Abstract

We developed axial-lateral parallel time-domain optical coherence tomography (ALP TD-OCT) from a single interference image. A two-dimensional camera can produce a depth-resolved interference image using diffracted light as the reference beam and a linear illumination beam without any mechanical scan. An OCT image of biological tissues with sufficient sensitivity requires extraction of interference signals by subtracting the DC image, which contains the intensity of noninterference light and the electrical noise of the camera, from a single interference image and subsequent application of the Hilbert transformation for each axial direction. We measured 300 interference images of a moving human finger in vivo using an indium gallium arsenide (InGaAs) camera (320×250 pixels) operating at 60 frames per second and then obtained OCT images with an imaging range of 5.0×1.7-mm2 (lateral×axial) using a DC image based on averaged interference images. The system sensitivity was 90.5 dB with a 1.05-ms exposure. As the OCT image depends on the interference signals in a single interference image, the OCT signals were stable compared with OCT images based on the phase-shift method.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography, " Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. A. Rollins, S. Yazdanfar, M. Kulkarni, R. Ung-Arunyawee, and J. Izatt, "In vivo video rate optical coherence tomography," Opt. Express 3, 219-229 (1998) http://www.opticsinfobase.org/abstract.cfm?URI=oe-3-6-219
    [CrossRef] [PubMed]
  3. A F. Fercher and C. K. Hitzenberger and G. Kamp and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117,43-48 (1995).
    [CrossRef]
  4. G. Häusler and M.W. Lindner, ""Coherence radar" and "spectral radar"-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  5. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
    [CrossRef] [PubMed]
  6. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2953
    [CrossRef] [PubMed]
  7. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11,889-894 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-8-889
    [CrossRef] [PubMed]
  8. A. Zuluaga and R. Richards-Kortum, "Spatially resolved spectral interferometry for determination of subsurface structure," Opt. Lett. 24, 519-521 (1999).
    [CrossRef]
  9. T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, "Profilometry with line-field Fourier-domain interferometry," Opt. Express 13, 695-701 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-3-695
    [CrossRef] [PubMed]
  10. B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, "Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye," Opt. Express 13, 1131-1137 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-4-1131.
    [CrossRef] [PubMed]
  11. Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, "Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation," J. Biomed. Opt. 11, 014014-014020 (2006).
    [CrossRef] [PubMed]
  12. Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, "High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography," Opt. Express 15, 7103-7116 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7103.
    [CrossRef] [PubMed]
  13. B. Považay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, "Full-field time-encoded frequency-domain optical coherence tomography," Opt. Express 14, 7661-7669 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7661
    [CrossRef] [PubMed]
  14. M. Lebec, L. Blanchot, H. Saint-Jalmes, E. Beaurepaire, and A. C. Boccara, "Full-field optical coherence microscopy," Opt. Lett. 23, 244-246 (1998).
    [CrossRef]
  15. A. Dubois, L. Vabre, A.C. Boccara, and E. Beaurepaire, "High-resolution full-field optical coherence tomography with a Linnik microscope," Appl. Opt. 41, 805-812 (2002).
    [CrossRef] [PubMed]
  16. A. Dubois, G. Moneron, and C. Boccara, "Thermal-light full-field optical coherence tomography in the 1.2 μm wavelength region," Opt. Commun.,  266, 738-743 (2006).
    [CrossRef]
  17. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, "Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera," Opt. Express 14, 726-735 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-726
    [CrossRef] [PubMed]
  18. K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. Le Gargasson, and C. Boccara, "In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography, " Opt. Express 13, 6286-6295 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6286.
    [CrossRef] [PubMed]
  19. Y. Watanabe and M. Sato, "Three-dimensional wide-field optical coherence tomography using an ultra high speed CMOS camera, " Opt. Commu. (to be published).
  20. C. Dunsby, Y. Gu, and P. French, "Single-shot phase-stepped wide-field coherencegated imaging," Opt. Express 11, 105-115 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-2-105.
    [CrossRef] [PubMed]
  21. I. Zeylikovich, A. Gilerson, and R. R. Alfano, "Nonmechanical grating-generated scanning coherence microscopy," Opt. Lett. 23,1797-1799 (1998).
    [CrossRef]
  22. Y. Watanabe, K. Yamada, and M. Sato, "In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera," Opt. Commun. 261, 376-380 (2006).
    [CrossRef]
  23. Y. Watanabe, K. Yamada, and M. Sato, "Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography," Opt. Express 14, 5201-5209 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5201
    [CrossRef] [PubMed]
  24. Y. Watanabe, Y. Takasugi, K. Yamada, and M. Sato, "Axial-lateral parallel time domain OCT with optical zoom lens and high order diffracted lights for variable imaging range," Opt. Express 15, 5208-5217 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-5208
    [CrossRef] [PubMed]
  25. Y. Chen, S.-W. Huang, A. D. Aguirre, and J. G. Fujimoto, "High-resolution line-scanning optical coherence microscopy," Opt. Lett.,  32, 1971-1973 (2007)
    [CrossRef] [PubMed]
  26. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, "Hilbert phase microscopy for investigating fast dynamics in transparent systems," Opt. Lett.,  30, 1165-1167 (2005)
    [CrossRef] [PubMed]

2007 (3)

2006 (6)

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, "Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera," Opt. Express 14, 726-735 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-726
[CrossRef] [PubMed]

Y. Watanabe, K. Yamada, and M. Sato, "Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography," Opt. Express 14, 5201-5209 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5201
[CrossRef] [PubMed]

B. Považay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, "Full-field time-encoded frequency-domain optical coherence tomography," Opt. Express 14, 7661-7669 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7661
[CrossRef] [PubMed]

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, "Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation," J. Biomed. Opt. 11, 014014-014020 (2006).
[CrossRef] [PubMed]

A. Dubois, G. Moneron, and C. Boccara, "Thermal-light full-field optical coherence tomography in the 1.2 μm wavelength region," Opt. Commun.,  266, 738-743 (2006).
[CrossRef]

Y. Watanabe, K. Yamada, and M. Sato, "In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera," Opt. Commun. 261, 376-380 (2006).
[CrossRef]

2005 (4)

2004 (1)

2003 (3)

2002 (1)

1999 (1)

1998 (4)

1995 (1)

A F. Fercher and C. K. Hitzenberger and G. Kamp and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117,43-48 (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography, " Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Aguirre, A. D.

Alfano, R. R.

Aoki, G.

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, "Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation," J. Biomed. Opt. 11, 014014-014020 (2006).
[CrossRef] [PubMed]

Arthaber, H.

Beaurepaire, E.

Blanchot, L.

Boccara, A. C.

Boccara, A.C.

Boccara, C.

Bouma, B.

Bouma, B. E.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography, " Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

Chen, Y.

Dasari, R. R.

de Boer, J.

de Boer, J. F.

Drexler, W.

Dubois, A.

Dunsby, C.

El-Zaiat, S. Y.

A F. Fercher and C. K. Hitzenberger and G. Kamp and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117,43-48 (1995).
[CrossRef]

Endo, T.

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, "Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation," J. Biomed. Opt. 11, 014014-014020 (2006).
[CrossRef] [PubMed]

T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, "Profilometry with line-field Fourier-domain interferometry," Opt. Express 13, 695-701 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-3-695
[CrossRef] [PubMed]

Feld, M. S.

Fercher, A F.

A F. Fercher and C. K. Hitzenberger and G. Kamp and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117,43-48 (1995).
[CrossRef]

Fercher, A.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography, " Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

French, P.

Fujimoto, J. G.

Y. Chen, S.-W. Huang, A. D. Aguirre, and J. G. Fujimoto, "High-resolution line-scanning optical coherence microscopy," Opt. Lett.,  32, 1971-1973 (2007)
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography, " Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gilerson, A.

Grajciar, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography, " Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Grieve, K.

Gu, Y.

Häusler, G.

G. Häusler and M.W. Lindner, ""Coherence radar" and "spectral radar"-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography, " Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hitzenberger, C. K.

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11,889-894 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-8-889
[CrossRef] [PubMed]

A F. Fercher and C. K. Hitzenberger and G. Kamp and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117,43-48 (1995).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography, " Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Huang, S.-W.

Iftimia, N.

Ikeda, T.

Itoh, M.

Izatt, J.

Kamp, G.

A F. Fercher and C. K. Hitzenberger and G. Kamp and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117,43-48 (1995).
[CrossRef]

Kulkarni, M.

Le Gargasson, J.

Lebec, M.

Leitgeb, R.

Leitgeb, R. A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography, " Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lindner, M.W.

G. Häusler and M.W. Lindner, ""Coherence radar" and "spectral radar"-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Makita, S.

Moneron, G.

A. Dubois, G. Moneron, and C. Boccara, "Thermal-light full-field optical coherence tomography in the 1.2 μm wavelength region," Opt. Commun.,  266, 738-743 (2006).
[CrossRef]

Nakamura, Y.

Nassif, N.

Oh, W. Y.

Paques, M.

Park, B. H.

Pircher, M.

Popescu, G.

Považay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography, " Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Richards-Kortum, R.

Rollins, A.

Sahel, J.

Saint-Jalmes, H.

Sato, M.

Sattmann, H.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography, " Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Simonutti, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography, " Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography, " Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Takasugi, Y.

Tearney, G.

Tearney, G. J.

Ung-Arunyawee, R.

Unterhuber, A.

Vabre, L.

Watanabe, Y.

Yamada, K.

Yamanari, M.

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

Yelin, R.

Yun, S.

Yun, S. H.

Zeylikovich, I.

Zuluaga, A.

Appl. Opt. (1)

J. Biomed. Opt. (2)

G. Häusler and M.W. Lindner, ""Coherence radar" and "spectral radar"-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, "Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation," J. Biomed. Opt. 11, 014014-014020 (2006).
[CrossRef] [PubMed]

Opt. Commu. (1)

Y. Watanabe and M. Sato, "Three-dimensional wide-field optical coherence tomography using an ultra high speed CMOS camera, " Opt. Commu. (to be published).

Opt. Commun. (3)

A. Dubois, G. Moneron, and C. Boccara, "Thermal-light full-field optical coherence tomography in the 1.2 μm wavelength region," Opt. Commun.,  266, 738-743 (2006).
[CrossRef]

Y. Watanabe, K. Yamada, and M. Sato, "In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera," Opt. Commun. 261, 376-380 (2006).
[CrossRef]

A F. Fercher and C. K. Hitzenberger and G. Kamp and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117,43-48 (1995).
[CrossRef]

Opt. Express (12)

T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, "Profilometry with line-field Fourier-domain interferometry," Opt. Express 13, 695-701 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-3-695
[CrossRef] [PubMed]

B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, "Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye," Opt. Express 13, 1131-1137 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-4-1131.
[CrossRef] [PubMed]

C. Dunsby, Y. Gu, and P. French, "Single-shot phase-stepped wide-field coherencegated imaging," Opt. Express 11, 105-115 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-2-105.
[CrossRef] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11,889-894 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-8-889
[CrossRef] [PubMed]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2953
[CrossRef] [PubMed]

K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. Le Gargasson, and C. Boccara, "In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography, " Opt. Express 13, 6286-6295 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6286.
[CrossRef] [PubMed]

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, "Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera," Opt. Express 14, 726-735 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-726
[CrossRef] [PubMed]

Y. Watanabe, K. Yamada, and M. Sato, "Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography," Opt. Express 14, 5201-5209 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5201
[CrossRef] [PubMed]

B. Považay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, "Full-field time-encoded frequency-domain optical coherence tomography," Opt. Express 14, 7661-7669 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7661
[CrossRef] [PubMed]

Y. Watanabe, Y. Takasugi, K. Yamada, and M. Sato, "Axial-lateral parallel time domain OCT with optical zoom lens and high order diffracted lights for variable imaging range," Opt. Express 15, 5208-5217 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-5208
[CrossRef] [PubMed]

Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, "High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography," Opt. Express 15, 7103-7116 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7103.
[CrossRef] [PubMed]

A. Rollins, S. Yazdanfar, M. Kulkarni, R. Ung-Arunyawee, and J. Izatt, "In vivo video rate optical coherence tomography," Opt. Express 3, 219-229 (1998) http://www.opticsinfobase.org/abstract.cfm?URI=oe-3-6-219
[CrossRef] [PubMed]

Opt. Lett. (6)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography, " Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: MOV (2508 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of axial-lateral parallel time-domain optical coherence tomography. SLD: superluminescent diode, BS: beam splitter, Inset is the camera area. The horizontal pixels (N=256) and vertical pixels (M=320) were used to measure axial and lateral ranges in samples, respectively. Dash line: imaging ray

Fig. 2.
Fig. 2.

Flowchart of OCT imaging using the quasi-single-shot method and two-phase-shift method

Fig. 3
Fig. 3

Amplitude of interference images (a) without (b) with subtraction of the reference arm signal. The scale bar: 1mm. (c) SNR(signal to noise ratio) at each image

Fig. 4
Fig. 4

(a) Normalized amplitudes of interference signals and (b) sensitivities using quasi-single-shot method and two-phase-shift method.

Fig. 5
Fig. 5

(2.44 Mbyte) in vivo OCT images of a human fingertip. (a) and (c) are the OCT image calculated from 249th and 250th interference image, respectively. (b) and (d) are the OCT image obtained from the difference between 249th and 250th interference images and the difference between 250th and 251st interference images respectively. The white arrow shows the decreased region of OCT signals. The scale bar: 1mm [Media 1]

Fig. 6
Fig. 6

The root mean square (RMS) of OCT images using (a) quasi-single-shot method (b) two-phase-shift method

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

θ = sin 1 ( n λ 0 2 p ) ,
Z = d tan θ ,
Δ Z = Δ Y tan θ = ( N M ) Δ X tan θ .
E i = t i t i + τ { I ref + I sig + I inc + 2 [ I ref I sig ( x , z ) * γ ( z ) ] 1 2 cos ( 4 π V t λ 0 + ϕ ) } dt
= τ ( I ref + I sig + I inc ) + 2 [ I ref I sig ( x , y ) * γ ( z ) ] 1 2 sin c ( 2 π V τ λ 0 ) cos [ 4 π V ( t i + τ 2 ) λ 0 + ϕ ]
= I DC + I AC ( x , z ) cos [ 4 π V ( t i + τ 2 ) λ 0 + ϕ ]
f ( x , z ) = E i E i + 1
= I AC ( x , z ) { cos [ 4 π V ( t i + τ 2 ) λ 0 + ϕ ] cos [ 4 π V ( t i + T + τ 2 ) λ 0 + ϕ ] } .
= 2 I AC ( x , z ) sin [ 4 π V ( t i + T 2 + τ 2 ) λ 0 + ϕ ] sin ( 2 π VT λ 0 )
g ( x , z ) = P π f ( x , z ) z z dz
= 2 I AC ( x , z ) cos [ 4 π V ( t i + T 2 + τ 2 ) λ 0 + ϕ ] sin ( 2 π VT λ 0 ) ,
G ( x , u ) = i sign ( u ) F ( x , u ) with
sign ( u ) = { 1 , if u > 0 0 , if u > 0 1 , if u > 0 ,
S = f 2 ( x , z ) + g 2 ( x , z ) = [ 2 I AC ( x , z ) sin ( 2 π VT λ 0 ) ] 2 .
f ( x , z ) = I AC ( x , z ) cos [ 4 π V ( t i + τ 2 ) λ 0 + ϕ ] .
S = f 2 ( x , z ) + g 2 ( x , z ) = [ I AC ( x , z ) ] 2 .
ν = 0 ν 2 = ξ ,
S = ( f + ν f ) 2 + ( g + ν g ) 2 .
S noise = 2 ξ .
( 1 + C ) ( R ref + R sig + R inc ) I in = ξ max ,
C = 2 R ref R sig R ref + R sig + R inc .
( R ref + R sig + R inc ) I in = ξ .
S = ( 2 R ref R sig ) 2 = ( C 1 + C ξ max ) 2
S noise = 2 ξ max ( 1 + C ) .
SNR = 2 R ref R sig ξ max ( R ref + R inc ) 2 .
R min = ( R ref + R inc ) 2 R ref ξ max .

Metrics