Abstract

We have numerically investigated the Raman lasing characteristics of a highly nonlinear photonic crystal fiber (HNPCF). HNPCF Raman lasers are designed to deliver outputs at 1.3 µm and 1.48 µm wavelengths through three and six cascades of Raman Stokes cavities when the pumps of 1117 nm and 1064 nm are injected into HNPCF module, respectively. A quantum efficiency of approximately 47% was achieved in a short length of HNPCF for 1.3 µm lasing wavelength. The HNPCF design is modified further to operate in single-mode fashion keeping intact its Raman lasing characteristics. The modified HNPCF design consists of two air-hole rings where the higher-order modes in the central core are suppressed by enhancing their leakage losses drastically, thus ceasing their propagation in the short length of HNPCF. On the other hand, the fundamental mode is well confined to the central core region, unaffecting its lasing performances. Further, the lasing characteristics of HNPCF at 1480 nm are compared with conventional highly nonlinear fiber Raman laser operating at 1480 nm. It is found that one can reduce the fiber length by five times in case of HNPCF with nearly similar conversion efficiency.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. AuYeung and A. Yariv, "Theory of cw Raman oscillation in optical fibers," J. Opt. Soc. Am. 69, 803-807 (1979).
    [CrossRef]
  2. M. Rini, I. Cristiani, and V. Degiorgio, "Numerical modeling and optimization of cascaded cw Raman fiber lasers," IEEE J. Quantum Electron. 36, 1117-1122 (2000).
    [CrossRef]
  3. I.A. Bufetov and E.M. Dianov, "A simple analytic model of a cw multicascade fiber Raman laser," Quantum Electron. 30, 873-877 (2000).
    [CrossRef]
  4. M. Krause and H. Renner, "Theory and design of double-cavity Raman fiber lasers," J. Lightwave Technol. 23, 2474-2483 (2005).
    [CrossRef]
  5. A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B: At. Mol. Opt. Phys. 38, S681-S693 (2005).
    [CrossRef]
  6. M.N. Islam, Raman Amplification for Telecommunications 2 (Springer, 2003).
  7. T.A. Birks, J.C. Knight, and P.St.J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  8. A. Bjarklev, J. Broeng and A.S. Bjarklev, Photonic Crystal Fibres (Kulwer Academic Publishers, 2003).
    [CrossRef]
  9. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003).
    [CrossRef] [PubMed]
  10. R.K. Sinha and S.K. Varshney, "Dispersion properties of photonic crystal fibers," Microwave Opt. Technol. Lett. 37, 129-132 (2003).
    [CrossRef]
  11. M. Fuochi, F. Poli, S. Selleri, A. Cucinotta, and L. Vincetti, "Study of Raman amplification properties in triangular photonic crystal fibers," J. Lightwave Technol. 21, 2247-2254 (2003).
    [CrossRef]
  12. M. Bottacini, F. Poli, A. Cucinotta, and S. Selleri, "Modeling of photonic crystal fiber Raman amplifiers," J. Lightwave Technol. 22, 1707-1713 (2004).
    [CrossRef]
  13. S.K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
    [CrossRef]
  14. S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band," Opt. Express 13, 9516-9526 (2005).
    [CrossRef] [PubMed]
  15. S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express 14,3528-3540 (2006).
    [CrossRef] [PubMed]
  16. S.K. Varshney, K. Saitoh, M. Koshiba, and P.J. Roberts, "Analysis of a realistic and idealized dispersion compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
    [CrossRef]
  17. S.K. Varshney, Y. Tsuchida, K. Sasaki, K. Saitoh, and M. Koshiba, "Measurement of chromatic dispersion and Raman gain efficiency of hole-assisted fiber: Influence of bend," Opt. Express 15, 2974-2980 (2007).
    [CrossRef] [PubMed]
  18. J.C. Travers, S.V. Popov, and J.R. Taylor, "Efficient continuous-wave holey fiber Raman laser," Appl. Phys. Lett. 87, 031106-03 (2005).
    [CrossRef]
  19. Y. Pei-Guang, R. Shuang-Chen, Y. Yong-Qin, G. Yuan, and L. Cheng-Xiang, "High power photonic crystal fiber Raman laser," Chinese Phys. Lett. 23, 1476-1478 (2006).
    [CrossRef]
  20. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
    [CrossRef]
  21. A. Monteville, D. Landais, O. Le Goffic, D. Tregoat, N. J. Traynor, T. -N. Nguyen, S. Lobo, T. Chartier, and J. -C. Simon, "Low Loss, Low OH, Highly Non-linear Holey Fiber for Raman Amplification," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMC1.
  22. G.P. Agrawal, Nonlinear fiber optics (Academic press, 2004).
  23. K. Rottwitt, J. Bromage, A.J. Stentz, L. Leng, M. E. Lines, and H. Smith, "Scaling of the Raman gain coefficient: applications to germanosilicate fibers," J. Lightwave Technol. 21, 1652-1662 (2003).
    [CrossRef]
  24. www.mathworks.com
  25. T.P White, R.C. McPhedran, C.M. de Sterke, L.C. Botten, and M.J. Steel, "Confinement losses in microstructured optical fibers," Opt. Lett. 26, 1660-1662 (2001).
    [CrossRef]
  26. Sumitomo Elect. Ind., www.sei.co.jp.
  27. N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, "Bragg gratings in air-silica structured fibers," Opt. Lett. 28, 233-235 (2003).
    [CrossRef] [PubMed]
  28. S.G. Leon-Saval, T.A. Birks, N.Y. Joy, A.K. George, W.J. Wadsworth, G. Kakarantzas, and P.St.J. Russell, "Splice-free interfacing of photonic crystal fibers," Opt. Lett. 30, 1629-1634 (2005).
    [CrossRef] [PubMed]

2007 (2)

S.K. Varshney, K. Saitoh, M. Koshiba, and P.J. Roberts, "Analysis of a realistic and idealized dispersion compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
[CrossRef]

S.K. Varshney, Y. Tsuchida, K. Sasaki, K. Saitoh, and M. Koshiba, "Measurement of chromatic dispersion and Raman gain efficiency of hole-assisted fiber: Influence of bend," Opt. Express 15, 2974-2980 (2007).
[CrossRef] [PubMed]

2006 (2)

Y. Pei-Guang, R. Shuang-Chen, Y. Yong-Qin, G. Yuan, and L. Cheng-Xiang, "High power photonic crystal fiber Raman laser," Chinese Phys. Lett. 23, 1476-1478 (2006).
[CrossRef]

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express 14,3528-3540 (2006).
[CrossRef] [PubMed]

2005 (6)

S.G. Leon-Saval, T.A. Birks, N.Y. Joy, A.K. George, W.J. Wadsworth, G. Kakarantzas, and P.St.J. Russell, "Splice-free interfacing of photonic crystal fibers," Opt. Lett. 30, 1629-1634 (2005).
[CrossRef] [PubMed]

J.C. Travers, S.V. Popov, and J.R. Taylor, "Efficient continuous-wave holey fiber Raman laser," Appl. Phys. Lett. 87, 031106-03 (2005).
[CrossRef]

S.K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
[CrossRef]

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band," Opt. Express 13, 9516-9526 (2005).
[CrossRef] [PubMed]

M. Krause and H. Renner, "Theory and design of double-cavity Raman fiber lasers," J. Lightwave Technol. 23, 2474-2483 (2005).
[CrossRef]

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B: At. Mol. Opt. Phys. 38, S681-S693 (2005).
[CrossRef]

2004 (1)

2003 (5)

2002 (1)

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

2001 (1)

2000 (2)

M. Rini, I. Cristiani, and V. Degiorgio, "Numerical modeling and optimization of cascaded cw Raman fiber lasers," IEEE J. Quantum Electron. 36, 1117-1122 (2000).
[CrossRef]

I.A. Bufetov and E.M. Dianov, "A simple analytic model of a cw multicascade fiber Raman laser," Quantum Electron. 30, 873-877 (2000).
[CrossRef]

1997 (1)

1979 (1)

AuYeung, J.

Birks, T.A.

Bottacini, M.

Botten, L.C.

Bromage, J.

Buckley, E.

Bufetov, I.A.

I.A. Bufetov and E.M. Dianov, "A simple analytic model of a cw multicascade fiber Raman laser," Quantum Electron. 30, 873-877 (2000).
[CrossRef]

Canning, J.

Cheng-Xiang, L.

Y. Pei-Guang, R. Shuang-Chen, Y. Yong-Qin, G. Yuan, and L. Cheng-Xiang, "High power photonic crystal fiber Raman laser," Chinese Phys. Lett. 23, 1476-1478 (2006).
[CrossRef]

Cristiani, I.

M. Rini, I. Cristiani, and V. Degiorgio, "Numerical modeling and optimization of cascaded cw Raman fiber lasers," IEEE J. Quantum Electron. 36, 1117-1122 (2000).
[CrossRef]

Cucinotta, A.

de Sterke, C.M.

Degiorgio, V.

M. Rini, I. Cristiani, and V. Degiorgio, "Numerical modeling and optimization of cascaded cw Raman fiber lasers," IEEE J. Quantum Electron. 36, 1117-1122 (2000).
[CrossRef]

Dianov, E.M.

I.A. Bufetov and E.M. Dianov, "A simple analytic model of a cw multicascade fiber Raman laser," Quantum Electron. 30, 873-877 (2000).
[CrossRef]

Fujisawa, T.

Fuochi, M.

George, A.K.

Groothoff, N.

Hasegawa, T.

Hofer, S.

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B: At. Mol. Opt. Phys. 38, S681-S693 (2005).
[CrossRef]

Joy, N.Y.

Kakarantzas, G.

Knight, J.C.

Koshiba, M.

S.K. Varshney, K. Saitoh, M. Koshiba, and P.J. Roberts, "Analysis of a realistic and idealized dispersion compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
[CrossRef]

S.K. Varshney, Y. Tsuchida, K. Sasaki, K. Saitoh, and M. Koshiba, "Measurement of chromatic dispersion and Raman gain efficiency of hole-assisted fiber: Influence of bend," Opt. Express 15, 2974-2980 (2007).
[CrossRef] [PubMed]

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express 14,3528-3540 (2006).
[CrossRef] [PubMed]

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band," Opt. Express 13, 9516-9526 (2005).
[CrossRef] [PubMed]

S.K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
[CrossRef]

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

Krause, M.

Leng, L.

Leon-Saval, S.G.

Liem, A.

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B: At. Mol. Opt. Phys. 38, S681-S693 (2005).
[CrossRef]

Limpert, J.

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B: At. Mol. Opt. Phys. 38, S681-S693 (2005).
[CrossRef]

Lines, M. E.

Lyttikainen, K.

McPhedran, R.C.

Nolte, S.

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B: At. Mol. Opt. Phys. 38, S681-S693 (2005).
[CrossRef]

Pei-Guang, Y.

Y. Pei-Guang, R. Shuang-Chen, Y. Yong-Qin, G. Yuan, and L. Cheng-Xiang, "High power photonic crystal fiber Raman laser," Chinese Phys. Lett. 23, 1476-1478 (2006).
[CrossRef]

Poli, F.

Popov, S.V.

J.C. Travers, S.V. Popov, and J.R. Taylor, "Efficient continuous-wave holey fiber Raman laser," Appl. Phys. Lett. 87, 031106-03 (2005).
[CrossRef]

Renner, H.

Rini, M.

M. Rini, I. Cristiani, and V. Degiorgio, "Numerical modeling and optimization of cascaded cw Raman fiber lasers," IEEE J. Quantum Electron. 36, 1117-1122 (2000).
[CrossRef]

Roberts, P.J.

S.K. Varshney, K. Saitoh, M. Koshiba, and P.J. Roberts, "Analysis of a realistic and idealized dispersion compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
[CrossRef]

Roser, F.

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B: At. Mol. Opt. Phys. 38, S681-S693 (2005).
[CrossRef]

Rottwitt, K.

Russell, P.St.J.

Saitoh, K.

S.K. Varshney, Y. Tsuchida, K. Sasaki, K. Saitoh, and M. Koshiba, "Measurement of chromatic dispersion and Raman gain efficiency of hole-assisted fiber: Influence of bend," Opt. Express 15, 2974-2980 (2007).
[CrossRef] [PubMed]

S.K. Varshney, K. Saitoh, M. Koshiba, and P.J. Roberts, "Analysis of a realistic and idealized dispersion compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
[CrossRef]

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express 14,3528-3540 (2006).
[CrossRef] [PubMed]

S.K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
[CrossRef]

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band," Opt. Express 13, 9516-9526 (2005).
[CrossRef] [PubMed]

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

Sasaki, K.

Sasaoka, E.

Schreiber, T.

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B: At. Mol. Opt. Phys. 38, S681-S693 (2005).
[CrossRef]

Selleri, S.

Shuang-Chen, R.

Y. Pei-Guang, R. Shuang-Chen, Y. Yong-Qin, G. Yuan, and L. Cheng-Xiang, "High power photonic crystal fiber Raman laser," Chinese Phys. Lett. 23, 1476-1478 (2006).
[CrossRef]

Sinha, R.K.

R.K. Sinha and S.K. Varshney, "Dispersion properties of photonic crystal fibers," Microwave Opt. Technol. Lett. 37, 129-132 (2003).
[CrossRef]

Smith, H.

Steel, M.J.

Stentz, A.J.

Taylor, J.R.

J.C. Travers, S.V. Popov, and J.R. Taylor, "Efficient continuous-wave holey fiber Raman laser," Appl. Phys. Lett. 87, 031106-03 (2005).
[CrossRef]

Travers, J.C.

J.C. Travers, S.V. Popov, and J.R. Taylor, "Efficient continuous-wave holey fiber Raman laser," Appl. Phys. Lett. 87, 031106-03 (2005).
[CrossRef]

Tsuchida, Y.

Tunnermann, A.

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B: At. Mol. Opt. Phys. 38, S681-S693 (2005).
[CrossRef]

Varshney, S.K.

S.K. Varshney, Y. Tsuchida, K. Sasaki, K. Saitoh, and M. Koshiba, "Measurement of chromatic dispersion and Raman gain efficiency of hole-assisted fiber: Influence of bend," Opt. Express 15, 2974-2980 (2007).
[CrossRef] [PubMed]

S.K. Varshney, K. Saitoh, M. Koshiba, and P.J. Roberts, "Analysis of a realistic and idealized dispersion compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
[CrossRef]

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express 14,3528-3540 (2006).
[CrossRef] [PubMed]

S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band," Opt. Express 13, 9516-9526 (2005).
[CrossRef] [PubMed]

S.K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
[CrossRef]

R.K. Sinha and S.K. Varshney, "Dispersion properties of photonic crystal fibers," Microwave Opt. Technol. Lett. 37, 129-132 (2003).
[CrossRef]

Vincetti, L.

Wadsworth, W.J.

White, T.P

Yariv, A.

Yong-Qin, Y.

Y. Pei-Guang, R. Shuang-Chen, Y. Yong-Qin, G. Yuan, and L. Cheng-Xiang, "High power photonic crystal fiber Raman laser," Chinese Phys. Lett. 23, 1476-1478 (2006).
[CrossRef]

Yuan, G.

Y. Pei-Guang, R. Shuang-Chen, Y. Yong-Qin, G. Yuan, and L. Cheng-Xiang, "High power photonic crystal fiber Raman laser," Chinese Phys. Lett. 23, 1476-1478 (2006).
[CrossRef]

Zagari, J.

Zellmer, H.

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B: At. Mol. Opt. Phys. 38, S681-S693 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

J.C. Travers, S.V. Popov, and J.R. Taylor, "Efficient continuous-wave holey fiber Raman laser," Appl. Phys. Lett. 87, 031106-03 (2005).
[CrossRef]

Chinese Phys. Lett. (1)

Y. Pei-Guang, R. Shuang-Chen, Y. Yong-Qin, G. Yuan, and L. Cheng-Xiang, "High power photonic crystal fiber Raman laser," Chinese Phys. Lett. 23, 1476-1478 (2006).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

M. Rini, I. Cristiani, and V. Degiorgio, "Numerical modeling and optimization of cascaded cw Raman fiber lasers," IEEE J. Quantum Electron. 36, 1117-1122 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S.K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. (1)

J. Phys. B: At. Mol. Opt. Phys. (1)

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B: At. Mol. Opt. Phys. 38, S681-S693 (2005).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

R.K. Sinha and S.K. Varshney, "Dispersion properties of photonic crystal fibers," Microwave Opt. Technol. Lett. 37, 129-132 (2003).
[CrossRef]

Opt. Express (4)

Opt. Fiber Technol. (1)

S.K. Varshney, K. Saitoh, M. Koshiba, and P.J. Roberts, "Analysis of a realistic and idealized dispersion compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
[CrossRef]

Opt. Lett. (4)

Quantum Electron. (1)

I.A. Bufetov and E.M. Dianov, "A simple analytic model of a cw multicascade fiber Raman laser," Quantum Electron. 30, 873-877 (2000).
[CrossRef]

Other (6)

M.N. Islam, Raman Amplification for Telecommunications 2 (Springer, 2003).

A. Bjarklev, J. Broeng and A.S. Bjarklev, Photonic Crystal Fibres (Kulwer Academic Publishers, 2003).
[CrossRef]

Sumitomo Elect. Ind., www.sei.co.jp.

www.mathworks.com

A. Monteville, D. Landais, O. Le Goffic, D. Tregoat, N. J. Traynor, T. -N. Nguyen, S. Lobo, T. Chartier, and J. -C. Simon, "Low Loss, Low OH, Highly Non-linear Holey Fiber for Raman Amplification," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMC1.

G.P. Agrawal, Nonlinear fiber optics (Academic press, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Transverse cross-section of fabricated HNPCF [21] whose structural parameters are d/Λ=0.80, Λ=2.14 µm, where d is the hole-diameter and Λ is the separation between two consecutive air-holes, (b) cascade scheme to design a 1310 nm HNPCF Raman laser, employing two intermediate Stokes.

Fig. 2.
Fig. 2.

Variation of output lasing power as a function of (a) output coupler reflectivity R out and (b) fiber length L when the input pump power was 5 W.

Fig. 3.
Fig. 3.

(a) Variation of fiber length as a function of the reflectivity of OC with η as a parameter for an input pump power of 5 W. The fiber length of 20 m was determined from the color map when the conversion efficiency becomes maximum, (b) output lasing characteristics of a 1310 nm HNPCF-RL module. The HNPCF-RL exhibits slope and conversion efficiencies of 62% and 47%, respectively.

Fig. 4.
Fig. 4.

Cascade scheme to obtain 1480 nm lasing wavelength by converting 1064 nm input wavelength through SRS process.

Fig. 5.
Fig. 5.

(a) Contour plot between fiber length and reflectivity of output FBG as a function of conversion efficiency for an input pump power of 8 W, (b) variation of output lasing power P out as a function of input pump power P in. The HNPCF Raman laser demonstrates a slope efficiency of 42.3 % in a 10 m long HNPCF.

Fig. 6.
Fig. 6.

(a) The modified design of effectively single-mode HNPCF whose parameters are d/Λ=0.80, d′/Λ=0.70, and Λ=2.14 µm. The HOMs are suppressed by enhancing their leakage losses, (b) leakage loss characteristics of the fundamental and HOM (HE21) in the modified HNPCF structure as shown to the left (Fig. 6(a)). Numerical simulations show that the modified HNPCF exhibits the same lasing characteristics as by HNPCF with five air-hole rings.

Fig. 7.
Fig. 7.

Comparison between lasing performances of a conventional HNF (solid blue curve) and a HNPCF (solid red curve) Raman lasers operating at 1480 nm wavelength. It can be deduced from the numerical results that the length of fiber can be reduced drastically almost by a factor of five in case of HNPCF Raman laser.

Tables (5)

Tables Icon

Table 1. Parameters for third-order cascades HNPCF Raman laser lasing at 1310 nm.

Tables Icon

Table 2. Parameters for sixth-order cascades HNPCF Raman laser lasing at 1480 nm

Tables Icon

Table 3. Lasing performances of sixth-order cascades HNPCF Raman laser at 1480 nm

Tables Icon

Table 4. Leakage loss characteristics of HE21 mode confined in the HNPCF core for different number of air-hole rings at 1064 nm, 1310 nm, and 1480 nm wavelengths

Tables Icon

Table 5. Lasing characteristics of a conventional HNF Raman laser lasing at 1480 nm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d P p ± dz = α p P p ± ν p ν s γ R 1 ( P 1 + + P 1 ) P p ±
d P i ± dz = α i P i ± ν i ν i + 1 γ R i ( P i + 1 + + P i + 1 ) P i ± ± γ R i 1 ( P i 1 + + P i 1 ) P i ±
d P n ± dz = α n P n ± ± γ R n ( P n 1 ± + P n 1 ± ) P n ±
P p + ( 0 ) = P in ; P p ( L ) = R p · P p + ( L ) P i + ( 0 ) = R i + · P i ( 0 ) ; P i ( L ) = R i · P i + ( L ) P n + ( 0 ) = R n + · P n ( 0 ) ; P n ( L ) = R out · P n + ( L )
P out = ( 1 R out ) · P n + ( L ) .
η = P out P in
S = d P out d P in

Metrics