Abstract

We propose a unique method determining an upper limit of extraction efficiency of the surface plasmon-polaritons (SPPs), ESP, which are highly confined on a corrugated metal surface. The method is based on measurement of the spectral bandwidth of a grating-induced absorption spectrum as a function of metal dielectric constant. After finding the fact that ESP exhibits an extremely linear relationship with the collision frequency Γ of metal over a SPP band below the surface plasmon frequency, an upper limit of ESP can be determined by an asymptotic estimation as Γ→0 for total decay rates of the confined SPPs. Our method based on the bandwidth measurement is inherently free from the ambiguity and underestimation difficulties pertaining to the previous prism-coupling approaches for ESP estimation. It will also be quite applicable for evaluating SPP-mediated light-emitting diodes (LEDs) of which total external efficiency is dominantly restricted by the upper limit of ESP. Especially for the case when SPP excitation probability approaches unity, the proposed method would excellently figure out the maximum realizable external efficiency of SPP-mediated LEDs.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  2. E. Ozbay, "Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
    [CrossRef] [PubMed]
  3. R. A. Amos and W. L. Barnes, "Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror," Phys. Rev. B 55, 7249-7254 (1997).
    [CrossRef]
  4. W. L. Barnes and P. T. Worthing, "Spontaneous emission and metal-clad microcavities," Opt. Commun. 162, 16-20 (1999).
    [CrossRef]
  5. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B 60, 11564-11567 (1999).
    [CrossRef]
  6. J. Vuckovic, M. Loncar, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 11331-1144 (2000).
    [CrossRef]
  7. W. L. Barnes, "Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices," J. Lightwave Technol. 17, 2170-2182 (1999).
    [CrossRef]
  8. P. A. Hobson, A. A. E. Wasey, I. Sage, and W. L. Barnes, "Role of surface plasmons in organic light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 378-386 (2002).
    [CrossRef]
  9. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
    [CrossRef]
  10. K. Okamoto, I. Niki, A. Shavartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mat. 3, 601-605 (2004).
    [CrossRef]
  11. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).
    [CrossRef]
  12. G. Sun, J. B. Khurgin, and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007).
    [CrossRef]
  13. J. Yoon, K. Choi, D. Shin, S. H. Song, H. S. Won, J. H. Kim, and J. M. Lee, "Enhanced external efficiency of inGaN/GaN quantum well light-emitting diodes by mediating surface plasmon-polaritons," J. Korean Phys. Soc. 50, 1009-1017 (2007).
    [CrossRef]
  14. J. Moreland, A. Adams, and P. K. Hansma, "Efficiency of light emission from surface plasmons," Phys. Rev. B 25, 2297-2300 (1982).
    [CrossRef]
  15. P. T. Worthing and W. L. Barnes, "Efficient coupling of surface plasmon polaritons to radiation using a bi-grating," Appl. Phys. Lett. 79, 3035-3037 (2001).
    [CrossRef]
  16. P. T. Worthing and W. L. Barnes, "Coupling efficiency of surface plasmon polaritons to radiation using a corrugated surface; angular dependence," J. Mod. Opt. 49, 1453-1462 (2002).
    [CrossRef]
  17. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, "Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings," Opt. Lett. 28, 1870-1872 (2003).
    [CrossRef] [PubMed]
  18. A. Giannattasio, I. R. Hooper, and W. L. Barnes, "Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons," Opt. Commun. 261, 291-295 (2006).
    [CrossRef]
  19. E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. 23A, 2135-2136 (1968).
  20. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
    [CrossRef]
  21. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin, 1988).
  22. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396 (1902).
  23. U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves)," J. Opt. Soc. Am. 31, 213-222 (1941).
    [CrossRef]
  24. D. Maystre, M. Neviere, and P. Vincent, "On the general theory of anomalies and energy absorption by diffraction grating and their relation with surface waves," Optica Acta 25, 905-915 (1978).
    [CrossRef]
  25. A. Sharon, G. Glasberg, D. Rosenblatt, and A. A. Friesem, "Metal-based resonant grating waveguide structures," J. Opt. Soc. Am. A 14, 588-595 (1997).
    [CrossRef]
  26. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982).
    [CrossRef]
  27. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of continuous media 2nd Ed., Translated by J. B. Sykes, J. S. Bell, and M. J. Kearsley, (Elsevier Butterworth-Heinmann, Oxford, 1984).
    [PubMed]
  28. E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, San Diego, 1998).
  29. J. C. Maxwell-Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London 203, 385-420 (1904).
    [CrossRef]
  30. J. A. McKay and J. A. Rayne, "Temperature dependence of the infrared absorptivity of the noble metals," Phys. Rev. B 13, 673-685 (1976).
    [CrossRef]
  31. M.D. Tillin and J. R. Sambles, "Phonon assisted absorption in thin Ag films using surface plasmon-polaritons," J. Phys.: Condens. Matter 2, 7055-7059 (1990).
    [CrossRef]

2007 (2)

G. Sun, J. B. Khurgin, and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

J. Yoon, K. Choi, D. Shin, S. H. Song, H. S. Won, J. H. Kim, and J. M. Lee, "Enhanced external efficiency of inGaN/GaN quantum well light-emitting diodes by mediating surface plasmon-polaritons," J. Korean Phys. Soc. 50, 1009-1017 (2007).
[CrossRef]

2006 (2)

E. Ozbay, "Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

A. Giannattasio, I. R. Hooper, and W. L. Barnes, "Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons," Opt. Commun. 261, 291-295 (2006).
[CrossRef]

2005 (1)

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

2004 (1)

K. Okamoto, I. Niki, A. Shavartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mat. 3, 601-605 (2004).
[CrossRef]

2003 (2)

2002 (3)

P. T. Worthing and W. L. Barnes, "Coupling efficiency of surface plasmon polaritons to radiation using a corrugated surface; angular dependence," J. Mod. Opt. 49, 1453-1462 (2002).
[CrossRef]

P. A. Hobson, A. A. E. Wasey, I. Sage, and W. L. Barnes, "Role of surface plasmons in organic light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 378-386 (2002).
[CrossRef]

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

2001 (1)

P. T. Worthing and W. L. Barnes, "Efficient coupling of surface plasmon polaritons to radiation using a bi-grating," Appl. Phys. Lett. 79, 3035-3037 (2001).
[CrossRef]

2000 (1)

J. Vuckovic, M. Loncar, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 11331-1144 (2000).
[CrossRef]

1999 (3)

W. L. Barnes, "Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices," J. Lightwave Technol. 17, 2170-2182 (1999).
[CrossRef]

W. L. Barnes and P. T. Worthing, "Spontaneous emission and metal-clad microcavities," Opt. Commun. 162, 16-20 (1999).
[CrossRef]

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B 60, 11564-11567 (1999).
[CrossRef]

1997 (2)

R. A. Amos and W. L. Barnes, "Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror," Phys. Rev. B 55, 7249-7254 (1997).
[CrossRef]

A. Sharon, G. Glasberg, D. Rosenblatt, and A. A. Friesem, "Metal-based resonant grating waveguide structures," J. Opt. Soc. Am. A 14, 588-595 (1997).
[CrossRef]

1990 (1)

M.D. Tillin and J. R. Sambles, "Phonon assisted absorption in thin Ag films using surface plasmon-polaritons," J. Phys.: Condens. Matter 2, 7055-7059 (1990).
[CrossRef]

1982 (2)

M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982).
[CrossRef]

J. Moreland, A. Adams, and P. K. Hansma, "Efficiency of light emission from surface plasmons," Phys. Rev. B 25, 2297-2300 (1982).
[CrossRef]

1978 (1)

D. Maystre, M. Neviere, and P. Vincent, "On the general theory of anomalies and energy absorption by diffraction grating and their relation with surface waves," Optica Acta 25, 905-915 (1978).
[CrossRef]

1976 (1)

J. A. McKay and J. A. Rayne, "Temperature dependence of the infrared absorptivity of the noble metals," Phys. Rev. B 13, 673-685 (1976).
[CrossRef]

1968 (2)

E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. 23A, 2135-2136 (1968).

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef]

1941 (1)

1904 (1)

J. C. Maxwell-Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London 203, 385-420 (1904).
[CrossRef]

1902 (1)

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396 (1902).

Adams, A.

J. Moreland, A. Adams, and P. K. Hansma, "Efficiency of light emission from surface plasmons," Phys. Rev. B 25, 2297-2300 (1982).
[CrossRef]

Amos, R. A.

R. A. Amos and W. L. Barnes, "Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror," Phys. Rev. B 55, 7249-7254 (1997).
[CrossRef]

Barnes, W. L.

A. Giannattasio, I. R. Hooper, and W. L. Barnes, "Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons," Opt. Commun. 261, 291-295 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

P. T. Worthing and W. L. Barnes, "Coupling efficiency of surface plasmon polaritons to radiation using a corrugated surface; angular dependence," J. Mod. Opt. 49, 1453-1462 (2002).
[CrossRef]

P. A. Hobson, A. A. E. Wasey, I. Sage, and W. L. Barnes, "Role of surface plasmons in organic light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 378-386 (2002).
[CrossRef]

P. T. Worthing and W. L. Barnes, "Efficient coupling of surface plasmon polaritons to radiation using a bi-grating," Appl. Phys. Lett. 79, 3035-3037 (2001).
[CrossRef]

W. L. Barnes and P. T. Worthing, "Spontaneous emission and metal-clad microcavities," Opt. Commun. 162, 16-20 (1999).
[CrossRef]

W. L. Barnes, "Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices," J. Lightwave Technol. 17, 2170-2182 (1999).
[CrossRef]

R. A. Amos and W. L. Barnes, "Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror," Phys. Rev. B 55, 7249-7254 (1997).
[CrossRef]

Boroditsky, M.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B 60, 11564-11567 (1999).
[CrossRef]

Choi, K.

J. Yoon, K. Choi, D. Shin, S. H. Song, H. S. Won, J. H. Kim, and J. M. Lee, "Enhanced external efficiency of inGaN/GaN quantum well light-emitting diodes by mediating surface plasmon-polaritons," J. Korean Phys. Soc. 50, 1009-1017 (2007).
[CrossRef]

DenBaars, S. P.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B 60, 11564-11567 (1999).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Everitt, H. O.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Fano, U.

Friesem, A. A.

Gaylord, T. K.

Giannattasio, A.

A. Giannattasio, I. R. Hooper, and W. L. Barnes, "Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons," Opt. Commun. 261, 291-295 (2006).
[CrossRef]

Glasberg, G.

Gontijo, I.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B 60, 11564-11567 (1999).
[CrossRef]

Hansma, P. K.

J. Moreland, A. Adams, and P. K. Hansma, "Efficiency of light emission from surface plasmons," Phys. Rev. B 25, 2297-2300 (1982).
[CrossRef]

Hobson, P. A.

P. A. Hobson, A. A. E. Wasey, I. Sage, and W. L. Barnes, "Role of surface plasmons in organic light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 378-386 (2002).
[CrossRef]

Hooper, I. R.

A. Giannattasio, I. R. Hooper, and W. L. Barnes, "Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons," Opt. Commun. 261, 291-295 (2006).
[CrossRef]

Kawakami, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

Keller, S.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B 60, 11564-11567 (1999).
[CrossRef]

Khurgin, J. B.

G. Sun, J. B. Khurgin, and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

Kim, J. H.

J. Yoon, K. Choi, D. Shin, S. H. Song, H. S. Won, J. H. Kim, and J. M. Lee, "Enhanced external efficiency of inGaN/GaN quantum well light-emitting diodes by mediating surface plasmon-polaritons," J. Korean Phys. Soc. 50, 1009-1017 (2007).
[CrossRef]

Kim, P. S.

Kretschmann, E.

E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. 23A, 2135-2136 (1968).

Kuroda, T.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Lee, C.-W.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Lee, G.

Lee, J. M.

J. Yoon, K. Choi, D. Shin, S. H. Song, H. S. Won, J. H. Kim, and J. M. Lee, "Enhanced external efficiency of inGaN/GaN quantum well light-emitting diodes by mediating surface plasmon-polaritons," J. Korean Phys. Soc. 50, 1009-1017 (2007).
[CrossRef]

Loncar, M.

J. Vuckovic, M. Loncar, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 11331-1144 (2000).
[CrossRef]

Maxwell-Garnett, J. C.

J. C. Maxwell-Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London 203, 385-420 (1904).
[CrossRef]

Maystre, D.

D. Maystre, M. Neviere, and P. Vincent, "On the general theory of anomalies and energy absorption by diffraction grating and their relation with surface waves," Optica Acta 25, 905-915 (1978).
[CrossRef]

McKay, J. A.

J. A. McKay and J. A. Rayne, "Temperature dependence of the infrared absorptivity of the noble metals," Phys. Rev. B 13, 673-685 (1976).
[CrossRef]

Mishra, U. K.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B 60, 11564-11567 (1999).
[CrossRef]

Moharam, M. G.

Moreland, J.

J. Moreland, A. Adams, and P. K. Hansma, "Efficiency of light emission from surface plasmons," Phys. Rev. B 25, 2297-2300 (1982).
[CrossRef]

Mukai, T.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shavartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mat. 3, 601-605 (2004).
[CrossRef]

Narukawa, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shavartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mat. 3, 601-605 (2004).
[CrossRef]

Neogi, A.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Neviere, M.

D. Maystre, M. Neviere, and P. Vincent, "On the general theory of anomalies and energy absorption by diffraction grating and their relation with surface waves," Optica Acta 25, 905-915 (1978).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shavartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mat. 3, 601-605 (2004).
[CrossRef]

Oh, C. H.

Okamoto, K.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shavartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mat. 3, 601-605 (2004).
[CrossRef]

Otto, A.

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef]

Ozbay, E.

E. Ozbay, "Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Park, S.

Raether, H.

E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. 23A, 2135-2136 (1968).

Rayne, J. A.

J. A. McKay and J. A. Rayne, "Temperature dependence of the infrared absorptivity of the noble metals," Phys. Rev. B 13, 673-685 (1976).
[CrossRef]

Rosenblatt, D.

Sage, I.

P. A. Hobson, A. A. E. Wasey, I. Sage, and W. L. Barnes, "Role of surface plasmons in organic light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 378-386 (2002).
[CrossRef]

Sambles, J. R.

M.D. Tillin and J. R. Sambles, "Phonon assisted absorption in thin Ag films using surface plasmon-polaritons," J. Phys.: Condens. Matter 2, 7055-7059 (1990).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shavartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mat. 3, 601-605 (2004).
[CrossRef]

J. Vuckovic, M. Loncar, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 11331-1144 (2000).
[CrossRef]

Sharon, A.

Shavartser, A.

K. Okamoto, I. Niki, A. Shavartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mat. 3, 601-605 (2004).
[CrossRef]

Shin, D.

J. Yoon, K. Choi, D. Shin, S. H. Song, H. S. Won, J. H. Kim, and J. M. Lee, "Enhanced external efficiency of inGaN/GaN quantum well light-emitting diodes by mediating surface plasmon-polaritons," J. Korean Phys. Soc. 50, 1009-1017 (2007).
[CrossRef]

Song, S. H.

J. Yoon, K. Choi, D. Shin, S. H. Song, H. S. Won, J. H. Kim, and J. M. Lee, "Enhanced external efficiency of inGaN/GaN quantum well light-emitting diodes by mediating surface plasmon-polaritons," J. Korean Phys. Soc. 50, 1009-1017 (2007).
[CrossRef]

S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, "Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings," Opt. Lett. 28, 1870-1872 (2003).
[CrossRef] [PubMed]

Soref, R. A.

G. Sun, J. B. Khurgin, and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

Sun, G.

G. Sun, J. B. Khurgin, and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

Tackeuchi, A.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Tillin, M.D.

M.D. Tillin and J. R. Sambles, "Phonon assisted absorption in thin Ag films using surface plasmon-polaritons," J. Phys.: Condens. Matter 2, 7055-7059 (1990).
[CrossRef]

Vincent, P.

D. Maystre, M. Neviere, and P. Vincent, "On the general theory of anomalies and energy absorption by diffraction grating and their relation with surface waves," Optica Acta 25, 905-915 (1978).
[CrossRef]

Vuckovic, J.

J. Vuckovic, M. Loncar, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 11331-1144 (2000).
[CrossRef]

Wasey, A. A. E.

P. A. Hobson, A. A. E. Wasey, I. Sage, and W. L. Barnes, "Role of surface plasmons in organic light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 378-386 (2002).
[CrossRef]

Won, H. S.

J. Yoon, K. Choi, D. Shin, S. H. Song, H. S. Won, J. H. Kim, and J. M. Lee, "Enhanced external efficiency of inGaN/GaN quantum well light-emitting diodes by mediating surface plasmon-polaritons," J. Korean Phys. Soc. 50, 1009-1017 (2007).
[CrossRef]

Wood, R. W.

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396 (1902).

Worthing, P. T.

P. T. Worthing and W. L. Barnes, "Coupling efficiency of surface plasmon polaritons to radiation using a corrugated surface; angular dependence," J. Mod. Opt. 49, 1453-1462 (2002).
[CrossRef]

P. T. Worthing and W. L. Barnes, "Efficient coupling of surface plasmon polaritons to radiation using a bi-grating," Appl. Phys. Lett. 79, 3035-3037 (2001).
[CrossRef]

W. L. Barnes and P. T. Worthing, "Spontaneous emission and metal-clad microcavities," Opt. Commun. 162, 16-20 (1999).
[CrossRef]

Yablonovitch, E.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B 60, 11564-11567 (1999).
[CrossRef]

Yoon, J.

J. Yoon, K. Choi, D. Shin, S. H. Song, H. S. Won, J. H. Kim, and J. M. Lee, "Enhanced external efficiency of inGaN/GaN quantum well light-emitting diodes by mediating surface plasmon-polaritons," J. Korean Phys. Soc. 50, 1009-1017 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

P. T. Worthing and W. L. Barnes, "Efficient coupling of surface plasmon polaritons to radiation using a bi-grating," Appl. Phys. Lett. 79, 3035-3037 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Vuckovic, M. Loncar, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 11331-1144 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. A. Hobson, A. A. E. Wasey, I. Sage, and W. L. Barnes, "Role of surface plasmons in organic light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 378-386 (2002).
[CrossRef]

J. Korean Phys. Soc. (1)

J. Yoon, K. Choi, D. Shin, S. H. Song, H. S. Won, J. H. Kim, and J. M. Lee, "Enhanced external efficiency of inGaN/GaN quantum well light-emitting diodes by mediating surface plasmon-polaritons," J. Korean Phys. Soc. 50, 1009-1017 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

P. T. Worthing and W. L. Barnes, "Coupling efficiency of surface plasmon polaritons to radiation using a corrugated surface; angular dependence," J. Mod. Opt. 49, 1453-1462 (2002).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Phys.: Condens. Matter (1)

M.D. Tillin and J. R. Sambles, "Phonon assisted absorption in thin Ag films using surface plasmon-polaritons," J. Phys.: Condens. Matter 2, 7055-7059 (1990).
[CrossRef]

Nat. Mat. (1)

K. Okamoto, I. Niki, A. Shavartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mat. 3, 601-605 (2004).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

W. L. Barnes and P. T. Worthing, "Spontaneous emission and metal-clad microcavities," Opt. Commun. 162, 16-20 (1999).
[CrossRef]

A. Giannattasio, I. R. Hooper, and W. L. Barnes, "Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons," Opt. Commun. 261, 291-295 (2006).
[CrossRef]

Opt. Lett. (1)

Optica Acta (1)

D. Maystre, M. Neviere, and P. Vincent, "On the general theory of anomalies and energy absorption by diffraction grating and their relation with surface waves," Optica Acta 25, 905-915 (1978).
[CrossRef]

Phil. Mag. (1)

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396 (1902).

Philos. Trans. R. Soc. London (1)

J. C. Maxwell-Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London 203, 385-420 (1904).
[CrossRef]

Phys. Rev. B (5)

J. A. McKay and J. A. Rayne, "Temperature dependence of the infrared absorptivity of the noble metals," Phys. Rev. B 13, 673-685 (1976).
[CrossRef]

R. A. Amos and W. L. Barnes, "Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror," Phys. Rev. B 55, 7249-7254 (1997).
[CrossRef]

J. Moreland, A. Adams, and P. K. Hansma, "Efficiency of light emission from surface plasmons," Phys. Rev. B 25, 2297-2300 (1982).
[CrossRef]

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B 60, 11564-11567 (1999).
[CrossRef]

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Science (1)

E. Ozbay, "Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Z. Naturforsch. (1)

E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. 23A, 2135-2136 (1968).

Z. Phys. (1)

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef]

Other (3)

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin, 1988).

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of continuous media 2nd Ed., Translated by J. B. Sykes, J. S. Bell, and M. J. Kearsley, (Elsevier Butterworth-Heinmann, Oxford, 1984).
[PubMed]

E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, San Diego, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of a system under consideration.

Fig. 2.
Fig. 2.

(a) 0th reflectance as a function of frequency and in-plane wavevector. (b) Absorption, 0th and 1st order reflection for θ=0°. (c) Magnified absorption spectrum for the 1st order SPR at θ=0°. A lighter grey curve is corresponding to a smaller collision frequency. (d) Extracted total decay rate as a function of collision frequency by a least-square fitting of (c) to a single-Lorentzian function.

Fig. 3.
Fig. 3.

(a) Total decay rates as functions of collision frequency for different grating periods. They are all extracted from 1st order SPR at θ=0°. (b) Dispersion curve (square symbols) obtained from 1st order SPR frequencies and primitive Bragg vectors as in-plane wavevectors corresponding to lines indicated in (a). Solid curve tracing the square symbols represents a dispersion of the SPP for the effective dielectric film substituting the grating layer. Upper and lower dotted curve indicates a SPP dispersion for Ag/air and Ag/dielectric interface, respectively. (c) Total (γ 1, squares), radiation (γrad , circles), and internal (γint , triangles) decay rates extracted from (a). The solid curve indicates internal decay rate for the effective dielectric film. (d) Resulting extraction efficiency.

Fig. 4.
Fig. 4.

(a) Calculated ATR spectrum for several Ag thicknesses. The SPR is corresponding to 1st order SPR for Λ=400 nm in Fig. 3. (b) Extraction efficiency obtained by ATR method. Dashed line represents the reference value of efficiency taken from Fig. 3 (d) at ω=1.91.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε b k 0 sin θ = ± k SP ( ω ) 2 π q Λ ( q : integer ) ,
A ( θ , ω ) = A b + q C q [ ω ω q ( θ ) ] 2 + γ q ( θ ) 2 ,
γ q ( ε i ) = γ rad + γ int ( r ) [ ε i ε i ( r ) ] ,
E SP = lim Γ 0 γ q [ ε i ( Γ ) ] γ q [ ε i ( r ) ] .
1 τ DC = 4 τ 0 ( T T D ) 5 0 T D T Z 5 ( e Z 1 ) ( 1 e Z ) d Z ,
Γ opt = 1 τ opt = 1 τ 0 [ 2 5 + 4 ( T T D ) 5 0 T D T Z 4 ( e Z 1 ) d Z ] .

Metrics