Abstract

We present an intuitive pulse characterization method that provides an accurate and direct measurement of the spectral phase of ultrashort laser pulses. The method requires the successive imposition of a set of quadratic spectral phase functions on the pulses while recording the corresponding nonlinear spectra. The second-derivative of the unknown spectral phase can be directly visualized and extracted from the experimental 2D contour plot, without any inversion algorithm or mathematical manipulation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Naganuma, K. Mogi, and H. Yamada, "General-Method for Ultrashort Light-Pulse Chirp Measurement," IEEE J. Quantum Elect. 25,1225-1233 (1989).
    [CrossRef]
  2. R. Trebino, and D. J. Kane, "Using Phase Retrieval to Measure the Intensity and Phase of Ultrashort Pulses - Frequency-Resolved Optical Gating," J. Opt. Soc. Am. A 10,1101-1111 (1993).
    [CrossRef]
  3. C. Iaconis, and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23,792-794 (1998).
    [CrossRef]
  4. D. Yelin, D. Meshulach, and Y. Silberberg, "Adaptive femtosecond pulse compression," Opt. Lett. 22,1793-1795 (1997).
    [CrossRef]
  5. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B-Lasers O. 65,779-782 (1997).
    [CrossRef]
  6. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106,9369-9373 (2002).
    [CrossRef]
  7. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118,3187-3196 (2003).
    [CrossRef]
  8. V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29,775-777 (2004).
    [CrossRef] [PubMed]
  9. B. W. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23,750-759 (2006).
    [CrossRef]
  10. The MIIPS technology is protected by U.S. patent No. 7,105,811; and other patents pending.
  11. B. W. Xu, Y. Coello, V. V. Lozovoy, D. A. Harris, and M. Dantus, "Pulse shaping of octave spanning femtosecond laser pulses," Opt. Express 14,10939-10944 (2006).
    [CrossRef] [PubMed]
  12. Y. Coello, B. W. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, "Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan (MIIPS)," Appl. Opt. 46, 8394 (2007).
    [CrossRef] [PubMed]

2007 (1)

2006 (2)

2004 (1)

2003 (1)

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118,3187-3196 (2003).
[CrossRef]

2002 (1)

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106,9369-9373 (2002).
[CrossRef]

1998 (1)

1997 (2)

D. Yelin, D. Meshulach, and Y. Silberberg, "Adaptive femtosecond pulse compression," Opt. Lett. 22,1793-1795 (1997).
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B-Lasers O. 65,779-782 (1997).
[CrossRef]

1993 (1)

1989 (1)

K. Naganuma, K. Mogi, and H. Yamada, "General-Method for Ultrashort Light-Pulse Chirp Measurement," IEEE J. Quantum Elect. 25,1225-1233 (1989).
[CrossRef]

Baumert, T.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B-Lasers O. 65,779-782 (1997).
[CrossRef]

Brixner, T.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B-Lasers O. 65,779-782 (1997).
[CrossRef]

Coello, Y.

Dantus, M.

Dela Cruz, J. M.

Gerber, G.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B-Lasers O. 65,779-782 (1997).
[CrossRef]

Gunn, J. M.

Harris, D. A.

Iaconis, C.

Kane, D. J.

Lozovoy, V. V.

Meshulach, D.

Miller, T. L.

Mogi, K.

K. Naganuma, K. Mogi, and H. Yamada, "General-Method for Ultrashort Light-Pulse Chirp Measurement," IEEE J. Quantum Elect. 25,1225-1233 (1989).
[CrossRef]

Naganuma, K.

K. Naganuma, K. Mogi, and H. Yamada, "General-Method for Ultrashort Light-Pulse Chirp Measurement," IEEE J. Quantum Elect. 25,1225-1233 (1989).
[CrossRef]

Pastirk, I.

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29,775-777 (2004).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118,3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106,9369-9373 (2002).
[CrossRef]

Seyfried, V.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B-Lasers O. 65,779-782 (1997).
[CrossRef]

Silberberg, Y.

Strehle, M.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B-Lasers O. 65,779-782 (1997).
[CrossRef]

Trebino, R.

Walmsley, I. A.

Walowicz, K. A.

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118,3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106,9369-9373 (2002).
[CrossRef]

Xu, B. W.

Yamada, H.

K. Naganuma, K. Mogi, and H. Yamada, "General-Method for Ultrashort Light-Pulse Chirp Measurement," IEEE J. Quantum Elect. 25,1225-1233 (1989).
[CrossRef]

Yelin, D.

Appl. Opt. (1)

Appl. Phys. B-Lasers O. (1)

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B-Lasers O. 65,779-782 (1997).
[CrossRef]

IEEE J. Quantum Elect. (1)

K. Naganuma, K. Mogi, and H. Yamada, "General-Method for Ultrashort Light-Pulse Chirp Measurement," IEEE J. Quantum Elect. 25,1225-1233 (1989).
[CrossRef]

J. Chem. Phys. (1)

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118,3187-3196 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106,9369-9373 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (1)

The MIIPS technology is protected by U.S. patent No. 7,105,811; and other patents pending.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Principle of the method. (a) The unknown ϕ″(ω) function is probed using a set of reference linear chirps represented by the horizontal grid. (b) The maximum SHG intensity for every frequency indicates that the corresponding reference chirp value compensates the unknown function at the position of the maximum. (c) A two-dimensional contour plot mapping the intensity of the SHG as a function of chirp and frequency directly reveals the unknown ϕ″(ω).

Fig. 2.
Fig. 2.

Experimental measurement of a cubic phase obtained by a single chirp scan. The figure is a contour plot of the SHG spectra measured at each value of applied chirp. The feature revealed by the spectral maxima corresponds to the second derivative of the cubic phase introduced. As expected, the second derivative is linear with frequency. The inset shows a magnified portion of the trace.

Fig. 3.
Fig. 3.

Spectral phase measurement. The introduced (red) and measured (green) phase functions agree without adjusting parameter. (a) Shows the second derivative of the spectral phases. (b) Shows the spectral phases. The spectrum of the pulses is also shown (dashed).

Fig. 4.
Fig. 4.

Sinusoidal spectral phase measurement. (a) Shows the experimental trace. The measured second-derivative of the phase can be directly visualized from the feature corresponding to the spectral maxima. (b) Shows the measured second-derivative after a chirp scan (green) and after one measurement-compensation iteration (black). The red curve corresponds to the introduced sinusoidal function.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( ω ) f ( ω ) = 0

Metrics