Abstract

In this paper, we report a direct-write technique for three-dimensional control of waveguide fabrication in silicon. Here, a focused beam of 250 keV protons is used to selectively slow down the rate of porous silicon formation during subsequent anodization, producing a silicon core surrounded by porous silicon cladding. The etch rate is found to depend on the irradiated dose, increasing the size of the core from 2.5 µm to 3.5 µm in width, and from 1.5 µm to 2.6 µm in height by increasing the dose by an order of magnitude. This ability to accurately control the waveguide profile with the ion dose at high spatial resolution provides a means of producing three-dimensional silicon waveguide tapers. Propagation losses of 6.7 dB/cm for TE and 6.8 dB/cm for TM polarization were measured in linear waveguides at the wavelength of 1550 nm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Lu and D. W. Prather, “Total internal reflection-evanescent coupler for fiber-to-waveguide integration of planar optoelectric devices,” Opt. Lett. 29, 1748–1750 (2004).
    [Crossref] [PubMed]
  2. G. Z. Mashanovich, V. M. N. Passaro, and G. T. Reed, “Dual grating-assisted directional coupling between fibers and thin semiconductor waveguides,” IEEE Photon. Technol. Lett. 15, 1395–1397 (2003).
    [Crossref]
  3. T. Brenner, W. Hunziker, M. Smit, M. Bachmann, G. Guekos, and H. Melchior, “Vertical InP/InGaAsP tapers for low-loss optical fiber-waveguide coupling,” Electron. Lett. 28, 2040–2041 (1992).
    [Crossref]
  4. M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. G. Young, M. Chien, and G. Raybon, “Short cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photon. Technol. Lett. 3418–420 (1991).
    [Crossref]
  5. T. Brenner and H. Melchior, “Integrated optical modeshape adapters in InGaAsP/InGaAsP tapers for efficient fiber-waveguide coupling,” IEEE Photon. Technol. Lett. 50, 1053–1056 (1993).
    [Crossref]
  6. www.confluentphotonics.com
  7. A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, and D. W. Prather, “Fabrication and characterization of three-dimensional silicon tapers,” Opt. Express 11, 3555–3561 (2003).
    [Crossref] [PubMed]
  8. K. Imai, “A new dielectric isolation method using porous silicon,” Solid State Electron. 24, 150–164 (1981).
    [Crossref]
  9. H. F. Arrand, T. M. Benson, P. Sewell, and A. Loni, “Optical waveguides in porous silicon pre-patterned by localized nitrogen implantation,”J. Lumin. 80, 199–202 (1999).
    [Crossref]
  10. F. Watt, J.A. Van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Meth. Phys. Res. B 210, 14–20 (2003).
    [Crossref]
  11. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, (Pergamon Press, New York1985).
  12. M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodisation,” Phys. Rev. B 73, 035428 (2006).
    [Crossref]
  13. E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D.J. Blackwood, “Three-dimensional micromachining of silicon using a nuclear microprobe,” Appl. Phys. Lett. 84, 3202–3204 (2004).
    [Crossref]
  14. P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Free standing waveguides in silicon,” Appl. Phys. Lett. 90, 241109 (2007).
    [Crossref]
  15. L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cimento 20, 1–78 (1997).
    [Crossref]
  16. A. C. Day, W. E. Horne, and I. Arimura, “Proton damage annealing for use in extended life solar arrays,” IEEE Trans. Nucl. Sci. 27, 1665–1671 (1980).
    [Crossref]
  17. http://www.rsoftdesign.com,
  18. H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Kruger, M. Thonissen, and H. Luth, “The applications of porous silicon to optical waveguiding technology,” IEEE J. Sel. Top. Quantum Electron. 4, 975–982 (1998).
    [Crossref]
  19. G. Amato, L. Boarino, S. Borini, and A. M. Rossi, “Hybrid approach to porous silicon integrated waveguides,” Phys. Status Solidi A 182, 425–430 (2000).
    [Crossref]
  20. G. T. Reed and A. P. Knights in Silicon Photonics: An Introduction (Wiley, England, 2004).
    [Crossref]
  21. P. Ferrand and R. Romestain, “Optical losses in porous silicon waveguides in the near-infrared: effects of scattering,” Appl. Phys. Lett. 77, 3535–3537 (2000).
    [Crossref]
  22. G. Lerondel, R. Romestain, and S. Barret, “Roughness of the porous silicon dissolution interface,” J. Appl. Phys. 81, 6171–6178 (1997).
    [Crossref]
  23. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10, 2395–2413 (1971).
    [Crossref] [PubMed]
  24. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
    [Crossref]
  25. E. J. Teo, M. B. H. Breese, A. A. Bettiol, F. Watt, and L. C. Alves, “High quality ion-induced secondary electron imaging for MeV nuclear microprobe applications,” J. Vac. Sci. Technol. B 22, 560–564 (2004).
    [Crossref]
  26. T. C. Sum, A. A. Bettiol, H. L. Seng, J. A. van Kan, and F. Watt, “Direct measurement of proton-beam-written polymer optical waveguide sidewall morphorlogy using an atomic force microscope,” Appl. Phys. Lett. 85, 1398–1400 (2004).
    [Crossref]

2007 (1)

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Free standing waveguides in silicon,” Appl. Phys. Lett. 90, 241109 (2007).
[Crossref]

2006 (1)

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodisation,” Phys. Rev. B 73, 035428 (2006).
[Crossref]

2004 (4)

E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D.J. Blackwood, “Three-dimensional micromachining of silicon using a nuclear microprobe,” Appl. Phys. Lett. 84, 3202–3204 (2004).
[Crossref]

Z. Lu and D. W. Prather, “Total internal reflection-evanescent coupler for fiber-to-waveguide integration of planar optoelectric devices,” Opt. Lett. 29, 1748–1750 (2004).
[Crossref] [PubMed]

E. J. Teo, M. B. H. Breese, A. A. Bettiol, F. Watt, and L. C. Alves, “High quality ion-induced secondary electron imaging for MeV nuclear microprobe applications,” J. Vac. Sci. Technol. B 22, 560–564 (2004).
[Crossref]

T. C. Sum, A. A. Bettiol, H. L. Seng, J. A. van Kan, and F. Watt, “Direct measurement of proton-beam-written polymer optical waveguide sidewall morphorlogy using an atomic force microscope,” Appl. Phys. Lett. 85, 1398–1400 (2004).
[Crossref]

2003 (3)

F. Watt, J.A. Van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Meth. Phys. Res. B 210, 14–20 (2003).
[Crossref]

G. Z. Mashanovich, V. M. N. Passaro, and G. T. Reed, “Dual grating-assisted directional coupling between fibers and thin semiconductor waveguides,” IEEE Photon. Technol. Lett. 15, 1395–1397 (2003).
[Crossref]

A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, and D. W. Prather, “Fabrication and characterization of three-dimensional silicon tapers,” Opt. Express 11, 3555–3561 (2003).
[Crossref] [PubMed]

2001 (1)

2000 (2)

G. Amato, L. Boarino, S. Borini, and A. M. Rossi, “Hybrid approach to porous silicon integrated waveguides,” Phys. Status Solidi A 182, 425–430 (2000).
[Crossref]

P. Ferrand and R. Romestain, “Optical losses in porous silicon waveguides in the near-infrared: effects of scattering,” Appl. Phys. Lett. 77, 3535–3537 (2000).
[Crossref]

1999 (1)

H. F. Arrand, T. M. Benson, P. Sewell, and A. Loni, “Optical waveguides in porous silicon pre-patterned by localized nitrogen implantation,”J. Lumin. 80, 199–202 (1999).
[Crossref]

1998 (1)

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Kruger, M. Thonissen, and H. Luth, “The applications of porous silicon to optical waveguiding technology,” IEEE J. Sel. Top. Quantum Electron. 4, 975–982 (1998).
[Crossref]

1997 (2)

G. Lerondel, R. Romestain, and S. Barret, “Roughness of the porous silicon dissolution interface,” J. Appl. Phys. 81, 6171–6178 (1997).
[Crossref]

L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cimento 20, 1–78 (1997).
[Crossref]

1993 (1)

T. Brenner and H. Melchior, “Integrated optical modeshape adapters in InGaAsP/InGaAsP tapers for efficient fiber-waveguide coupling,” IEEE Photon. Technol. Lett. 50, 1053–1056 (1993).
[Crossref]

1992 (1)

T. Brenner, W. Hunziker, M. Smit, M. Bachmann, G. Guekos, and H. Melchior, “Vertical InP/InGaAsP tapers for low-loss optical fiber-waveguide coupling,” Electron. Lett. 28, 2040–2041 (1992).
[Crossref]

1991 (1)

M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. G. Young, M. Chien, and G. Raybon, “Short cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photon. Technol. Lett. 3418–420 (1991).
[Crossref]

1981 (1)

K. Imai, “A new dielectric isolation method using porous silicon,” Solid State Electron. 24, 150–164 (1981).
[Crossref]

1980 (1)

A. C. Day, W. E. Horne, and I. Arimura, “Proton damage annealing for use in extended life solar arrays,” IEEE Trans. Nucl. Sci. 27, 1665–1671 (1980).
[Crossref]

1971 (1)

Alves, L. C.

E. J. Teo, M. B. H. Breese, A. A. Bettiol, F. Watt, and L. C. Alves, “High quality ion-induced secondary electron imaging for MeV nuclear microprobe applications,” J. Vac. Sci. Technol. B 22, 560–564 (2004).
[Crossref]

Amato, G.

G. Amato, L. Boarino, S. Borini, and A. M. Rossi, “Hybrid approach to porous silicon integrated waveguides,” Phys. Status Solidi A 182, 425–430 (2000).
[Crossref]

Arens-Fischer, R.

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Kruger, M. Thonissen, and H. Luth, “The applications of porous silicon to optical waveguiding technology,” IEEE J. Sel. Top. Quantum Electron. 4, 975–982 (1998).
[Crossref]

Arimura, I.

A. C. Day, W. E. Horne, and I. Arimura, “Proton damage annealing for use in extended life solar arrays,” IEEE Trans. Nucl. Sci. 27, 1665–1671 (1980).
[Crossref]

Arrand, H. F.

H. F. Arrand, T. M. Benson, P. Sewell, and A. Loni, “Optical waveguides in porous silicon pre-patterned by localized nitrogen implantation,”J. Lumin. 80, 199–202 (1999).
[Crossref]

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Kruger, M. Thonissen, and H. Luth, “The applications of porous silicon to optical waveguiding technology,” IEEE J. Sel. Top. Quantum Electron. 4, 975–982 (1998).
[Crossref]

Bachmann, M.

T. Brenner, W. Hunziker, M. Smit, M. Bachmann, G. Guekos, and H. Melchior, “Vertical InP/InGaAsP tapers for low-loss optical fiber-waveguide coupling,” Electron. Lett. 28, 2040–2041 (1992).
[Crossref]

Barret, S.

G. Lerondel, R. Romestain, and S. Barret, “Roughness of the porous silicon dissolution interface,” J. Appl. Phys. 81, 6171–6178 (1997).
[Crossref]

Benson, T. M.

H. F. Arrand, T. M. Benson, P. Sewell, and A. Loni, “Optical waveguides in porous silicon pre-patterned by localized nitrogen implantation,”J. Lumin. 80, 199–202 (1999).
[Crossref]

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Kruger, M. Thonissen, and H. Luth, “The applications of porous silicon to optical waveguiding technology,” IEEE J. Sel. Top. Quantum Electron. 4, 975–982 (1998).
[Crossref]

Bettiol, A. A.

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Free standing waveguides in silicon,” Appl. Phys. Lett. 90, 241109 (2007).
[Crossref]

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodisation,” Phys. Rev. B 73, 035428 (2006).
[Crossref]

E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D.J. Blackwood, “Three-dimensional micromachining of silicon using a nuclear microprobe,” Appl. Phys. Lett. 84, 3202–3204 (2004).
[Crossref]

E. J. Teo, M. B. H. Breese, A. A. Bettiol, F. Watt, and L. C. Alves, “High quality ion-induced secondary electron imaging for MeV nuclear microprobe applications,” J. Vac. Sci. Technol. B 22, 560–564 (2004).
[Crossref]

T. C. Sum, A. A. Bettiol, H. L. Seng, J. A. van Kan, and F. Watt, “Direct measurement of proton-beam-written polymer optical waveguide sidewall morphorlogy using an atomic force microscope,” Appl. Phys. Lett. 85, 1398–1400 (2004).
[Crossref]

F. Watt, J.A. Van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Meth. Phys. Res. B 210, 14–20 (2003).
[Crossref]

Biersack, J. P.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, (Pergamon Press, New York1985).

Blackwood, D.

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodisation,” Phys. Rev. B 73, 035428 (2006).
[Crossref]

Blackwood, D. J.

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Free standing waveguides in silicon,” Appl. Phys. Lett. 90, 241109 (2007).
[Crossref]

Blackwood, D.J.

E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D.J. Blackwood, “Three-dimensional micromachining of silicon using a nuclear microprobe,” Appl. Phys. Lett. 84, 3202–3204 (2004).
[Crossref]

Boarino, L.

G. Amato, L. Boarino, S. Borini, and A. M. Rossi, “Hybrid approach to porous silicon integrated waveguides,” Phys. Status Solidi A 182, 425–430 (2000).
[Crossref]

Borini, S.

G. Amato, L. Boarino, S. Borini, and A. M. Rossi, “Hybrid approach to porous silicon integrated waveguides,” Phys. Status Solidi A 182, 425–430 (2000).
[Crossref]

Bozeat, R. J.

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Kruger, M. Thonissen, and H. Luth, “The applications of porous silicon to optical waveguiding technology,” IEEE J. Sel. Top. Quantum Electron. 4, 975–982 (1998).
[Crossref]

Breese, M. B. H.

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Free standing waveguides in silicon,” Appl. Phys. Lett. 90, 241109 (2007).
[Crossref]

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodisation,” Phys. Rev. B 73, 035428 (2006).
[Crossref]

E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D.J. Blackwood, “Three-dimensional micromachining of silicon using a nuclear microprobe,” Appl. Phys. Lett. 84, 3202–3204 (2004).
[Crossref]

E. J. Teo, M. B. H. Breese, A. A. Bettiol, F. Watt, and L. C. Alves, “High quality ion-induced secondary electron imaging for MeV nuclear microprobe applications,” J. Vac. Sci. Technol. B 22, 560–564 (2004).
[Crossref]

F. Watt, J.A. Van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Meth. Phys. Res. B 210, 14–20 (2003).
[Crossref]

Brenner, T.

T. Brenner and H. Melchior, “Integrated optical modeshape adapters in InGaAsP/InGaAsP tapers for efficient fiber-waveguide coupling,” IEEE Photon. Technol. Lett. 50, 1053–1056 (1993).
[Crossref]

T. Brenner, W. Hunziker, M. Smit, M. Bachmann, G. Guekos, and H. Melchior, “Vertical InP/InGaAsP tapers for low-loss optical fiber-waveguide coupling,” Electron. Lett. 28, 2040–2041 (1992).
[Crossref]

Cerrina, F.

Champeaux, F. J. T.

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodisation,” Phys. Rev. B 73, 035428 (2006).
[Crossref]

Chien, M.

M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. G. Young, M. Chien, and G. Raybon, “Short cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photon. Technol. Lett. 3418–420 (1991).
[Crossref]

M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. G. Young, M. Chien, and G. Raybon, “Short cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photon. Technol. Lett. 3418–420 (1991).
[Crossref]

Choo, T. F.

F. Watt, J.A. Van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Meth. Phys. Res. B 210, 14–20 (2003).
[Crossref]

Day, A. C.

A. C. Day, W. E. Horne, and I. Arimura, “Proton damage annealing for use in extended life solar arrays,” IEEE Trans. Nucl. Sci. 27, 1665–1671 (1980).
[Crossref]

Dillon, T.

Ferrand, P.

P. Ferrand and R. Romestain, “Optical losses in porous silicon waveguides in the near-infrared: effects of scattering,” Appl. Phys. Lett. 77, 3535–3537 (2000).
[Crossref]

Gomez-Morilla, I.

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Free standing waveguides in silicon,” Appl. Phys. Lett. 90, 241109 (2007).
[Crossref]

Guekos, G.

T. Brenner, W. Hunziker, M. Smit, M. Bachmann, G. Guekos, and H. Melchior, “Vertical InP/InGaAsP tapers for low-loss optical fiber-waveguide coupling,” Electron. Lett. 28, 2040–2041 (1992).
[Crossref]

Headley, W. R.

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Free standing waveguides in silicon,” Appl. Phys. Lett. 90, 241109 (2007).
[Crossref]

Horne, W. E.

A. C. Day, W. E. Horne, and I. Arimura, “Proton damage annealing for use in extended life solar arrays,” IEEE Trans. Nucl. Sci. 27, 1665–1671 (1980).
[Crossref]

Hunziker, W.

T. Brenner, W. Hunziker, M. Smit, M. Bachmann, G. Guekos, and H. Melchior, “Vertical InP/InGaAsP tapers for low-loss optical fiber-waveguide coupling,” Electron. Lett. 28, 2040–2041 (1992).
[Crossref]

Imai, K.

K. Imai, “A new dielectric isolation method using porous silicon,” Solid State Electron. 24, 150–164 (1981).
[Crossref]

Kimerling, L. C.

Knights, A. P.

G. T. Reed and A. P. Knights in Silicon Photonics: An Introduction (Wiley, England, 2004).
[Crossref]

Koch, T. L.

M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. G. Young, M. Chien, and G. Raybon, “Short cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photon. Technol. Lett. 3418–420 (1991).
[Crossref]

Koren, U.

M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. G. Young, M. Chien, and G. Raybon, “Short cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photon. Technol. Lett. 3418–420 (1991).
[Crossref]

Kruger, M.

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Kruger, M. Thonissen, and H. Luth, “The applications of porous silicon to optical waveguiding technology,” IEEE J. Sel. Top. Quantum Electron. 4, 975–982 (1998).
[Crossref]

Lee, K. K.

Lerondel, G.

G. Lerondel, R. Romestain, and S. Barret, “Roughness of the porous silicon dissolution interface,” J. Appl. Phys. 81, 6171–6178 (1997).
[Crossref]

Lim, D. R.

Lin, C.

Littmark, U.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, (Pergamon Press, New York1985).

Liu, M. H.

E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D.J. Blackwood, “Three-dimensional micromachining of silicon using a nuclear microprobe,” Appl. Phys. Lett. 84, 3202–3204 (2004).
[Crossref]

Loni, A.

H. F. Arrand, T. M. Benson, P. Sewell, and A. Loni, “Optical waveguides in porous silicon pre-patterned by localized nitrogen implantation,”J. Lumin. 80, 199–202 (1999).
[Crossref]

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Kruger, M. Thonissen, and H. Luth, “The applications of porous silicon to optical waveguiding technology,” IEEE J. Sel. Top. Quantum Electron. 4, 975–982 (1998).
[Crossref]

Lu, Z.

Luth, H.

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Kruger, M. Thonissen, and H. Luth, “The applications of porous silicon to optical waveguiding technology,” IEEE J. Sel. Top. Quantum Electron. 4, 975–982 (1998).
[Crossref]

Mashanovich, G. Z.

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Free standing waveguides in silicon,” Appl. Phys. Lett. 90, 241109 (2007).
[Crossref]

G. Z. Mashanovich, V. M. N. Passaro, and G. T. Reed, “Dual grating-assisted directional coupling between fibers and thin semiconductor waveguides,” IEEE Photon. Technol. Lett. 15, 1395–1397 (2003).
[Crossref]

Melchior, H.

T. Brenner and H. Melchior, “Integrated optical modeshape adapters in InGaAsP/InGaAsP tapers for efficient fiber-waveguide coupling,” IEEE Photon. Technol. Lett. 50, 1053–1056 (1993).
[Crossref]

T. Brenner, W. Hunziker, M. Smit, M. Bachmann, G. Guekos, and H. Melchior, “Vertical InP/InGaAsP tapers for low-loss optical fiber-waveguide coupling,” Electron. Lett. 28, 2040–2041 (1992).
[Crossref]

Miller, B. I.

M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. G. Young, M. Chien, and G. Raybon, “Short cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photon. Technol. Lett. 3418–420 (1991).
[Crossref]

Murakowski, J.

Osipowicz, T.

F. Watt, J.A. Van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Meth. Phys. Res. B 210, 14–20 (2003).
[Crossref]

Passaro, V. M. N.

G. Z. Mashanovich, V. M. N. Passaro, and G. T. Reed, “Dual grating-assisted directional coupling between fibers and thin semiconductor waveguides,” IEEE Photon. Technol. Lett. 15, 1395–1397 (2003).
[Crossref]

Pavesi, L.

L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cimento 20, 1–78 (1997).
[Crossref]

Prather, D. W.

Pustai, D.

Rajta, I.

F. Watt, J.A. Van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Meth. Phys. Res. B 210, 14–20 (2003).
[Crossref]

Raybon, G.

M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. G. Young, M. Chien, and G. Raybon, “Short cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photon. Technol. Lett. 3418–420 (1991).
[Crossref]

Reed, G. T.

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Free standing waveguides in silicon,” Appl. Phys. Lett. 90, 241109 (2007).
[Crossref]

G. Z. Mashanovich, V. M. N. Passaro, and G. T. Reed, “Dual grating-assisted directional coupling between fibers and thin semiconductor waveguides,” IEEE Photon. Technol. Lett. 15, 1395–1397 (2003).
[Crossref]

G. T. Reed and A. P. Knights in Silicon Photonics: An Introduction (Wiley, England, 2004).
[Crossref]

Romestain, R.

P. Ferrand and R. Romestain, “Optical losses in porous silicon waveguides in the near-infrared: effects of scattering,” Appl. Phys. Lett. 77, 3535–3537 (2000).
[Crossref]

G. Lerondel, R. Romestain, and S. Barret, “Roughness of the porous silicon dissolution interface,” J. Appl. Phys. 81, 6171–6178 (1997).
[Crossref]

Rossi, A. M.

G. Amato, L. Boarino, S. Borini, and A. M. Rossi, “Hybrid approach to porous silicon integrated waveguides,” Phys. Status Solidi A 182, 425–430 (2000).
[Crossref]

Seng, H. L.

T. C. Sum, A. A. Bettiol, H. L. Seng, J. A. van Kan, and F. Watt, “Direct measurement of proton-beam-written polymer optical waveguide sidewall morphorlogy using an atomic force microscope,” Appl. Phys. Lett. 85, 1398–1400 (2004).
[Crossref]

Sewell, P.

H. F. Arrand, T. M. Benson, P. Sewell, and A. Loni, “Optical waveguides in porous silicon pre-patterned by localized nitrogen implantation,”J. Lumin. 80, 199–202 (1999).
[Crossref]

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Kruger, M. Thonissen, and H. Luth, “The applications of porous silicon to optical waveguiding technology,” IEEE J. Sel. Top. Quantum Electron. 4, 975–982 (1998).
[Crossref]

Shin, J.

Smit, M.

T. Brenner, W. Hunziker, M. Smit, M. Bachmann, G. Guekos, and H. Melchior, “Vertical InP/InGaAsP tapers for low-loss optical fiber-waveguide coupling,” Electron. Lett. 28, 2040–2041 (1992).
[Crossref]

Sum, T. C.

T. C. Sum, A. A. Bettiol, H. L. Seng, J. A. van Kan, and F. Watt, “Direct measurement of proton-beam-written polymer optical waveguide sidewall morphorlogy using an atomic force microscope,” Appl. Phys. Lett. 85, 1398–1400 (2004).
[Crossref]

Sure, A.

Tavernier, E. P.

E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D.J. Blackwood, “Three-dimensional micromachining of silicon using a nuclear microprobe,” Appl. Phys. Lett. 84, 3202–3204 (2004).
[Crossref]

Teo, E. J.

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Free standing waveguides in silicon,” Appl. Phys. Lett. 90, 241109 (2007).
[Crossref]

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodisation,” Phys. Rev. B 73, 035428 (2006).
[Crossref]

E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D.J. Blackwood, “Three-dimensional micromachining of silicon using a nuclear microprobe,” Appl. Phys. Lett. 84, 3202–3204 (2004).
[Crossref]

E. J. Teo, M. B. H. Breese, A. A. Bettiol, F. Watt, and L. C. Alves, “High quality ion-induced secondary electron imaging for MeV nuclear microprobe applications,” J. Vac. Sci. Technol. B 22, 560–564 (2004).
[Crossref]

Thonissen, M.

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Kruger, M. Thonissen, and H. Luth, “The applications of porous silicon to optical waveguiding technology,” IEEE J. Sel. Top. Quantum Electron. 4, 975–982 (1998).
[Crossref]

Tien, P. K.

van Kan, J. A.

T. C. Sum, A. A. Bettiol, H. L. Seng, J. A. van Kan, and F. Watt, “Direct measurement of proton-beam-written polymer optical waveguide sidewall morphorlogy using an atomic force microscope,” Appl. Phys. Lett. 85, 1398–1400 (2004).
[Crossref]

Van Kan, J.A.

F. Watt, J.A. Van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Meth. Phys. Res. B 210, 14–20 (2003).
[Crossref]

Watt, F.

E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D.J. Blackwood, “Three-dimensional micromachining of silicon using a nuclear microprobe,” Appl. Phys. Lett. 84, 3202–3204 (2004).
[Crossref]

T. C. Sum, A. A. Bettiol, H. L. Seng, J. A. van Kan, and F. Watt, “Direct measurement of proton-beam-written polymer optical waveguide sidewall morphorlogy using an atomic force microscope,” Appl. Phys. Lett. 85, 1398–1400 (2004).
[Crossref]

E. J. Teo, M. B. H. Breese, A. A. Bettiol, F. Watt, and L. C. Alves, “High quality ion-induced secondary electron imaging for MeV nuclear microprobe applications,” J. Vac. Sci. Technol. B 22, 560–564 (2004).
[Crossref]

F. Watt, J.A. Van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Meth. Phys. Res. B 210, 14–20 (2003).
[Crossref]

Yang, P. Y.

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Free standing waveguides in silicon,” Appl. Phys. Lett. 90, 241109 (2007).
[Crossref]

Young, M. G.

M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. G. Young, M. Chien, and G. Raybon, “Short cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photon. Technol. Lett. 3418–420 (1991).
[Crossref]

Ziegler, J. F.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, (Pergamon Press, New York1985).

Appl. Opt. (1)

Appl. Phys. Lett. (4)

P. Ferrand and R. Romestain, “Optical losses in porous silicon waveguides in the near-infrared: effects of scattering,” Appl. Phys. Lett. 77, 3535–3537 (2000).
[Crossref]

T. C. Sum, A. A. Bettiol, H. L. Seng, J. A. van Kan, and F. Watt, “Direct measurement of proton-beam-written polymer optical waveguide sidewall morphorlogy using an atomic force microscope,” Appl. Phys. Lett. 85, 1398–1400 (2004).
[Crossref]

E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D.J. Blackwood, “Three-dimensional micromachining of silicon using a nuclear microprobe,” Appl. Phys. Lett. 84, 3202–3204 (2004).
[Crossref]

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Free standing waveguides in silicon,” Appl. Phys. Lett. 90, 241109 (2007).
[Crossref]

Electron. Lett. (1)

T. Brenner, W. Hunziker, M. Smit, M. Bachmann, G. Guekos, and H. Melchior, “Vertical InP/InGaAsP tapers for low-loss optical fiber-waveguide coupling,” Electron. Lett. 28, 2040–2041 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Kruger, M. Thonissen, and H. Luth, “The applications of porous silicon to optical waveguiding technology,” IEEE J. Sel. Top. Quantum Electron. 4, 975–982 (1998).
[Crossref]

IEEE Photon. Technol. Lett. (3)

M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. G. Young, M. Chien, and G. Raybon, “Short cavity distributed Bragg reflector laser with an integrated tapered output waveguide,” IEEE Photon. Technol. Lett. 3418–420 (1991).
[Crossref]

T. Brenner and H. Melchior, “Integrated optical modeshape adapters in InGaAsP/InGaAsP tapers for efficient fiber-waveguide coupling,” IEEE Photon. Technol. Lett. 50, 1053–1056 (1993).
[Crossref]

G. Z. Mashanovich, V. M. N. Passaro, and G. T. Reed, “Dual grating-assisted directional coupling between fibers and thin semiconductor waveguides,” IEEE Photon. Technol. Lett. 15, 1395–1397 (2003).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

A. C. Day, W. E. Horne, and I. Arimura, “Proton damage annealing for use in extended life solar arrays,” IEEE Trans. Nucl. Sci. 27, 1665–1671 (1980).
[Crossref]

J. Appl. Phys. (1)

G. Lerondel, R. Romestain, and S. Barret, “Roughness of the porous silicon dissolution interface,” J. Appl. Phys. 81, 6171–6178 (1997).
[Crossref]

J. Lumin. (1)

H. F. Arrand, T. M. Benson, P. Sewell, and A. Loni, “Optical waveguides in porous silicon pre-patterned by localized nitrogen implantation,”J. Lumin. 80, 199–202 (1999).
[Crossref]

J. Vac. Sci. Technol. B (1)

E. J. Teo, M. B. H. Breese, A. A. Bettiol, F. Watt, and L. C. Alves, “High quality ion-induced secondary electron imaging for MeV nuclear microprobe applications,” J. Vac. Sci. Technol. B 22, 560–564 (2004).
[Crossref]

Nucl. Instrum. Meth. Phys. Res. B (1)

F. Watt, J.A. Van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Meth. Phys. Res. B 210, 14–20 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodisation,” Phys. Rev. B 73, 035428 (2006).
[Crossref]

Phys. Status Solidi A (1)

G. Amato, L. Boarino, S. Borini, and A. M. Rossi, “Hybrid approach to porous silicon integrated waveguides,” Phys. Status Solidi A 182, 425–430 (2000).
[Crossref]

Riv. Nuovo Cimento (1)

L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cimento 20, 1–78 (1997).
[Crossref]

Solid State Electron. (1)

K. Imai, “A new dielectric isolation method using porous silicon,” Solid State Electron. 24, 150–164 (1981).
[Crossref]

Other (4)

www.confluentphotonics.com

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, (Pergamon Press, New York1985).

G. T. Reed and A. P. Knights in Silicon Photonics: An Introduction (Wiley, England, 2004).
[Crossref]

http://www.rsoftdesign.com,

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Schematic diagram of the fabrication process (b) SRIM simulation of the defect density profile of 250 keV protons in silicon.

Fig. 2.
Fig. 2.

Cross sectional SEM of the waveguides irradiated with a dose of (a) 7×1013, (b) 1×1014 and (c) 8×1014/cm2.

Fig. 3.
Fig. 3.

Plot of the core height and width as a function of dose.

Fig. 4.
Fig. 4.

(a). Top view of the scattered light from the waveguide (b) Plot of the output power of the waveguide as a function of guiding length, where the output power is defined as 10×log (Pout). Inset picture shows the output mode of the waveguide.

Metrics