem. Mater. 5, 902–904 (1993).
[Crossref]

Demus, D.

D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, Handbook of Liquid Crystals (WILEY-VCH, Weinheim, 1998).

Dierking, I.

I. Dierking, G. Scalia, and P. Morales, “Liquid crystal-carbon nanotube dispersions,” J. Appl. Phys. 97, 44309 (2005).
[Crossref]

I. Dierking, G. Scalia, P. Morales, and D. LeClere, “Aligning and reorienting carbon nanotubes with nematic liquid crystals,” Adv. Mater. 16, 865–869 (2004).
[Crossref]

Duan, X.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[Crossref] [PubMed]

Durbin, S. D.

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-field-induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys.Rev.Lett. 47, 1411–1414 (1981).
[Crossref]

Eisler, H. J.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

Fan, B.

L. Qu, G. Shi, X. Wu, and B. Fan, “Facile route to silver nanotubes,” Adv. Mater. 16, 1200–1203 (2004).
[Crossref]

Golberg, D.

J. Q. Hu, Y. Bando, J. H. Zhan, M. Y. Liao, D. Golberg, X. L. Yuan, and T. Sekiguchi, “Single-crystalline nanotubes of IIB-VI semiconductors,” Appl. Phys. Lett. 87, 113107 (2005).
[Crossref]

Goodby, J.

D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, Handbook of Liquid Crystals (WILEY-VCH, Weinheim, 1998).

Gray, G. W.

D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, Handbook of Liquid Crystals (WILEY-VCH, Weinheim, 1998).

Gudiksen, M. S.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[Crossref] [PubMed]

Guyot-Sionnest, P.

C. J. Wang, M. Shim, and P. Guyot-Sionnest, “Electrochromic nanocrystal quantum dots,” Science 291, 390–2392 (2001).
[Crossref]

Haslett, T. L.

D. N. Davydov, P. A. Sattari, D. AlMawlawi, A. Osika, T. L. Haslett, and M. Moskovits, “Field emitters based on porous aluminum oxide templates,” J. Appl. Phys. 86, 3983–3987 (1999).
[Crossref]

Herricks, T.

X. C. Jiang, B. Mayer, T. Herricks, and Y. N. Xia, “Direct synthesis of Se@dSe nanocables and CdSe anotubes by reacting cadmium salts with Se nanowires,” Adv. Mater. 15, 1740–1743 (2003).
[Crossref]

Hird, M.

P. J. Collings and M. Hird, Introduction to Liquid Crystals (Taylor & Francis, London, 1997).
[Crossref]

Hodes, G.

S. Yochelis and G. Hodes, “Nanocrystalline CdSe formation by direct reaction between Cd ions and selenosulfate solution,” Chem. Mater. 16, 2740–2744 (2004).
[Crossref]

Hollingsworth, J. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

Hu, J. Q.

J. Q. Hu, Y. Bando, J. H. Zhan, M. Y. Liao, D. Golberg, X. L. Yuan, and T. Sekiguchi, “Single-crystalline nanotubes of IIB-VI semiconductors,” Appl. Phys. Lett. 87, 113107 (2005).
[Crossref]

Jiang, X. C.

X. C. Jiang, B. Mayer, T. Herricks, and Y. N. Xia, “Direct synthesis of Se@dSe nanocables and CdSe anotubes by reacting cadmium salts with Se nanowires,” Adv. Mater. 15, 1740–1743 (2003).
[Crossref]

Jonathan, D. K.

D. K. Jonathan, D. H. Robert, P. Dean, J. S. Michael, J. B. Charles, and R. M. Charles, “Electrochemical fabrication of cadmium chalcogenide microdiode arrays,” Chem. Mater. 5, 902–904 (1993).
[Crossref]

Klein, D. L.

D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, “A single-electron transistor made from a cadmium selenide nanocrystal,” Nature 389, 699–701 (1997).
[Crossref]

Klimov, V. I.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

LeClere, D.

I. Dierking, G. Scalia, P. Morales, and D. LeClere, “Aligning and reorienting carbon nanotubes with nematic liquid crystals,” Adv. Mater. 16, 865–869 (2004).
[Crossref]

Li, Y.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Materials Today 9, 18–27 (2006).
[Crossref]

Liao, M. Y.

J. Q. Hu, Y. Bando, J. H. Zhan, M. Y. Liao, D. Golberg, X. L. Yuan, and T. Sekiguchi, “Single-crystalline nanotubes of IIB-VI semiconductors,” Appl. Phys. Lett. 87, 113107 (2005).
[Crossref]

Lieber, C. M.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Materials Today 9, 18–27 (2006).
[Crossref]

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[Crossref] [PubMed]

Lim, A. K. L.

D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, “A single-electron transistor made from a cadmium selenide nanocrystal,” Nature 389, 699–701 (1997).
[Crossref]

Lynch, M. D.

M. D. Lynch and D. L. Patrick, “Organizing carbon nanotubes with liquid crystals,” Nano Lett. 2, 1197–1201 (2002).
[Crossref]

Malko, A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

Mayer, B.

X. C. Jiang, B. Mayer, T. Herricks, and Y. N. Xia, “Direct synthesis of Se@dSe nanocables and CdSe anotubes by reacting cadmium salts with Se nanowires,” Adv. Mater. 15, 1740–1743 (2003).
[Crossref]

McEuen, P. L.

D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, “A single-electron transistor made from a cadmium selenide nanocrystal,” Nature 389, 699–701 (1997).
[Crossref]

Michael, J. S.

D. K. Jonathan, D. H. Robert, P. Dean, J. S. Michael, J. B. Charles, and R. M. Charles, “Electrochemical fabrication of cadmium chalcogenide microdiode arrays,” Chem. Mater. 5, 902–904 (1993).
[Crossref]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

Moller, B.

M. Artemyev, B. Moller, and U. Woggon, “Unidirectional alignment of CdSe nanorods,” Nano Lett. 3, 509–512 (2003).
[Crossref]

Morales, P.

I. Dierking, G. Scalia, and P. Morales, “Liquid crystal-carbon nanotube dispersions,” J. Appl. Phys. 97, 44309 (2005).
[Crossref]

I. Dierking, G. Scalia, P. Morales, and D. LeClere, “Aligning and reorienting carbon nanotubes with nematic liquid crystals,” Adv. Mater. 16, 865–869 (2004).
[Crossref]

Moskovits, M.

D. N. Davydov, P. A. Sattari, D. AlMawlawi, A. Osika, T. L. Haslett, and M. Moskovits, “Field emitters based on porous aluminum oxide templates,” J. Appl. Phys. 86, 3983–3987 (1999).
[Crossref]

Onitsuka, O.

B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner, “Electroluminescence from CdSe quantum-dot polymer composites,” Appl. Phys. Lett. 66, 1316–1318 (1995).
[Crossref]

Osika, A.

D. N. Davydov, P. A. Sattari, D. AlMawlawi, A. Osika, T. L. Haslett, and M. Moskovits, “Field emitters based on porous aluminum oxide templates,” J. Appl. Phys. 86, 3983–3987 (1999).
[Crossref]

Pan, Z. W.

M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-effect transistors based on single semiconducting oxide nanobelts,” J. Phys. Chem. B 107, 659–663 (2003).
[Crossref]

Patrick, D. L.

M. D. Lynch and D. L. Patrick, “Organizing carbon nanotubes with liquid crystals,” Nano Lett. 2, 1197–1201 (2002).
[Crossref]

Pauzauskie, P. J.

P. J. Pauzauskie and P. Yang, “Nanowire photonics” Materials Today 9, 36–45 (2006).
[Crossref]

Prost, J.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).

Qian, F.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Materials Today 9, 18–27 (2006).
[Crossref]

Qu, L.

L. Qu, G. Shi, X. Wu, and B. Fan, “Facile route to silver nanotubes,” Adv. Mater. 16, 1200–1203 (2004).
[Crossref]

Robert, D. H.

D. K. Jonathan, D. H. Robert, P. Dean, J. S. Michael, J. B. Charles, and R. M. Charles, “Electrochemical fabrication of cadmium chalcogenide microdiode arrays,” Chem. Mater. 5, 902–904 (1993).
[Crossref]

Roth, R.

D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, “A single-electron transistor made from a cadmium selenide nanocrystal,” Nature 389, 699–701 (1997).
[Crossref]

Rubner, M. F.

B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner, “Electroluminescence from CdSe quantum-dot polymer composites,” Appl. Phys. Lett. 66, 1316–1318 (1995).
[Crossref]

Sattari, P. A.

D. N. Davydov, P. A. Sattari, D. AlMawlawi, A. Osika, T. L. Haslett, and M. Moskovits, “Field emitters based on porous aluminum oxide templates,” J. Appl. Phys. 86, 3983–3987 (1999).
[Crossref]

Scalia, G.

I. Dierking, G. Scalia, and P. Morales, “Liquid crystal-carbon nanotube dispersions,” J. Appl. Phys. 97, 44309 (2005).
[Crossref]

I. Dierking, G. Scalia, P. Morales, and D. LeClere, “Aligning and reorienting carbon nanotubes with nematic liquid crystals,” Adv. Mater. 16, 865–869 (2004).
[Crossref]

Schlamp, M. C.

V. L. Colvin, M. C. Schlamp, and A. P. Alivisato, “Light-emitting-diodes made from cadmium selenidenanocrystals and a semiconducting polymer,” Nature 370, 354–357 (1994).
[Crossref]

Sekiguchi, T.

J. Q. Hu, Y. Bando, J. H. Zhan, M. Y. Liao, D. Golberg, X. L. Yuan, and T. Sekiguchi, “Single-crystalline nanotubes of IIB-VI semiconductors,” Appl. Phys. Lett. 87, 113107 (2005).
[Crossref]

Shen, Y. R.

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-field-induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys.Rev.Lett. 47, 1411–1414 (1981).
[Crossref]

Shi, G.

L. Qu, G. Shi, X. Wu, and B. Fan, “Facile route to silver nanotubes,” Adv. Mater. 16, 1200–1203 (2004).
[Crossref]

Shim, M.

C. J. Wang, M. Shim, and P. Guyot-Sionnest, “Electrochromic nanocrystal quantum dots,” Science 291, 390–2392 (2001).
[Crossref]

Spiess, H. W.

D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, Handbook of Liquid Crystals (WILEY-VCH, Weinheim, 1998).

Ugrte, D.

W. A. de Heer, A. Chatelain, and D. Ugrte, “A carbon nanotube field-emission electron source,” Science 270, 1179–1180 (1995).
[Crossref]

Vill, V.

D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, Handbook of Liquid Crystals (WILEY-VCH, Weinheim, 1998).

Wang, C. J.

C. J. Wang, M. Shim, and P. Guyot-Sionnest, “Electrochromic nanocrystal quantum dots,” Science 291, 390–2392 (2001).
[Crossref]

Wang, J.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[Crossref] [PubMed]

Wang, Z. L.

M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-effect transistors based on single semiconducting oxide nanobelts,” J. Phys. Chem. B 107, 659–663 (2003).
[Crossref]

Woggon, U.

M. Artemyev, B. Moller, and U. Woggon, “Unidirectional alignment of CdSe nanorods,” Nano Lett. 3, 509–512 (2003).
[Crossref]

Wu, X.

L. Qu, G. Shi, X. Wu, and B. Fan, “Facile route to silver nanotubes,” Adv. Mater. 16, 1200–1203 (2004).
[Crossref]

Wu, Y. C.

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods” Appl. Phys. Lett. 89, 103107 (2006).
[Crossref]

Xia, Y. N.

X. C. Jiang, B. Mayer, T. Herricks, and Y. N. Xia, “Direct synthesis of Se@dSe nanocables and CdSe anotubes by reacting cadmium salts with Se nanowires,” Adv. Mater. 15, 1740–1743 (2003).
[Crossref]

Xiang, J.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Materials Today 9, 18–27 (2006).
[Crossref]

Xu, S.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

Yang, P.

P. J. Pauzauskie and P. Yang, “Nanowire photonics” Materials Today 9, 36–45 (2006).
[Crossref]

Yochelis, S.

S. Yochelis and G. Hodes, “Nanocrystalline CdSe formation by direct reaction between Cd ions and selenosulfate solution,” Chem. Mater. 16, 2740–2744 (2004).
[Crossref]

Yuan, X. L.

J. Q. Hu, Y. Bando, J. H. Zhan, M. Y. Liao, D. Golberg, X. L. Yuan, and T. Sekiguchi, “Single-crystalline nanotubes of IIB-VI semiconductors,” Appl. Phys. Lett. 87, 113107 (2005).
[Crossref]

Zakhidov, A. A.

R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes - the route toward applications.,” Science 297, 787–792 (2002).
[Crossref] [PubMed]

Zhan, J. H.

J. Q. Hu, Y. Bando, J. H. Zhan, M. Y. Liao, D. Golberg, X. L. Yuan, and T. Sekiguchi, “Single-crystalline nanotubes of IIB-VI semiconductors,” Appl. Phys. Lett. 87, 113107 (2005).
[Crossref]

Adv. Mater. (3)

X. C. Jiang, B. Mayer, T. Herricks, and Y. N. Xia, “Direct synthesis of Se@dSe nanocables and CdSe anotubes by reacting cadmium salts with Se nanowires,” Adv. Mater. 15, 1740–1743 (2003).
[Crossref]

L. Qu, G. Shi, X. Wu, and B. Fan, “Facile route to silver nanotubes,” Adv. Mater. 16, 1200–1203 (2004).
[Crossref]

I. Dierking, G. Scalia, P. Morales, and D. LeClere, “Aligning and reorienting carbon nanotubes with nematic liquid crystals,” Adv. Mater. 16, 865–869 (2004).
[Crossref]

Appl. Phys. Lett. (3)

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods” Appl. Phys. Lett. 89, 103107 (2006).
[Crossref]

J. Q. Hu, Y. Bando, J. H. Zhan, M. Y. Liao, D. Golberg, X. L. Yuan, and T. Sekiguchi, “Single-crystalline nanotubes of IIB-VI semiconductors,” Appl. Phys. Lett. 87, 113107 (2005).
[Crossref]

B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner, “Electroluminescence from CdSe quantum-dot polymer composites,” Appl. Phys. Lett. 66, 1316–1318 (1995).
[Crossref]

Chem. Mater. (2)

D. K. Jonathan, D. H. Robert, P. Dean, J. S. Michael, J. B. Charles, and R. M. Charles, “Electrochemical fabrication of cadmium chalcogenide microdiode arrays,” Chem. Mater. 5, 902–904 (1993).
[Crossref]

S. Yochelis and G. Hodes, “Nanocrystalline CdSe formation by direct reaction between Cd ions and selenosulfate solution,” Chem. Mater. 16, 2740–2744 (2004).
[Crossref]

J. Appl. Phys. (2)

I. Dierking, G. Scalia, and P. Morales, “Liquid crystal-carbon nanotube dispersions,” J. Appl. Phys. 97, 44309 (2005).
[Crossref]

D. N. Davydov, P. A. Sattari, D. AlMawlawi, A. Osika, T. L. Haslett, and M. Moskovits, “Field emitters based on porous aluminum oxide templates,” J. Appl. Phys. 86, 3983–3987 (1999).
[Crossref]

J. Phys. Chem. B (1)

M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-effect transistors based on single semiconducting oxide nanobelts,” J. Phys. Chem. B 107, 659–663 (2003).
[Crossref]

Materials Today (2)

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Materials Today 9, 18–27 (2006).
[Crossref]

P. J. Pauzauskie and P. Yang, “Nanowire photonics” Materials Today 9, 36–45 (2006).
[Crossref]

Nano Lett. (2)

M. Artemyev, B. Moller, and U. Woggon, “Unidirectional alignment of CdSe nanorods,” Nano Lett. 3, 509–512 (2003).
[Crossref]

M. D. Lynch and D. L. Patrick, “Organizing carbon nanotubes with liquid crystals,” Nano Lett. 2, 1197–1201 (2002).
[Crossref]

Nature (2)

D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, “A single-electron transistor made from a cadmium selenide nanocrystal,” Nature 389, 699–701 (1997).
[Crossref]

V. L. Colvin, M. C. Schlamp, and A. P. Alivisato, “Light-emitting-diodes made from cadmium selenidenanocrystals and a semiconducting polymer,” Nature 370, 354–357 (1994).
[Crossref]

Phys.Rev.Lett. (1)

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-field-induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys.Rev.Lett. 47, 1411–1414 (1981).
[Crossref]

Science (5)

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[Crossref] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes - the route toward applications.,” Science 297, 787–792 (2002).
[Crossref] [PubMed]

W. A. de Heer, A. Chatelain, and D. Ugrte, “A carbon nanotube field-emission electron source,” Science 270, 1179–1180 (1995).
[Crossref]

C. J. Wang, M. Shim, and P. Guyot-Sionnest, “Electrochromic nanocrystal quantum dots,” Science 291, 390–2392 (2001).
[Crossref]

Other (3)

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).

P. J. Collings and M. Hird, Introduction to Liquid Crystals (Taylor & Francis, London, 1997).
[Crossref]

D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, Handbook of Liquid Crystals (WILEY-VCH, Weinheim, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) The TEM shows that the CdSe nanotube has about 1.6 µm in length and two open ends. The insets show a hollow structure of the nanotube and 200 nm in diameter. (b) The HRTEM of CdSe NT and the inset is the electron diffraction (ED) pattern, shows the wurtzite phase of CdSe NTs. (c) Raman spectrum of the CdSe nanotubes. The rising line in the right side of the peak 210 cm-1 is due to the PL signal of the CdSe nanotubes.
Fig. 2.
Fig. 2. Schematic profile of the nanotubes-liquid crystals device. (a) Liquid crystals in the device align parallel to the cell plane before applying bias. (b) After applying an external electric field, liquid crystals align perpendicular to the cell plane.
Fig. 3.
Fig. 3. Schematic diagram of the experimental setup used in the optical measurement.
Fig. 4.
Fig. 4. Photoluminescence spectra of the device consisting of nanotubes and DI-water or liquid crystals, where the polarization along parallel and perpendicular directions were defined with respect to the rubbed direction of PI layer. (a) The emission is linearly polarized without applying an external bias, where the polarizations along parallel and perpendicular directions were defined with respect to the rubbed direction of PI layer. It shows that nanotubes are arranged along the rubbed direction of PI layer after the composites were injected into the cell. (b) It shows that DI water has no capability in assisting to drive well-aligned nanotubes.
Fig. 5.
Fig. 5. Emission spectra of the CdSe nanotubes mixed with liquid crystal and the change of the degree of polarization as a function of external bias. (a) After applying an external bias of 9V, the anisotropic property of the emission almost disappears. (b) The degree of polarization decreases gradually with external bias, and it starts to saturate when external bias exceeds 3V, which is similar to the voltage required to switch the liquid crystals from parallel to perpendicular orientation with respect to the rubbed PI direction.
Fig. 6.
Fig. 6. Photoluminescence spectra of the LCs-quantum-dots device. It does not show any indication of anisotropic effect with and without an external bias.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ = 2 ε LC ( ε LC + ε CdSe ) .

Metrics