Abstract

We report the suppression of loss of surface plasmon polariton propagating at the interface between silver film and optically pumped polymer with dye. The large magnitude of the effect enables a variety of applications of ‘active’ nanoplasmonics. The experimental study is accompanied by the analytical description of the phenomenon. In particular, we resolve the controversy regarding the direction of the wavevector of a wave with a strong evanescent component in an active medium.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Ritchie, “Surface plasmosns in solids,” Surf. Sci. 34, 1–19 (1973).
    [CrossRef]
  2. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
    [CrossRef]
  3. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
    [CrossRef]
  4. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer-Verlag, Berlin, 1988).
  5. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
    [CrossRef]
  6. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1104 (1997).
    [CrossRef] [PubMed]
  7. H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
    [CrossRef]
  8. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-hand materials,” J. Nonlinear Opt. Phys. Mater. 11, 65–74 (2002).
    [CrossRef]
  9. H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
    [CrossRef] [PubMed]
  10. V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative Index of Refraction in Optical Metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
    [CrossRef]
  11. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
    [CrossRef] [PubMed]
  12. A. Alu and N. Engheta, “Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. B 23, 571–583 (2006).
    [CrossRef]
  13. S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89, 186801 (2002).
    [CrossRef] [PubMed]
  14. A. Boltasseva, S. I. Bozhevolnyi, T. Søndergaard, T. Nikolajsen, and L. Kristjan, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13, 4237–4243 (2005).
    [CrossRef] [PubMed]
  15. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
    [CrossRef] [PubMed]
  16. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and S. Marin, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
    [CrossRef] [PubMed]
  17. M. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef] [PubMed]
  18. C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A Y. Cho, “Long-wavelength (λ≈8–11.5 µm) semiconductor lasers with waveguides based on surface plasmons,” Opt. Lett. 23, 1366–1368 (1998).
    [CrossRef]
  19. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium”, Opt. Lett. 31, 3022–3024 (2006).
    [CrossRef] [PubMed]
  20. J. Seidel, S. Grafstroem, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 177401 (2005).
    [CrossRef] [PubMed]
  21. G. A. Plotz, H. J. Simon, and J. M. Tucciarone, “Enhanced total reflection with surface plasmons,” J. Opt. Soc. Am. 69, 419–421 (1979).
    [CrossRef]
  22. A. N. Sudarkin and P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).
  23. I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain”, Phys. Rev. B 70, 155416 (2004).
    [CrossRef]
  24. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004).
    [CrossRef] [PubMed]
  25. A. A. Govyadinov and V. A. Podolskiy, “Gain-assisted slow to superluminal group velocity manipulation in nano-waveguides,” Phys. Rev. Lett. 97, 223902 (2006).
    [CrossRef] [PubMed]
  26. N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85, 5040–5042 (2004).
    [CrossRef]
  27. D. Bergman and M. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: quantum generation of coherent Surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
    [CrossRef] [PubMed]
  28. Y. Chen, P. Fisher, and F. W. Wise, “Negative refraction at optical frequencies in nonmagnetic two-component molecular media,” Phys. Rev. Lett. 95, 067402 (2005).
    [CrossRef] [PubMed]
  29. Y. Chen, P. Fisher, and F. W. Wise, “Chen, Fischer, and Wise reply”, Phys. Rev. Lett. 96, 159702 (2006).
    [CrossRef]
  30. T. Mackay and A. Lakhtakia, Comment on “negative refraction at optical frequencies in nonmagnetic two-component molecular media”, Phys. Rev. Lett. 96. 159701 (2006).
    [CrossRef] [PubMed]
  31. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi 10, 509–514 (1968).
    [CrossRef]
  32. R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056625 (2001).
    [CrossRef]
  33. L. D. Landau and E. M. Lifshitz, Course of theoretical physics, vol.8, ch.86. (Reed, Oxford, UK1984).
  34. B. Ya. Kogan, V. M. Volkov, and S. A. Lebedev, “Superluminescence and generation of stimulated radiation under internal-reflection conditions,” JETP Lett. 16, 100–105 (1972).
  35. I. Avrutsky, “Guided modes in a uniaxial multilayer,” J. Opt. Soc. A 20, 548–556 (2003).
    [CrossRef]
  36. X. Ma and C. Soukoulis, “Schrödinger equation with imaginary potential,” Physica B,  296, 107–111 (2001).
    [CrossRef]
  37. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  38. K. Selanger, A. J. Falnes, and T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81, 1960–1963 (1977).
    [CrossRef]

2006 (7)

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef] [PubMed]

A. Alu and N. Engheta, “Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. B 23, 571–583 (2006).
[CrossRef]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium”, Opt. Lett. 31, 3022–3024 (2006).
[CrossRef] [PubMed]

A. A. Govyadinov and V. A. Podolskiy, “Gain-assisted slow to superluminal group velocity manipulation in nano-waveguides,” Phys. Rev. Lett. 97, 223902 (2006).
[CrossRef] [PubMed]

Y. Chen, P. Fisher, and F. W. Wise, “Chen, Fischer, and Wise reply”, Phys. Rev. Lett. 96, 159702 (2006).
[CrossRef]

T. Mackay and A. Lakhtakia, Comment on “negative refraction at optical frequencies in nonmagnetic two-component molecular media”, Phys. Rev. Lett. 96. 159701 (2006).
[CrossRef] [PubMed]

2005 (5)

Y. Chen, P. Fisher, and F. W. Wise, “Negative refraction at optical frequencies in nonmagnetic two-component molecular media,” Phys. Rev. Lett. 95, 067402 (2005).
[CrossRef] [PubMed]

J. Seidel, S. Grafstroem, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef] [PubMed]

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and S. Marin, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

A. Boltasseva, S. I. Bozhevolnyi, T. Søndergaard, T. Nikolajsen, and L. Kristjan, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13, 4237–4243 (2005).
[CrossRef] [PubMed]

V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative Index of Refraction in Optical Metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
[CrossRef]

2004 (4)

M. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85, 5040–5042 (2004).
[CrossRef]

I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain”, Phys. Rev. B 70, 155416 (2004).
[CrossRef]

M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004).
[CrossRef] [PubMed]

2003 (3)

D. Bergman and M. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: quantum generation of coherent Surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

I. Avrutsky, “Guided modes in a uniaxial multilayer,” J. Opt. Soc. A 20, 548–556 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
[CrossRef] [PubMed]

2002 (2)

S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89, 186801 (2002).
[CrossRef] [PubMed]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-hand materials,” J. Nonlinear Opt. Phys. Mater. 11, 65–74 (2002).
[CrossRef]

2001 (2)

X. Ma and C. Soukoulis, “Schrödinger equation with imaginary potential,” Physica B,  296, 107–111 (2001).
[CrossRef]

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056625 (2001).
[CrossRef]

1998 (2)

C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A Y. Cho, “Long-wavelength (λ≈8–11.5 µm) semiconductor lasers with waveguides based on surface plasmons,” Opt. Lett. 23, 1366–1368 (1998).
[CrossRef]

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

1997 (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1104 (1997).
[CrossRef] [PubMed]

1989 (1)

A. N. Sudarkin and P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

1979 (1)

1977 (1)

K. Selanger, A. J. Falnes, and T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81, 1960–1963 (1977).
[CrossRef]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

1973 (1)

R. H. Ritchie, “Surface plasmosns in solids,” Surf. Sci. 34, 1–19 (1973).
[CrossRef]

1972 (2)

B. Ya. Kogan, V. M. Volkov, and S. A. Lebedev, “Superluminescence and generation of stimulated radiation under internal-reflection conditions,” JETP Lett. 16, 100–105 (1972).

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi 10, 509–514 (1968).
[CrossRef]

Adegoke, J.

Alu, A.

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
[CrossRef] [PubMed]

Avrutsky, I.

I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain”, Phys. Rev. B 70, 155416 (2004).
[CrossRef]

I. Avrutsky, “Guided modes in a uniaxial multilayer,” J. Opt. Soc. A 20, 548–556 (2003).
[CrossRef]

Bahoura, M.

Bergman, D.

D. Bergman and M. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: quantum generation of coherent Surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Boltasseva, A.

Bozhevolnyi, S. I.

A. Boltasseva, S. I. Bozhevolnyi, T. Søndergaard, T. Nikolajsen, and L. Kristjan, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13, 4237–4243 (2005).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89, 186801 (2002).
[CrossRef] [PubMed]

Cai, W.

Capasso, F.

Chen, Y.

Y. Chen, P. Fisher, and F. W. Wise, “Chen, Fischer, and Wise reply”, Phys. Rev. Lett. 96, 159702 (2006).
[CrossRef]

Y. Chen, P. Fisher, and F. W. Wise, “Negative refraction at optical frequencies in nonmagnetic two-component molecular media,” Phys. Rev. Lett. 95, 067402 (2005).
[CrossRef] [PubMed]

Chettiar, U.

Cho, A Y.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Demkovich, P. A.

A. N. Sudarkin and P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).

Dolling, G.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef] [PubMed]

Drachev, V. P.

Ebbesen, T. W.

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1104 (1997).
[CrossRef] [PubMed]

Eng, L.

J. Seidel, S. Grafstroem, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef] [PubMed]

Engheta, N.

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef] [PubMed]

Fainman, Y.

Faist, J.

Falnes, A. J.

K. Selanger, A. J. Falnes, and T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81, 1960–1963 (1977).
[CrossRef]

Fan, S.

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Fisher, P.

Y. Chen, P. Fisher, and F. W. Wise, “Chen, Fischer, and Wise reply”, Phys. Rev. Lett. 96, 159702 (2006).
[CrossRef]

Y. Chen, P. Fisher, and F. W. Wise, “Negative refraction at optical frequencies in nonmagnetic two-component molecular media,” Phys. Rev. Lett. 95, 067402 (2005).
[CrossRef] [PubMed]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Ghaemi, H. F.

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Gmachl, C.

Govyadinov, A. A.

A. A. Govyadinov and V. A. Podolskiy, “Gain-assisted slow to superluminal group velocity manipulation in nano-waveguides,” Phys. Rev. Lett. 97, 223902 (2006).
[CrossRef] [PubMed]

Grafstroem, S.

J. Seidel, S. Grafstroem, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef] [PubMed]

Grupp, D. E.

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
[CrossRef] [PubMed]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Heyman, E.

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056625 (2001).
[CrossRef]

Hutchinson, A. L.

Ibanescu, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and S. Marin, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Joannopoulos, J. D.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and S. Marin, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Karalis, A.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and S. Marin, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
[CrossRef] [PubMed]

Kildishev, A. V.

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
[CrossRef] [PubMed]

Kogan, B. Ya.

B. Ya. Kogan, V. M. Volkov, and S. A. Lebedev, “Superluminescence and generation of stimulated radiation under internal-reflection conditions,” JETP Lett. 16, 100–105 (1972).

Kristjan, L.

Lakhtakia, A.

T. Mackay and A. Lakhtakia, Comment on “negative refraction at optical frequencies in nonmagnetic two-component molecular media”, Phys. Rev. Lett. 96. 159701 (2006).
[CrossRef] [PubMed]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Course of theoretical physics, vol.8, ch.86. (Reed, Oxford, UK1984).

Lawandy, N. M.

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85, 5040–5042 (2004).
[CrossRef]

Lebedev, S. A.

B. Ya. Kogan, V. M. Volkov, and S. A. Lebedev, “Superluminescence and generation of stimulated radiation under internal-reflection conditions,” JETP Lett. 16, 100–105 (1972).

Leosson, K.

S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89, 186801 (2002).
[CrossRef] [PubMed]

Lezec, H. J.

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Lidorikis, E.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and S. Marin, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Course of theoretical physics, vol.8, ch.86. (Reed, Oxford, UK1984).

Linden, S.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef] [PubMed]

Ma, X.

X. Ma and C. Soukoulis, “Schrödinger equation with imaginary potential,” Physica B,  296, 107–111 (2001).
[CrossRef]

Mackay, T.

T. Mackay and A. Lakhtakia, Comment on “negative refraction at optical frequencies in nonmagnetic two-component molecular media”, Phys. Rev. Lett. 96. 159701 (2006).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
[CrossRef] [PubMed]

Marin, S.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and S. Marin, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
[CrossRef] [PubMed]

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Nezhad, M. P.

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1104 (1997).
[CrossRef] [PubMed]

Nikolajsen, T.

Noginov, M. A.

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Plotz, G. A.

Podolskiy, V. A.

A. A. Govyadinov and V. A. Podolskiy, “Gain-assisted slow to superluminal group velocity manipulation in nano-waveguides,” Phys. Rev. Lett. 97, 223902 (2006).
[CrossRef] [PubMed]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-hand materials,” J. Nonlinear Opt. Phys. Mater. 11, 65–74 (2002).
[CrossRef]

Raether, H.

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer-Verlag, Berlin, 1988).

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
[CrossRef] [PubMed]

Ritchie, R. H.

R. H. Ritchie, “Surface plasmosns in solids,” Surf. Sci. 34, 1–19 (1973).
[CrossRef]

Ritzo, B. A.

Sarychev, A. K.

V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative Index of Refraction in Optical Metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-hand materials,” J. Nonlinear Opt. Phys. Mater. 11, 65–74 (2002).
[CrossRef]

Seidel, J.

J. Seidel, S. Grafstroem, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef] [PubMed]

Selanger, K.

K. Selanger, A. J. Falnes, and T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81, 1960–1963 (1977).
[CrossRef]

Shalaev, V. M.

Shin, H.

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

Sikkeland, T.

K. Selanger, A. J. Falnes, and T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81, 1960–1963 (1977).
[CrossRef]

Simon, H. J.

Sirtori, C.

Sivco, D. L.

Small, C. E.

Søndergaard, T.

Soukoulis, C.

X. Ma and C. Soukoulis, “Schrödinger equation with imaginary potential,” Physica B,  296, 107–111 (2001).
[CrossRef]

Soukoulis, C. M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef] [PubMed]

Stockman, M.

M. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

D. Bergman and M. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: quantum generation of coherent Surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Sudarkin, A. N.

A. N. Sudarkin and P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).

Tetz, K.

Thio, Tineke

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Tucciarone, J. M.

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi 10, 509–514 (1968).
[CrossRef]

Volkov, V. M.

B. Ya. Kogan, V. M. Volkov, and S. A. Lebedev, “Superluminescence and generation of stimulated radiation under internal-reflection conditions,” JETP Lett. 16, 100–105 (1972).

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89, 186801 (2002).
[CrossRef] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Wegener, M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef] [PubMed]

Wise, F. W.

Y. Chen, P. Fisher, and F. W. Wise, “Chen, Fischer, and Wise reply”, Phys. Rev. Lett. 96, 159702 (2006).
[CrossRef]

Y. Chen, P. Fisher, and F. W. Wise, “Negative refraction at optical frequencies in nonmagnetic two-component molecular media,” Phys. Rev. Lett. 95, 067402 (2005).
[CrossRef] [PubMed]

Yuan, H.-K.

Zhu, G.

Ziolkowski, R. W.

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056625 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85, 5040–5042 (2004).
[CrossRef]

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-hand materials,” J. Nonlinear Opt. Phys. Mater. 11, 65–74 (2002).
[CrossRef]

J. Opt. Soc. A (1)

I. Avrutsky, “Guided modes in a uniaxial multilayer,” J. Opt. Soc. A 20, 548–556 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

K. Selanger, A. J. Falnes, and T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81, 1960–1963 (1977).
[CrossRef]

JETP Lett. (1)

B. Ya. Kogan, V. M. Volkov, and S. A. Lebedev, “Superluminescence and generation of stimulated radiation under internal-reflection conditions,” JETP Lett. 16, 100–105 (1972).

Nature Materials (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (3)

H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain”, Phys. Rev. B 70, 155416 (2004).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. E (1)

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056625 (2001).
[CrossRef]

Phys. Rev. Lett. (11)

A. A. Govyadinov and V. A. Podolskiy, “Gain-assisted slow to superluminal group velocity manipulation in nano-waveguides,” Phys. Rev. Lett. 97, 223902 (2006).
[CrossRef] [PubMed]

D. Bergman and M. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: quantum generation of coherent Surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Y. Chen, P. Fisher, and F. W. Wise, “Negative refraction at optical frequencies in nonmagnetic two-component molecular media,” Phys. Rev. Lett. 95, 067402 (2005).
[CrossRef] [PubMed]

Y. Chen, P. Fisher, and F. W. Wise, “Chen, Fischer, and Wise reply”, Phys. Rev. Lett. 96, 159702 (2006).
[CrossRef]

T. Mackay and A. Lakhtakia, Comment on “negative refraction at optical frequencies in nonmagnetic two-component molecular media”, Phys. Rev. Lett. 96. 159701 (2006).
[CrossRef] [PubMed]

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89, 186801 (2002).
[CrossRef] [PubMed]

J. Seidel, S. Grafstroem, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef] [PubMed]

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and S. Marin, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

M. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

Physica B (1)

X. Ma and C. Soukoulis, “Schrödinger equation with imaginary potential,” Physica B,  296, 107–111 (2001).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Science (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1104 (1997).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef] [PubMed]

Sov. Phys. Tech. Phys. (1)

A. N. Sudarkin and P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).

Soviet Physics Uspekhi (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi 10, 509–514 (1968).
[CrossRef]

Surf. Sci. (1)

R. H. Ritchie, “Surface plasmosns in solids,” Surf. Sci. 34, 1–19 (1973).
[CrossRef]

Other (2)

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer-Verlag, Berlin, 1988).

L. D. Landau and E. M. Lifshitz, Course of theoretical physics, vol.8, ch.86. (Reed, Oxford, UK1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of SPP excitation. (b) Reflectivity R as a function of angle θ. Traces - solutions of exact Eq. (3). Dots - solution of approximate Eq. (5). For all data sets: ε1 =-15.584+0.424i, d1 =60 nm. Trace 1: dielectric with very small loss, ε2 =2.25+10-5i. Traces 2–4: dielectric with very small gain, ε2 =2.25-10-5i. Trace 2 and dots: cut of the complex plane along negative imaginary axis (correct; nearly overlaps with trace 1; no discontinuity at the transition from small loss to small gain). Trace 3: cut along positive real axis (yields incorrect predictions for incident angles below total internal reflection). Trace 4: cut along negative real axis (yields incorrect predictions for incident angles above total internal reflection).

Fig. 2.
Fig. 2.

Reflectivity R [Eq.(5)] of the three-layer system depicted in Fig. 1(a) as a function of angle θ and gain (given by imaginary part of ε2 ); (a) d1 =70nm, (b) d1 =39 nm.

Fig. 3.
Fig. 3.

Inverse propagation length of SPP, L-1 , in the system depicted in Fig.1(a) as a function of gain in dielectric, ε2 ″. Solid line - solution of Eq. (6), dots - exact numerical solution of Maxwell equations. Top inset: intensity distribution across the system; the arrows represent the directions of excitation beam; reflected beam; SPP propagation; and radiative SPP decay; angle of incidence: 65°(note different scale in x and z directions). Bottom inset: Exponential decay of the SPP wave intensity |E|2 (shown in the top inset) along the propagation in the x direction.

Fig. 4.
Fig. 4.

(a) Reflectivity R(θ) measured without (diamonds) and with (circles) optical pumping in the glass-silver-R6G/PMMA structure. Dashed lines - guides for eye. Solid lines - fitting with Eq. (3) at ε0 ′=n2 0 =1.7842=3.183, ε0 ″=0, ε1 ′=-15, ε1 ″=0.85, d1 =39 nm, ε2 ′=n2 2 =1.52=2.25, ε2 ″≈0 (trace 1) and ε2 ″≈-0.006 (trace 2). Inset: Reflectivity R(θ) recorded in the same system without pumping (dots) and its fitting with Eq. (3) (solid line). (b) Reflectivity kinetics recorded under pumping. The angle θ corresponds to the minimum of the reflectivity; d1 =39 nm. Inset: Reflectivity kinetics recorded in a thick film (d1 =90 nm) shows a ‘dip’ at small values of gain.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

k x 0 = ω c ε 1 ε 2 ε 1 + ε 2 ,
k x ( θ ) = ( ω c ) n 0 sin θ 0 ,
R ( θ ) = r 01 + r 12 exp ( 2 i k z 1 d 1 ) 1 + r 01 r 12 exp ( 2 i k z 1 d 1 ) 2 ,
k zi = ± ε i ( ω c ) 2 k x ( θ ) 2 , i = 0 , 1 , 2 .
R ( θ ) r 01 0 2 [ 1 4 γ i γ r + δ ( θ ) ( k x k x 0 Δ k x 0 ) 2 + ( γ i + γ r ) 2 ] ,
L = [ 2 ( γ i + γ r ) ] 1 ,
γ i = k x 0 = ω 2 c ( ε 1 ε 2 ε 1 + ε 2 ) 3 2 ( ε 1 ε 1 2 + ε 2 ε 2 2 ) .
γ r = Im ( r 01 e i 2 k z 0 d 1 ) ξ .
Δ k x 0 = Re ( r 01 e i 2 k z 0 d 1 ) ξ .
ε 2 = ε 1 ε 2 2 ε 1 2 .

Metrics