Abstract

Photodarkening experiments are performed on ytterbium-doped silicate glass samples. A strong charge-transfer (CT) absorption band near 230nm in aluminosilicate glass is found to be correlated to the mechanism of induced color center formation. Excitation into the CT-absorption band generates similar color centers as observed in ytterbium-doped fiber lasers under 915nm high power diode pumping. The position of the CT-absorption band is compositional dependent and is shifted to shorter wavelengths in ytterbium doped phosphosilicate glass. Very low levels of photodarkening is observed for the ytterbium doped phosphosilicate glass composition under 915nm high power diode pumping. Possible excitation routes to reach the CT-absorption band under 915nm pumping are discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Koponen, M. Söderlund, H. Hoffman, D. Kliner, and J. Koplow, "Photodarkening measurements in large mode are fibers," Proc. SPIE 6453, 64531E (2006).
    [CrossRef]
  2. B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P. Martin, and J.-P. de Sandro, "Low photodarkening single cladding ytterbium fibre amplifier," Proc. SPIE 6453 (2007).
    [CrossRef]
  3. M. Engholm, L. Norin, and D. Åberg, "Strong UV-absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV-excitation," Opt. Lett. 32, 3352-3354 (2007).
    [CrossRef] [PubMed]
  4. G. Blasse, "The ultraviolet absorption bands of Bi3+ and Eu3+ in oxides," J. Solid State Chem. 4, 52 (1972).
    [CrossRef]
  5. L. Li and S. Zhang, "Dependence of charge transfer energy on crystal structure and composition in Eu3+-doped compounds," J. Phys. Chem. B 110, 21438-21443 (2006).
    [CrossRef] [PubMed]
  6. L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, "Charge transfer luminescence of Yb3+," J. Lumin. 91, 177-193 (2000).
    [CrossRef]
  7. G. Blasse and B. Grabmaier, eds., Luminescent Materials (Springer-Verlag, Berlin Heidelberg, 1994), p. 83.
  8. M. Cohen and L. Makar, "Models for color centers in smokey quartz," Phys. Status Solidi A 73, 593-596 (1982).
    [CrossRef]
  9. S. Girard, E. Régnier, A. Boukenter, Y. Ouerdane, J.-P. Meunier, and D. Hamdani, "Gamma and UV radiationinduced color centers in optical fibers," Mat. Sci. Forum 480-481, 323-328 (2005).
  10. P. Ebeling, D. Ehrt, and M. Friedrich, "X-ray induced effects in phosphate glasses," Opt. Mater. 20, 101-111 (2002).
    [CrossRef]
  11. J. Hölsä, M. Lastusaari, M. Marysko, and M. Tukia, "A few remarks on the simulation and use of crystal field energy level schemes of the rare earth ions," J. Solid State Chem. 178, 435-440 (2005).
    [CrossRef]
  12. C. Pedrini, "Electronic processes in rare earth activated wide gap materials," Phys. Status Solidi A 2, 185-194 (2005).
    [CrossRef]
  13. T. Ishii, "First-principles calculations for the cooperative transitions of Yb3+ dimer clusters in Y3Al5O12 and Y2O3 crystals," J. Chem. Phys. 122, 024705 (2005).
    [CrossRef] [PubMed]
  14. H. You and M. Nogami, "Three-photon-excited fluorescence of Al2O3-SiO2 glass containing Eu3+ ions by femtosecond laser irradiation," Appl. Phys. Lett. 84, 2076-2078 (2004).
    [CrossRef]
  15. H. You, T. Hayakawa, and M. Nogami, "Upconversion luminescence of Al2O3-SiO2:Ce3+ glass by femtosecond laser irradiation," Appl. Phys. Lett. 85, 3432-3434 (2004).
    [CrossRef]
  16. S. Yoo, C. Basu, A. Boyland, C. Sones, J. Nilsson, J. Sahu, and D. Payne, "Photodarkening in Yb-doped aluminosilicate fibers induced by 488nm irradiation," Opt. Lett. 32, 1626-1628 (2007).
    [CrossRef] [PubMed]
  17. A changed oxidation state of an Mn+ rare-earth-ion caused by ionizing irradiation is often denoted as (Mn+)+ or (Mn+)- instead of M(n+1)+ or M(n-1)+ respectively. This is because the local environment may be different compared to that formed initially in the glass under e.g. heat treatment. This may result in small shifts of the observed absorption bands. The formal charge of the RE-ion is nevertheless the same and we will use the notation M(n+1)+ or M(n-1)+ for an ion with a changed oxidation state.

2007

2006

J. Koponen, M. Söderlund, H. Hoffman, D. Kliner, and J. Koplow, "Photodarkening measurements in large mode are fibers," Proc. SPIE 6453, 64531E (2006).
[CrossRef]

L. Li and S. Zhang, "Dependence of charge transfer energy on crystal structure and composition in Eu3+-doped compounds," J. Phys. Chem. B 110, 21438-21443 (2006).
[CrossRef] [PubMed]

2005

S. Girard, E. Régnier, A. Boukenter, Y. Ouerdane, J.-P. Meunier, and D. Hamdani, "Gamma and UV radiationinduced color centers in optical fibers," Mat. Sci. Forum 480-481, 323-328 (2005).

J. Hölsä, M. Lastusaari, M. Marysko, and M. Tukia, "A few remarks on the simulation and use of crystal field energy level schemes of the rare earth ions," J. Solid State Chem. 178, 435-440 (2005).
[CrossRef]

C. Pedrini, "Electronic processes in rare earth activated wide gap materials," Phys. Status Solidi A 2, 185-194 (2005).
[CrossRef]

T. Ishii, "First-principles calculations for the cooperative transitions of Yb3+ dimer clusters in Y3Al5O12 and Y2O3 crystals," J. Chem. Phys. 122, 024705 (2005).
[CrossRef] [PubMed]

2004

H. You and M. Nogami, "Three-photon-excited fluorescence of Al2O3-SiO2 glass containing Eu3+ ions by femtosecond laser irradiation," Appl. Phys. Lett. 84, 2076-2078 (2004).
[CrossRef]

H. You, T. Hayakawa, and M. Nogami, "Upconversion luminescence of Al2O3-SiO2:Ce3+ glass by femtosecond laser irradiation," Appl. Phys. Lett. 85, 3432-3434 (2004).
[CrossRef]

2002

P. Ebeling, D. Ehrt, and M. Friedrich, "X-ray induced effects in phosphate glasses," Opt. Mater. 20, 101-111 (2002).
[CrossRef]

2000

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, "Charge transfer luminescence of Yb3+," J. Lumin. 91, 177-193 (2000).
[CrossRef]

1982

M. Cohen and L. Makar, "Models for color centers in smokey quartz," Phys. Status Solidi A 73, 593-596 (1982).
[CrossRef]

1972

G. Blasse, "The ultraviolet absorption bands of Bi3+ and Eu3+ in oxides," J. Solid State Chem. 4, 52 (1972).
[CrossRef]

Åberg, D.

Basu, C.

Blasse, G.

G. Blasse, "The ultraviolet absorption bands of Bi3+ and Eu3+ in oxides," J. Solid State Chem. 4, 52 (1972).
[CrossRef]

Boukenter, A.

S. Girard, E. Régnier, A. Boukenter, Y. Ouerdane, J.-P. Meunier, and D. Hamdani, "Gamma and UV radiationinduced color centers in optical fibers," Mat. Sci. Forum 480-481, 323-328 (2005).

Boyland, A.

Cohen, M.

M. Cohen and L. Makar, "Models for color centers in smokey quartz," Phys. Status Solidi A 73, 593-596 (1982).
[CrossRef]

de Heer, E.

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, "Charge transfer luminescence of Yb3+," J. Lumin. 91, 177-193 (2000).
[CrossRef]

Ebeling, P.

P. Ebeling, D. Ehrt, and M. Friedrich, "X-ray induced effects in phosphate glasses," Opt. Mater. 20, 101-111 (2002).
[CrossRef]

Ehrt, D.

P. Ebeling, D. Ehrt, and M. Friedrich, "X-ray induced effects in phosphate glasses," Opt. Mater. 20, 101-111 (2002).
[CrossRef]

Engholm, M.

Friedrich, M.

P. Ebeling, D. Ehrt, and M. Friedrich, "X-ray induced effects in phosphate glasses," Opt. Mater. 20, 101-111 (2002).
[CrossRef]

Girard, S.

S. Girard, E. Régnier, A. Boukenter, Y. Ouerdane, J.-P. Meunier, and D. Hamdani, "Gamma and UV radiationinduced color centers in optical fibers," Mat. Sci. Forum 480-481, 323-328 (2005).

Hamdani, D.

S. Girard, E. Régnier, A. Boukenter, Y. Ouerdane, J.-P. Meunier, and D. Hamdani, "Gamma and UV radiationinduced color centers in optical fibers," Mat. Sci. Forum 480-481, 323-328 (2005).

Hayakawa, T.

H. You, T. Hayakawa, and M. Nogami, "Upconversion luminescence of Al2O3-SiO2:Ce3+ glass by femtosecond laser irradiation," Appl. Phys. Lett. 85, 3432-3434 (2004).
[CrossRef]

Heeroma, M.

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, "Charge transfer luminescence of Yb3+," J. Lumin. 91, 177-193 (2000).
[CrossRef]

Hoffman, H.

J. Koponen, M. Söderlund, H. Hoffman, D. Kliner, and J. Koplow, "Photodarkening measurements in large mode are fibers," Proc. SPIE 6453, 64531E (2006).
[CrossRef]

Hölsä, J.

J. Hölsä, M. Lastusaari, M. Marysko, and M. Tukia, "A few remarks on the simulation and use of crystal field energy level schemes of the rare earth ions," J. Solid State Chem. 178, 435-440 (2005).
[CrossRef]

Ishii, T.

T. Ishii, "First-principles calculations for the cooperative transitions of Yb3+ dimer clusters in Y3Al5O12 and Y2O3 crystals," J. Chem. Phys. 122, 024705 (2005).
[CrossRef] [PubMed]

Kliner, D.

J. Koponen, M. Söderlund, H. Hoffman, D. Kliner, and J. Koplow, "Photodarkening measurements in large mode are fibers," Proc. SPIE 6453, 64531E (2006).
[CrossRef]

Koplow, J.

J. Koponen, M. Söderlund, H. Hoffman, D. Kliner, and J. Koplow, "Photodarkening measurements in large mode are fibers," Proc. SPIE 6453, 64531E (2006).
[CrossRef]

Koponen, J.

J. Koponen, M. Söderlund, H. Hoffman, D. Kliner, and J. Koplow, "Photodarkening measurements in large mode are fibers," Proc. SPIE 6453, 64531E (2006).
[CrossRef]

Lastusaari, M.

J. Hölsä, M. Lastusaari, M. Marysko, and M. Tukia, "A few remarks on the simulation and use of crystal field energy level schemes of the rare earth ions," J. Solid State Chem. 178, 435-440 (2005).
[CrossRef]

Li, L.

L. Li and S. Zhang, "Dependence of charge transfer energy on crystal structure and composition in Eu3+-doped compounds," J. Phys. Chem. B 110, 21438-21443 (2006).
[CrossRef] [PubMed]

Makar, L.

M. Cohen and L. Makar, "Models for color centers in smokey quartz," Phys. Status Solidi A 73, 593-596 (1982).
[CrossRef]

Marysko, M.

J. Hölsä, M. Lastusaari, M. Marysko, and M. Tukia, "A few remarks on the simulation and use of crystal field energy level schemes of the rare earth ions," J. Solid State Chem. 178, 435-440 (2005).
[CrossRef]

Meijerink, A.

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, "Charge transfer luminescence of Yb3+," J. Lumin. 91, 177-193 (2000).
[CrossRef]

Meunier, J.-P.

S. Girard, E. Régnier, A. Boukenter, Y. Ouerdane, J.-P. Meunier, and D. Hamdani, "Gamma and UV radiationinduced color centers in optical fibers," Mat. Sci. Forum 480-481, 323-328 (2005).

Nilsson, J.

Nogami, M.

H. You and M. Nogami, "Three-photon-excited fluorescence of Al2O3-SiO2 glass containing Eu3+ ions by femtosecond laser irradiation," Appl. Phys. Lett. 84, 2076-2078 (2004).
[CrossRef]

H. You, T. Hayakawa, and M. Nogami, "Upconversion luminescence of Al2O3-SiO2:Ce3+ glass by femtosecond laser irradiation," Appl. Phys. Lett. 85, 3432-3434 (2004).
[CrossRef]

Norin, L.

Ouerdane, Y.

S. Girard, E. Régnier, A. Boukenter, Y. Ouerdane, J.-P. Meunier, and D. Hamdani, "Gamma and UV radiationinduced color centers in optical fibers," Mat. Sci. Forum 480-481, 323-328 (2005).

Payne, D.

Pedrini, C.

C. Pedrini, "Electronic processes in rare earth activated wide gap materials," Phys. Status Solidi A 2, 185-194 (2005).
[CrossRef]

Régnier, E.

S. Girard, E. Régnier, A. Boukenter, Y. Ouerdane, J.-P. Meunier, and D. Hamdani, "Gamma and UV radiationinduced color centers in optical fibers," Mat. Sci. Forum 480-481, 323-328 (2005).

Sahu, J.

Söderlund, M.

J. Koponen, M. Söderlund, H. Hoffman, D. Kliner, and J. Koplow, "Photodarkening measurements in large mode are fibers," Proc. SPIE 6453, 64531E (2006).
[CrossRef]

Sones, C.

Tukia, M.

J. Hölsä, M. Lastusaari, M. Marysko, and M. Tukia, "A few remarks on the simulation and use of crystal field energy level schemes of the rare earth ions," J. Solid State Chem. 178, 435-440 (2005).
[CrossRef]

van Pieterson, L.

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, "Charge transfer luminescence of Yb3+," J. Lumin. 91, 177-193 (2000).
[CrossRef]

Yoo, S.

You, H.

H. You and M. Nogami, "Three-photon-excited fluorescence of Al2O3-SiO2 glass containing Eu3+ ions by femtosecond laser irradiation," Appl. Phys. Lett. 84, 2076-2078 (2004).
[CrossRef]

H. You, T. Hayakawa, and M. Nogami, "Upconversion luminescence of Al2O3-SiO2:Ce3+ glass by femtosecond laser irradiation," Appl. Phys. Lett. 85, 3432-3434 (2004).
[CrossRef]

Zhang, S.

L. Li and S. Zhang, "Dependence of charge transfer energy on crystal structure and composition in Eu3+-doped compounds," J. Phys. Chem. B 110, 21438-21443 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

H. You and M. Nogami, "Three-photon-excited fluorescence of Al2O3-SiO2 glass containing Eu3+ ions by femtosecond laser irradiation," Appl. Phys. Lett. 84, 2076-2078 (2004).
[CrossRef]

H. You, T. Hayakawa, and M. Nogami, "Upconversion luminescence of Al2O3-SiO2:Ce3+ glass by femtosecond laser irradiation," Appl. Phys. Lett. 85, 3432-3434 (2004).
[CrossRef]

J. Chem. Phys.

T. Ishii, "First-principles calculations for the cooperative transitions of Yb3+ dimer clusters in Y3Al5O12 and Y2O3 crystals," J. Chem. Phys. 122, 024705 (2005).
[CrossRef] [PubMed]

J. Lumin.

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, "Charge transfer luminescence of Yb3+," J. Lumin. 91, 177-193 (2000).
[CrossRef]

J. Phys. Chem. B

L. Li and S. Zhang, "Dependence of charge transfer energy on crystal structure and composition in Eu3+-doped compounds," J. Phys. Chem. B 110, 21438-21443 (2006).
[CrossRef] [PubMed]

J. Solid State Chem.

G. Blasse, "The ultraviolet absorption bands of Bi3+ and Eu3+ in oxides," J. Solid State Chem. 4, 52 (1972).
[CrossRef]

J. Hölsä, M. Lastusaari, M. Marysko, and M. Tukia, "A few remarks on the simulation and use of crystal field energy level schemes of the rare earth ions," J. Solid State Chem. 178, 435-440 (2005).
[CrossRef]

Mat. Sci. Forum

S. Girard, E. Régnier, A. Boukenter, Y. Ouerdane, J.-P. Meunier, and D. Hamdani, "Gamma and UV radiationinduced color centers in optical fibers," Mat. Sci. Forum 480-481, 323-328 (2005).

Opt. Lett.

Opt. Mater.

P. Ebeling, D. Ehrt, and M. Friedrich, "X-ray induced effects in phosphate glasses," Opt. Mater. 20, 101-111 (2002).
[CrossRef]

Phys. Status Solidi A

C. Pedrini, "Electronic processes in rare earth activated wide gap materials," Phys. Status Solidi A 2, 185-194 (2005).
[CrossRef]

M. Cohen and L. Makar, "Models for color centers in smokey quartz," Phys. Status Solidi A 73, 593-596 (1982).
[CrossRef]

Proc. SPIE

J. Koponen, M. Söderlund, H. Hoffman, D. Kliner, and J. Koplow, "Photodarkening measurements in large mode are fibers," Proc. SPIE 6453, 64531E (2006).
[CrossRef]

Other

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P. Martin, and J.-P. de Sandro, "Low photodarkening single cladding ytterbium fibre amplifier," Proc. SPIE 6453 (2007).
[CrossRef]

A changed oxidation state of an Mn+ rare-earth-ion caused by ionizing irradiation is often denoted as (Mn+)+ or (Mn+)- instead of M(n+1)+ or M(n-1)+ respectively. This is because the local environment may be different compared to that formed initially in the glass under e.g. heat treatment. This may result in small shifts of the observed absorption bands. The formal charge of the RE-ion is nevertheless the same and we will use the notation M(n+1)+ or M(n-1)+ for an ion with a changed oxidation state.

G. Blasse and B. Grabmaier, eds., Luminescent Materials (Springer-Verlag, Berlin Heidelberg, 1994), p. 83.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Absorption spectra for an Yb/Al -doped preform (black), Al -doped preform (red), Yb/P -doped preform (blue) and a P -doped preform (dashed red).

Fig. 2.
Fig. 2.

Excitation spectra for the Yb/Al -doped preform (black solid line) and the Yb/P -doped preform (blue dash-dotted line) monitored at 980nm. The UV-irradiation profile used in the photodarkening experiments is also shown (red dashed line).

Fig. 3.
Fig. 3.

Schematic configurational coordinate diagrams for the CT-transitions of Yb/Al- (a) and Yb/P-doped glass (b).

Fig. 4.
Fig. 4.

The induced loss spectrum for the UV-irradiated Yb/Al-preform (black) and Al-preform (red). The induced loss spectrum for the Yb/Al-fiber (blue) after 1 hour is shown for comparison (right Y-axis).

Fig. 5.
Fig. 5.

The induced loss spectrum for the UV-irradiated Yb/P-preform (black solid line) and non-Yb-doped P-preform (red solid line). The green dashed line shows the differential spectrum between the Yb/P- and P-preforms. The photodarkening spectrum for the Yb/P-doped fiber (blue solid line) after 1 hour and a high concentration Yb/P-fiber (purple solid line) after 46 hours are also shown (right Y-axis).

Fig. 6.
Fig. 6.

The time-dependent induced core loss at 600nm for the Yb/Al-fiber (blue), Yb/P-fiber (green) and the high doped Yb/P-fiber (red). The 915nm pump powers used in the accelerated photodarkening experiments are ~4W for the Yb/Al-fiber and ~5W for the Yb/P-fibers.

Fig. 7.
Fig. 7.

The CT-absorption band for the Yb/Al-preform (black solid line) and deconvoluted Gaussian bands (dashed lines). The black dashed curves are associated with CT-transitions and the green dashed curve is associated with 4f-5d transitions of Yb3+. Absorption spectrum of the non-Yb-doped Al-preform (red solid line) and the integrated induced loss for different irradiation center wavelengths (blue circles, right Y-axis).

Tables (1)

Tables Icon

Table 1. The investigated preform samples. All concentrations are given as atomic percent and based on non-oxygen elements only.

Metrics