Abstract

A novel photonic analog-to-digital conversion scheme implemented using an array of Mach-Zehnder modulators (MZMs) with identical half-wave voltages is proposed and demonstrated. It is different from the scheme proposed by Taylor where the MZMs should have geometrically scaled half-wave voltages; the proposed scheme here uses MZMs with identical half-wave voltages, which eliminates the need for the MZMs to have very low half-wave voltages. By properly biasing the MZMs, the transfer functions of the MZMs are laterally shifted, which leads to the generation of a linear binary code to represent the analog input signal. The use of the MZMs with identical half-wave voltages simplifies greatly the design and implementation, which provides a high potential for integration. A proof-of-concept experiment for analog-to-digital conversion with a quantization level of 16 is demonstrated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Walden, "Analog-to-Digital converter survey and analysis," IEEE J. Sel. Areas Commun. 17, 539 (1999).
    [CrossRef]
  2. G. C. Valley, "Photonic analog-to-digital converters," Opt. Express 15,1955 (2007).
    [CrossRef] [PubMed]
  3. F. Coppinger, A. S. Bhushan, and B. Jalali, "Photonic time stretch and its application to analog-to-digital conversion," IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
    [CrossRef]
  4. S. Oda and A. Maruta, "A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion," IEEE Photonic Technol. Lett. 17, 465 (2005).
  5. C. Xu and X. Liu, "Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters," Opt. Lett. 28, 986 (2003).
    [CrossRef] [PubMed]
  6. H. F. Taylor, "An optical analog-to-digital converter-design and analysis," IEEE J. Quantum Electron. 15, 210 (1979).
    [CrossRef]
  7. B. Jalali and Y. M. Xie, "Optical folding-flash analog-to-digital converter with analog encoding," Opt. Lett. 20,1901(1995).
    [CrossRef] [PubMed]
  8. M. Currie, "Optical quantization of microwave signals via distributed phase modulation," J. Lightwave Technol. 23, 827 (2005).
    [CrossRef]
  9. J. Stigwall and S. Galt, "Interferometric analog-to-digital conversion scheme," IEEE Photon. Technol. Lett. 17, 468 (2005).
    [CrossRef]
  10. J. Stigwall and S. Galt, "Demonstration and analysis of a 40-Gigasample/s interferometric analog-to-digital converter," J. Lightwave Technol. 24, 1247 (2006).
    [CrossRef]
  11. W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, "All-optical analog-to-digital conversion based on polarization-differential interference and phase modulation," IEEE Photon. Technol. Lett. 19, 625 (2007).
    [CrossRef]
  12. M. Löhning and G. Fettweis, "The effects of aperture jitter and clock jitter in wideband ADCs," Comput. Stand. Interfac. 29, 11 (2007).
    [CrossRef]

2007

G. C. Valley, "Photonic analog-to-digital converters," Opt. Express 15,1955 (2007).
[CrossRef] [PubMed]

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, "All-optical analog-to-digital conversion based on polarization-differential interference and phase modulation," IEEE Photon. Technol. Lett. 19, 625 (2007).
[CrossRef]

M. Löhning and G. Fettweis, "The effects of aperture jitter and clock jitter in wideband ADCs," Comput. Stand. Interfac. 29, 11 (2007).
[CrossRef]

2006

2005

S. Oda and A. Maruta, "A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion," IEEE Photonic Technol. Lett. 17, 465 (2005).

M. Currie, "Optical quantization of microwave signals via distributed phase modulation," J. Lightwave Technol. 23, 827 (2005).
[CrossRef]

J. Stigwall and S. Galt, "Interferometric analog-to-digital conversion scheme," IEEE Photon. Technol. Lett. 17, 468 (2005).
[CrossRef]

2003

1999

F. Coppinger, A. S. Bhushan, and B. Jalali, "Photonic time stretch and its application to analog-to-digital conversion," IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

R. H. Walden, "Analog-to-Digital converter survey and analysis," IEEE J. Sel. Areas Commun. 17, 539 (1999).
[CrossRef]

1995

1979

H. F. Taylor, "An optical analog-to-digital converter-design and analysis," IEEE J. Quantum Electron. 15, 210 (1979).
[CrossRef]

Bhushan, A. S.

F. Coppinger, A. S. Bhushan, and B. Jalali, "Photonic time stretch and its application to analog-to-digital conversion," IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

Coppinger, F.

F. Coppinger, A. S. Bhushan, and B. Jalali, "Photonic time stretch and its application to analog-to-digital conversion," IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

Currie, M.

Fettweis, G.

M. Löhning and G. Fettweis, "The effects of aperture jitter and clock jitter in wideband ADCs," Comput. Stand. Interfac. 29, 11 (2007).
[CrossRef]

Galt, S.

J. Stigwall and S. Galt, "Demonstration and analysis of a 40-Gigasample/s interferometric analog-to-digital converter," J. Lightwave Technol. 24, 1247 (2006).
[CrossRef]

J. Stigwall and S. Galt, "Interferometric analog-to-digital conversion scheme," IEEE Photon. Technol. Lett. 17, 468 (2005).
[CrossRef]

Jalali, B.

F. Coppinger, A. S. Bhushan, and B. Jalali, "Photonic time stretch and its application to analog-to-digital conversion," IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

B. Jalali and Y. M. Xie, "Optical folding-flash analog-to-digital converter with analog encoding," Opt. Lett. 20,1901(1995).
[CrossRef] [PubMed]

Li, W.

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, "All-optical analog-to-digital conversion based on polarization-differential interference and phase modulation," IEEE Photon. Technol. Lett. 19, 625 (2007).
[CrossRef]

Liu, X.

Löhning, M.

M. Löhning and G. Fettweis, "The effects of aperture jitter and clock jitter in wideband ADCs," Comput. Stand. Interfac. 29, 11 (2007).
[CrossRef]

Maruta, A.

S. Oda and A. Maruta, "A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion," IEEE Photonic Technol. Lett. 17, 465 (2005).

Oda, S.

S. Oda and A. Maruta, "A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion," IEEE Photonic Technol. Lett. 17, 465 (2005).

Stigwall, J.

J. Stigwall and S. Galt, "Demonstration and analysis of a 40-Gigasample/s interferometric analog-to-digital converter," J. Lightwave Technol. 24, 1247 (2006).
[CrossRef]

J. Stigwall and S. Galt, "Interferometric analog-to-digital conversion scheme," IEEE Photon. Technol. Lett. 17, 468 (2005).
[CrossRef]

Taylor, H. F.

H. F. Taylor, "An optical analog-to-digital converter-design and analysis," IEEE J. Quantum Electron. 15, 210 (1979).
[CrossRef]

Valley, G. C.

Walden, R. H.

R. H. Walden, "Analog-to-Digital converter survey and analysis," IEEE J. Sel. Areas Commun. 17, 539 (1999).
[CrossRef]

Wu, Q.

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, "All-optical analog-to-digital conversion based on polarization-differential interference and phase modulation," IEEE Photon. Technol. Lett. 19, 625 (2007).
[CrossRef]

Xie, Y. M.

Xu, C.

Yao, M.

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, "All-optical analog-to-digital conversion based on polarization-differential interference and phase modulation," IEEE Photon. Technol. Lett. 19, 625 (2007).
[CrossRef]

Zhang, H.

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, "All-optical analog-to-digital conversion based on polarization-differential interference and phase modulation," IEEE Photon. Technol. Lett. 19, 625 (2007).
[CrossRef]

Zhang, Z.

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, "All-optical analog-to-digital conversion based on polarization-differential interference and phase modulation," IEEE Photon. Technol. Lett. 19, 625 (2007).
[CrossRef]

Comput. Stand. Interfac.

M. Löhning and G. Fettweis, "The effects of aperture jitter and clock jitter in wideband ADCs," Comput. Stand. Interfac. 29, 11 (2007).
[CrossRef]

IEEE J. Quantum Electron.

H. F. Taylor, "An optical analog-to-digital converter-design and analysis," IEEE J. Quantum Electron. 15, 210 (1979).
[CrossRef]

IEEE J. Sel. Areas Commun.

R. H. Walden, "Analog-to-Digital converter survey and analysis," IEEE J. Sel. Areas Commun. 17, 539 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, "All-optical analog-to-digital conversion based on polarization-differential interference and phase modulation," IEEE Photon. Technol. Lett. 19, 625 (2007).
[CrossRef]

J. Stigwall and S. Galt, "Interferometric analog-to-digital conversion scheme," IEEE Photon. Technol. Lett. 17, 468 (2005).
[CrossRef]

IEEE Photonic Technol. Lett.

S. Oda and A. Maruta, "A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion," IEEE Photonic Technol. Lett. 17, 465 (2005).

IEEE Trans. Microwave Theory Tech.

F. Coppinger, A. S. Bhushan, and B. Jalali, "Photonic time stretch and its application to analog-to-digital conversion," IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

A 4-channel ADC using four MZMs with identical half-wave voltages.

Fig. 2.
Fig. 2.

The operation of the proposed 4-channel photonic ADC. (a) The transfer functions of the four MZMs; (b) The linear binary code at the outputs of th comparators; (c) Quantized value (solid) v.s. the input phase modulation (dotted).

Fig. 3.
Fig. 3.

Experimental setup. LD: continuous-wave laser diode, PC: polarization controller, PD: photodetector.

Fig. 4.
Fig. 4.

Experimental results. (a) The measured 8 waveforms corresponding to 8 bias phase shifts; (b) The digitized signal (solid) and the fitted sinusoidal signal (dashed); (c) Errors between the quantized signal and the fitted signal (Q is the size of the LSB).

Fig. 5.
Fig. 5.

The SNR of the digitized signal and the ENOB vs. the SNR of the PD current.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I o = 1 2 I i [ 1 + cos ( φ s + φ b ) ] ,
ENOB = dSNR 1.76 6.02 .
φ σ ( x ) = 1 σ 2 π exp ( x 2 2 σ 2 ) ,

Metrics