Abstract

A simplified radiative transfer equation yields a simple analytic expression for the co- and cross-polarized return in a linearly polarized oceanographic lidar. This equation agrees well with the lidar data over a wide range of oceanographic conditions. The relationship between depolarization and lidar attenuation shows three distinct relationships corresponding to water within the Columbia River plume, near-shore water outside of the plume, and off-shore water.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Billard, R. H. Abbot, and M. F. Penny, "Airborne estimation of sea turbidity parameters from the WRELADS laser airborne depth sounder, "Appl. Opt. 25, 2080-2088 (1986).
    [CrossRef] [PubMed]
  2. F. E. Hoge, C. W. Wright, W. B. Krabill, R. R. Buntzen, G. D. Gilbert, R. N. Swift, J. K. Yungel, and R. E. Berry, Airborne lidar detection of subsurface oceanic scattering layers," Appl. Opt. 27, 3969-3977 (1988).
    [CrossRef] [PubMed]
  3. J. H. Churnside, J. J. Wilson, and V. V. Tatarskii, "Lidar profiles of fish schools," Appl. Opt. 36, 6011-6020 (1997).
    [CrossRef] [PubMed]
  4. J. H. Churnside and R. E. Thorne, "Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton," Appl. Opt. 44, 5504-5511 (2005).
    [CrossRef] [PubMed]
  5. J. H. Churnside and L. A. Ostrovsky, "Lidar observation of a strongly nonlinear internal wave train in the Gulf of Alaska," Int. J. Remote Sens. 26, 167-177 (2005).
    [CrossRef]
  6. G. M. Krekov, M. M. Krekova, and V. S. Shamanaev, "Laser sensing of a subsurface oceanic layer. II. Polarization characteristics of signals," Appl. Opt. 37, 1596-1601 (1998).
    [CrossRef]
  7. A. P. Vasilkov, Y. A. Goldin, B. A. Gureev, F. E. Hoge, R. N. Swift, and C. W. Wright, "Airborne polarized lidar detection of scattering layers in the ocean," Appl. Opt. 40, 4353-4364 (2001).
    [CrossRef]
  8. J. L. Squire and H. Krumboltz, "Profiling pelagic fish schools using airborne optical lasers and other remote sensing techniques," Marine Tech. Soc. J. 15, 27-31 (1981).
  9. J. H. Churnside, K Sawada, and T. Okumura, "A Comparison of Airborne Lidar and Echo Sounder Performance in Fisheries," J. Marine Acoust. Soc. Jpn. 28, 49-61 (2001)
  10. J. H. Churnside, D. A. Demer, and B. Mahmoudi, "A Comparison of Lidar and Echosounder Measurements of Fish Schools in the Gulf of Mexico," ICES J. Mar. Sci. 60, 147-154 (2003).
    [CrossRef]
  11. P. Carrera, J. H. Churnside, G. Boyra, V. Marques, C. Scalabrin and A. Uriarte, "Comparison of airborne lidar with echosounders: a case study in the coastal Atlantic waters of southern Europe," ICES J. Mar. Sci. 63, 1736-1750 (2006).
    [CrossRef]
  12. H. R. Gordon, "Effects of airborne oceanic lidar: effects of multiple scattering," Appl. Opt. 21, 2996-3001 (1982).
    [CrossRef] [PubMed]
  13. D. M. Phillips, R. H. Abbot, and M. F. Penny, "Remote sensing of sea water turbidity with an airborne laser system, J. Phys. D: Appl. Phys. 17, 1749-1758 (1984).
    [CrossRef]
  14. A. P. Vasilkov, T. V. Kondranin, and Ye. V. Myasnikov, "Determining the profile for the light scattering coefficient based on the polarization properties of back-reflected radiation during pulsed sounding of the ocean," Izv., Atmos. Oceanic Phys. 26, 224-228 (1990).
  15. A. P. Vasilkov, Y. A. Goldin, and B. A. Gureev, "Airborne lidar polarization estimation of the vertical profile of seawater light scattering coefficient," Izv. Atmos. Oceanic Phys. 33, 519-524 (1997).
  16. H. H. Kim, "New algae mapping technique by the use of an airborne laser flourosensor," Appl. Opt. 12, 1454-1459 (1973).
    [CrossRef] [PubMed]
  17. F. E. Hoge and R. N. Swift, "Airborne dual-laser excitation and mapping of phytoplankton pigments in a gulf stream warm core ring," Appl. Opt. 22, 2272-2281 (1983).
    [CrossRef] [PubMed]
  18. F. E. Hoge, P. E. Lyon, C. W. Wright, R. N. Swift, and J. K. Yungel, "Chlorophyll biomass in the global oceans: airborne lidar retrieval using fluorescence of both chlorophyll and chromophoric dissolved organic matter," Appl. Opt. 44, 2857-2862 (2005).
    [CrossRef] [PubMed]
  19. E. P. Zege and L. I. Chaykovskaya, "Approximate equations of polarized radiation transport in media with strongly anisotropic scattering," Izv. Atmos. Oceanic Phys. 21, 796-800 (1985).
  20. M. J. Raković and G. W. Kattawar, "Theoretical analysis of polarization patterns from incoherent backscattering of light," Appl. Opt. 37, 3333-3338 (1998).
    [CrossRef]
  21. M. J. Raković, G. W. Kattawar, M. Mehrűbeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Cote, "Light backscattering polarization patterns from turbid media: theory and experiment," Appl. Opt. 38, 3399-3408 (1999).
    [CrossRef]
  22. K. Mitra and J. H. Churnside, "Transient radiative transfer equation applied oceanographic lidar," Appl. Opt. 38, 889-895 (1999).
    [CrossRef]
  23. K. J. Voss and E. S. Fry, "Measurement of the Mueller matrix for ocean water," Appl. Opt. 23, 4427-4439 (1984).
    [CrossRef] [PubMed]
  24. C. Cox and W. Munk, "Statistics of the sea surface derived from sun glitter," J. Mar. Res. 13,198-227 (1954).
  25. C. Cox and W. Munk, "Measurement of the roughness of the sea surface from photographs of the sun’s glitter," J. Opt. Soc. Am. 44, 838-850 (1954).
    [CrossRef]
  26. J. A. Shaw and J. H. Churnside, "Scanning-Laser Glint Measurements of Sea-Surface Slope Statistics," Appl. Opt. 36, 4202-4213 (1997).
    [CrossRef] [PubMed]
  27. H. R. Gordon, "Simple calculation of the diffuse reflectance of the ocean," Appl. Opt. 12, 2803-2804 (1973).
    [CrossRef] [PubMed]
  28. A. Ben-David, "Mueller matrices and information derived from linear polarization lidar measurements: theory," Appl. Opt. 37, 2448-2463 (1998).
    [CrossRef]
  29. H. M. Zorn, J. H. Churnside, and C. W. Oliver, "Laser safety thresholds for Cetaceans and Pinnipeds," Marine Mammal Sci. 16, 186-200 (2000).
    [CrossRef]
  30. R. C. Smith and K. S. Baker, "Optical properties of the clearest natural waters (200-800 nm)," Appl. Opt. 20, 177-184 (1981).
    [CrossRef] [PubMed]
  31. A. P. Vasilkov, T. V. Kondranin, and Ye. V . Myasnikov, "Polarization characteristics in the backscattering signal for pulsed sensing of the ocean by a narrow light beam," Izv., Atmos. Oceanic Phys. 24, 635-642 (1988).

2006 (1)

P. Carrera, J. H. Churnside, G. Boyra, V. Marques, C. Scalabrin and A. Uriarte, "Comparison of airborne lidar with echosounders: a case study in the coastal Atlantic waters of southern Europe," ICES J. Mar. Sci. 63, 1736-1750 (2006).
[CrossRef]

2005 (3)

2003 (1)

J. H. Churnside, D. A. Demer, and B. Mahmoudi, "A Comparison of Lidar and Echosounder Measurements of Fish Schools in the Gulf of Mexico," ICES J. Mar. Sci. 60, 147-154 (2003).
[CrossRef]

2001 (2)

J. H. Churnside, K Sawada, and T. Okumura, "A Comparison of Airborne Lidar and Echo Sounder Performance in Fisheries," J. Marine Acoust. Soc. Jpn. 28, 49-61 (2001)

A. P. Vasilkov, Y. A. Goldin, B. A. Gureev, F. E. Hoge, R. N. Swift, and C. W. Wright, "Airborne polarized lidar detection of scattering layers in the ocean," Appl. Opt. 40, 4353-4364 (2001).
[CrossRef]

2000 (1)

H. M. Zorn, J. H. Churnside, and C. W. Oliver, "Laser safety thresholds for Cetaceans and Pinnipeds," Marine Mammal Sci. 16, 186-200 (2000).
[CrossRef]

1999 (2)

1998 (3)

1997 (3)

J. A. Shaw and J. H. Churnside, "Scanning-Laser Glint Measurements of Sea-Surface Slope Statistics," Appl. Opt. 36, 4202-4213 (1997).
[CrossRef] [PubMed]

J. H. Churnside, J. J. Wilson, and V. V. Tatarskii, "Lidar profiles of fish schools," Appl. Opt. 36, 6011-6020 (1997).
[CrossRef] [PubMed]

A. P. Vasilkov, Y. A. Goldin, and B. A. Gureev, "Airborne lidar polarization estimation of the vertical profile of seawater light scattering coefficient," Izv. Atmos. Oceanic Phys. 33, 519-524 (1997).

1990 (1)

A. P. Vasilkov, T. V. Kondranin, and Ye. V. Myasnikov, "Determining the profile for the light scattering coefficient based on the polarization properties of back-reflected radiation during pulsed sounding of the ocean," Izv., Atmos. Oceanic Phys. 26, 224-228 (1990).

1988 (2)

A. P. Vasilkov, T. V. Kondranin, and Ye. V . Myasnikov, "Polarization characteristics in the backscattering signal for pulsed sensing of the ocean by a narrow light beam," Izv., Atmos. Oceanic Phys. 24, 635-642 (1988).

F. E. Hoge, C. W. Wright, W. B. Krabill, R. R. Buntzen, G. D. Gilbert, R. N. Swift, J. K. Yungel, and R. E. Berry, Airborne lidar detection of subsurface oceanic scattering layers," Appl. Opt. 27, 3969-3977 (1988).
[CrossRef] [PubMed]

1986 (1)

1985 (1)

E. P. Zege and L. I. Chaykovskaya, "Approximate equations of polarized radiation transport in media with strongly anisotropic scattering," Izv. Atmos. Oceanic Phys. 21, 796-800 (1985).

1984 (2)

D. M. Phillips, R. H. Abbot, and M. F. Penny, "Remote sensing of sea water turbidity with an airborne laser system, J. Phys. D: Appl. Phys. 17, 1749-1758 (1984).
[CrossRef]

K. J. Voss and E. S. Fry, "Measurement of the Mueller matrix for ocean water," Appl. Opt. 23, 4427-4439 (1984).
[CrossRef] [PubMed]

1983 (1)

1982 (1)

1981 (2)

R. C. Smith and K. S. Baker, "Optical properties of the clearest natural waters (200-800 nm)," Appl. Opt. 20, 177-184 (1981).
[CrossRef] [PubMed]

J. L. Squire and H. Krumboltz, "Profiling pelagic fish schools using airborne optical lasers and other remote sensing techniques," Marine Tech. Soc. J. 15, 27-31 (1981).

1973 (2)

1954 (2)

C. Cox and W. Munk, "Measurement of the roughness of the sea surface from photographs of the sun’s glitter," J. Opt. Soc. Am. 44, 838-850 (1954).
[CrossRef]

C. Cox and W. Munk, "Statistics of the sea surface derived from sun glitter," J. Mar. Res. 13,198-227 (1954).

Abbot, R. H.

B. Billard, R. H. Abbot, and M. F. Penny, "Airborne estimation of sea turbidity parameters from the WRELADS laser airborne depth sounder, "Appl. Opt. 25, 2080-2088 (1986).
[CrossRef] [PubMed]

D. M. Phillips, R. H. Abbot, and M. F. Penny, "Remote sensing of sea water turbidity with an airborne laser system, J. Phys. D: Appl. Phys. 17, 1749-1758 (1984).
[CrossRef]

Baker, K. S.

Ben-David, A.

Berry, R. E.

Billard, B.

Boyra, G.

P. Carrera, J. H. Churnside, G. Boyra, V. Marques, C. Scalabrin and A. Uriarte, "Comparison of airborne lidar with echosounders: a case study in the coastal Atlantic waters of southern Europe," ICES J. Mar. Sci. 63, 1736-1750 (2006).
[CrossRef]

Buntzen, R. R.

Cameron, B. D.

Carrera, P.

P. Carrera, J. H. Churnside, G. Boyra, V. Marques, C. Scalabrin and A. Uriarte, "Comparison of airborne lidar with echosounders: a case study in the coastal Atlantic waters of southern Europe," ICES J. Mar. Sci. 63, 1736-1750 (2006).
[CrossRef]

Chaykovskaya, L. I.

E. P. Zege and L. I. Chaykovskaya, "Approximate equations of polarized radiation transport in media with strongly anisotropic scattering," Izv. Atmos. Oceanic Phys. 21, 796-800 (1985).

Churnside, J. H.

P. Carrera, J. H. Churnside, G. Boyra, V. Marques, C. Scalabrin and A. Uriarte, "Comparison of airborne lidar with echosounders: a case study in the coastal Atlantic waters of southern Europe," ICES J. Mar. Sci. 63, 1736-1750 (2006).
[CrossRef]

J. H. Churnside and L. A. Ostrovsky, "Lidar observation of a strongly nonlinear internal wave train in the Gulf of Alaska," Int. J. Remote Sens. 26, 167-177 (2005).
[CrossRef]

J. H. Churnside and R. E. Thorne, "Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton," Appl. Opt. 44, 5504-5511 (2005).
[CrossRef] [PubMed]

J. H. Churnside, D. A. Demer, and B. Mahmoudi, "A Comparison of Lidar and Echosounder Measurements of Fish Schools in the Gulf of Mexico," ICES J. Mar. Sci. 60, 147-154 (2003).
[CrossRef]

J. H. Churnside, K Sawada, and T. Okumura, "A Comparison of Airborne Lidar and Echo Sounder Performance in Fisheries," J. Marine Acoust. Soc. Jpn. 28, 49-61 (2001)

H. M. Zorn, J. H. Churnside, and C. W. Oliver, "Laser safety thresholds for Cetaceans and Pinnipeds," Marine Mammal Sci. 16, 186-200 (2000).
[CrossRef]

K. Mitra and J. H. Churnside, "Transient radiative transfer equation applied oceanographic lidar," Appl. Opt. 38, 889-895 (1999).
[CrossRef]

J. A. Shaw and J. H. Churnside, "Scanning-Laser Glint Measurements of Sea-Surface Slope Statistics," Appl. Opt. 36, 4202-4213 (1997).
[CrossRef] [PubMed]

J. H. Churnside, J. J. Wilson, and V. V. Tatarskii, "Lidar profiles of fish schools," Appl. Opt. 36, 6011-6020 (1997).
[CrossRef] [PubMed]

Cote, G. L.

Cox, C.

C. Cox and W. Munk, "Statistics of the sea surface derived from sun glitter," J. Mar. Res. 13,198-227 (1954).

C. Cox and W. Munk, "Measurement of the roughness of the sea surface from photographs of the sun’s glitter," J. Opt. Soc. Am. 44, 838-850 (1954).
[CrossRef]

Demer, D. A.

J. H. Churnside, D. A. Demer, and B. Mahmoudi, "A Comparison of Lidar and Echosounder Measurements of Fish Schools in the Gulf of Mexico," ICES J. Mar. Sci. 60, 147-154 (2003).
[CrossRef]

Fry, E. S.

Gilbert, G. D.

Goldin, Y. A.

A. P. Vasilkov, Y. A. Goldin, B. A. Gureev, F. E. Hoge, R. N. Swift, and C. W. Wright, "Airborne polarized lidar detection of scattering layers in the ocean," Appl. Opt. 40, 4353-4364 (2001).
[CrossRef]

A. P. Vasilkov, Y. A. Goldin, and B. A. Gureev, "Airborne lidar polarization estimation of the vertical profile of seawater light scattering coefficient," Izv. Atmos. Oceanic Phys. 33, 519-524 (1997).

Gordon, H. R.

Gureev, B. A.

A. P. Vasilkov, Y. A. Goldin, B. A. Gureev, F. E. Hoge, R. N. Swift, and C. W. Wright, "Airborne polarized lidar detection of scattering layers in the ocean," Appl. Opt. 40, 4353-4364 (2001).
[CrossRef]

A. P. Vasilkov, Y. A. Goldin, and B. A. Gureev, "Airborne lidar polarization estimation of the vertical profile of seawater light scattering coefficient," Izv. Atmos. Oceanic Phys. 33, 519-524 (1997).

Hoge, F. E.

Kattawar, G. W.

Kim, H. H.

Kondranin, T. V.

A. P. Vasilkov, T. V. Kondranin, and Ye. V. Myasnikov, "Determining the profile for the light scattering coefficient based on the polarization properties of back-reflected radiation during pulsed sounding of the ocean," Izv., Atmos. Oceanic Phys. 26, 224-228 (1990).

A. P. Vasilkov, T. V. Kondranin, and Ye. V . Myasnikov, "Polarization characteristics in the backscattering signal for pulsed sensing of the ocean by a narrow light beam," Izv., Atmos. Oceanic Phys. 24, 635-642 (1988).

Krabill, W. B.

Krekov, G. M.

Krekova, M. M.

Krumboltz, H.

J. L. Squire and H. Krumboltz, "Profiling pelagic fish schools using airborne optical lasers and other remote sensing techniques," Marine Tech. Soc. J. 15, 27-31 (1981).

Lyon, P. E.

Mahmoudi, B.

J. H. Churnside, D. A. Demer, and B. Mahmoudi, "A Comparison of Lidar and Echosounder Measurements of Fish Schools in the Gulf of Mexico," ICES J. Mar. Sci. 60, 147-154 (2003).
[CrossRef]

Marques, V.

P. Carrera, J. H. Churnside, G. Boyra, V. Marques, C. Scalabrin and A. Uriarte, "Comparison of airborne lidar with echosounders: a case study in the coastal Atlantic waters of southern Europe," ICES J. Mar. Sci. 63, 1736-1750 (2006).
[CrossRef]

Mehrubeoglu, M.

Mitra, K.

Munk, W.

C. Cox and W. Munk, "Statistics of the sea surface derived from sun glitter," J. Mar. Res. 13,198-227 (1954).

C. Cox and W. Munk, "Measurement of the roughness of the sea surface from photographs of the sun’s glitter," J. Opt. Soc. Am. 44, 838-850 (1954).
[CrossRef]

Myasnikov, Ye. V

A. P. Vasilkov, T. V. Kondranin, and Ye. V . Myasnikov, "Polarization characteristics in the backscattering signal for pulsed sensing of the ocean by a narrow light beam," Izv., Atmos. Oceanic Phys. 24, 635-642 (1988).

Myasnikov, Ye. V.

A. P. Vasilkov, T. V. Kondranin, and Ye. V. Myasnikov, "Determining the profile for the light scattering coefficient based on the polarization properties of back-reflected radiation during pulsed sounding of the ocean," Izv., Atmos. Oceanic Phys. 26, 224-228 (1990).

Okumura, T.

J. H. Churnside, K Sawada, and T. Okumura, "A Comparison of Airborne Lidar and Echo Sounder Performance in Fisheries," J. Marine Acoust. Soc. Jpn. 28, 49-61 (2001)

Oliver, C. W.

H. M. Zorn, J. H. Churnside, and C. W. Oliver, "Laser safety thresholds for Cetaceans and Pinnipeds," Marine Mammal Sci. 16, 186-200 (2000).
[CrossRef]

Ostrovsky, L. A.

J. H. Churnside and L. A. Ostrovsky, "Lidar observation of a strongly nonlinear internal wave train in the Gulf of Alaska," Int. J. Remote Sens. 26, 167-177 (2005).
[CrossRef]

Penny, M. F.

B. Billard, R. H. Abbot, and M. F. Penny, "Airborne estimation of sea turbidity parameters from the WRELADS laser airborne depth sounder, "Appl. Opt. 25, 2080-2088 (1986).
[CrossRef] [PubMed]

D. M. Phillips, R. H. Abbot, and M. F. Penny, "Remote sensing of sea water turbidity with an airborne laser system, J. Phys. D: Appl. Phys. 17, 1749-1758 (1984).
[CrossRef]

Phillips, D. M.

D. M. Phillips, R. H. Abbot, and M. F. Penny, "Remote sensing of sea water turbidity with an airborne laser system, J. Phys. D: Appl. Phys. 17, 1749-1758 (1984).
[CrossRef]

Rakovic, M. J.

Rastegar, S.

Sawada, K

J. H. Churnside, K Sawada, and T. Okumura, "A Comparison of Airborne Lidar and Echo Sounder Performance in Fisheries," J. Marine Acoust. Soc. Jpn. 28, 49-61 (2001)

Scalabrin, C.

P. Carrera, J. H. Churnside, G. Boyra, V. Marques, C. Scalabrin and A. Uriarte, "Comparison of airborne lidar with echosounders: a case study in the coastal Atlantic waters of southern Europe," ICES J. Mar. Sci. 63, 1736-1750 (2006).
[CrossRef]

Shamanaev, V. S.

Shaw, J. A.

Smith, R. C.

Squire, J. L.

J. L. Squire and H. Krumboltz, "Profiling pelagic fish schools using airborne optical lasers and other remote sensing techniques," Marine Tech. Soc. J. 15, 27-31 (1981).

Swift, R. N.

Tatarskii, V. V.

Thorne, R. E.

Uriarte, A.

P. Carrera, J. H. Churnside, G. Boyra, V. Marques, C. Scalabrin and A. Uriarte, "Comparison of airborne lidar with echosounders: a case study in the coastal Atlantic waters of southern Europe," ICES J. Mar. Sci. 63, 1736-1750 (2006).
[CrossRef]

Vasilkov, A. P.

A. P. Vasilkov, Y. A. Goldin, B. A. Gureev, F. E. Hoge, R. N. Swift, and C. W. Wright, "Airborne polarized lidar detection of scattering layers in the ocean," Appl. Opt. 40, 4353-4364 (2001).
[CrossRef]

A. P. Vasilkov, Y. A. Goldin, and B. A. Gureev, "Airborne lidar polarization estimation of the vertical profile of seawater light scattering coefficient," Izv. Atmos. Oceanic Phys. 33, 519-524 (1997).

A. P. Vasilkov, T. V. Kondranin, and Ye. V. Myasnikov, "Determining the profile for the light scattering coefficient based on the polarization properties of back-reflected radiation during pulsed sounding of the ocean," Izv., Atmos. Oceanic Phys. 26, 224-228 (1990).

A. P. Vasilkov, T. V. Kondranin, and Ye. V . Myasnikov, "Polarization characteristics in the backscattering signal for pulsed sensing of the ocean by a narrow light beam," Izv., Atmos. Oceanic Phys. 24, 635-642 (1988).

Voss, K. J.

Wang, L. V.

Wilson, J. J.

Wright, C. W.

Yungel, J. K.

Zege, E. P.

E. P. Zege and L. I. Chaykovskaya, "Approximate equations of polarized radiation transport in media with strongly anisotropic scattering," Izv. Atmos. Oceanic Phys. 21, 796-800 (1985).

Zorn, H. M.

H. M. Zorn, J. H. Churnside, and C. W. Oliver, "Laser safety thresholds for Cetaceans and Pinnipeds," Marine Mammal Sci. 16, 186-200 (2000).
[CrossRef]

Appl. Opt. (18)

H. H. Kim, "New algae mapping technique by the use of an airborne laser flourosensor," Appl. Opt. 12, 1454-1459 (1973).
[CrossRef] [PubMed]

R. C. Smith and K. S. Baker, "Optical properties of the clearest natural waters (200-800 nm)," Appl. Opt. 20, 177-184 (1981).
[CrossRef] [PubMed]

H. R. Gordon, "Effects of airborne oceanic lidar: effects of multiple scattering," Appl. Opt. 21, 2996-3001 (1982).
[CrossRef] [PubMed]

F. E. Hoge and R. N. Swift, "Airborne dual-laser excitation and mapping of phytoplankton pigments in a gulf stream warm core ring," Appl. Opt. 22, 2272-2281 (1983).
[CrossRef] [PubMed]

K. J. Voss and E. S. Fry, "Measurement of the Mueller matrix for ocean water," Appl. Opt. 23, 4427-4439 (1984).
[CrossRef] [PubMed]

B. Billard, R. H. Abbot, and M. F. Penny, "Airborne estimation of sea turbidity parameters from the WRELADS laser airborne depth sounder, "Appl. Opt. 25, 2080-2088 (1986).
[CrossRef] [PubMed]

F. E. Hoge, C. W. Wright, W. B. Krabill, R. R. Buntzen, G. D. Gilbert, R. N. Swift, J. K. Yungel, and R. E. Berry, Airborne lidar detection of subsurface oceanic scattering layers," Appl. Opt. 27, 3969-3977 (1988).
[CrossRef] [PubMed]

J. A. Shaw and J. H. Churnside, "Scanning-Laser Glint Measurements of Sea-Surface Slope Statistics," Appl. Opt. 36, 4202-4213 (1997).
[CrossRef] [PubMed]

G. M. Krekov, M. M. Krekova, and V. S. Shamanaev, "Laser sensing of a subsurface oceanic layer. II. Polarization characteristics of signals," Appl. Opt. 37, 1596-1601 (1998).
[CrossRef]

A. Ben-David, "Mueller matrices and information derived from linear polarization lidar measurements: theory," Appl. Opt. 37, 2448-2463 (1998).
[CrossRef]

M. J. Raković and G. W. Kattawar, "Theoretical analysis of polarization patterns from incoherent backscattering of light," Appl. Opt. 37, 3333-3338 (1998).
[CrossRef]

K. Mitra and J. H. Churnside, "Transient radiative transfer equation applied oceanographic lidar," Appl. Opt. 38, 889-895 (1999).
[CrossRef]

J. H. Churnside, J. J. Wilson, and V. V. Tatarskii, "Lidar profiles of fish schools," Appl. Opt. 36, 6011-6020 (1997).
[CrossRef] [PubMed]

M. J. Raković, G. W. Kattawar, M. Mehrűbeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Cote, "Light backscattering polarization patterns from turbid media: theory and experiment," Appl. Opt. 38, 3399-3408 (1999).
[CrossRef]

A. P. Vasilkov, Y. A. Goldin, B. A. Gureev, F. E. Hoge, R. N. Swift, and C. W. Wright, "Airborne polarized lidar detection of scattering layers in the ocean," Appl. Opt. 40, 4353-4364 (2001).
[CrossRef]

F. E. Hoge, P. E. Lyon, C. W. Wright, R. N. Swift, and J. K. Yungel, "Chlorophyll biomass in the global oceans: airborne lidar retrieval using fluorescence of both chlorophyll and chromophoric dissolved organic matter," Appl. Opt. 44, 2857-2862 (2005).
[CrossRef] [PubMed]

J. H. Churnside and R. E. Thorne, "Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton," Appl. Opt. 44, 5504-5511 (2005).
[CrossRef] [PubMed]

H. R. Gordon, "Simple calculation of the diffuse reflectance of the ocean," Appl. Opt. 12, 2803-2804 (1973).
[CrossRef] [PubMed]

ICES J. Mar. Sci. (2)

J. H. Churnside, D. A. Demer, and B. Mahmoudi, "A Comparison of Lidar and Echosounder Measurements of Fish Schools in the Gulf of Mexico," ICES J. Mar. Sci. 60, 147-154 (2003).
[CrossRef]

P. Carrera, J. H. Churnside, G. Boyra, V. Marques, C. Scalabrin and A. Uriarte, "Comparison of airborne lidar with echosounders: a case study in the coastal Atlantic waters of southern Europe," ICES J. Mar. Sci. 63, 1736-1750 (2006).
[CrossRef]

Int. J. Remote Sens. (1)

J. H. Churnside and L. A. Ostrovsky, "Lidar observation of a strongly nonlinear internal wave train in the Gulf of Alaska," Int. J. Remote Sens. 26, 167-177 (2005).
[CrossRef]

Izv. Atmos. Oceanic Phys. (2)

E. P. Zege and L. I. Chaykovskaya, "Approximate equations of polarized radiation transport in media with strongly anisotropic scattering," Izv. Atmos. Oceanic Phys. 21, 796-800 (1985).

A. P. Vasilkov, Y. A. Goldin, and B. A. Gureev, "Airborne lidar polarization estimation of the vertical profile of seawater light scattering coefficient," Izv. Atmos. Oceanic Phys. 33, 519-524 (1997).

Izv., Atmos. Oceanic Phys. (2)

A. P. Vasilkov, T. V. Kondranin, and Ye. V. Myasnikov, "Determining the profile for the light scattering coefficient based on the polarization properties of back-reflected radiation during pulsed sounding of the ocean," Izv., Atmos. Oceanic Phys. 26, 224-228 (1990).

A. P. Vasilkov, T. V. Kondranin, and Ye. V . Myasnikov, "Polarization characteristics in the backscattering signal for pulsed sensing of the ocean by a narrow light beam," Izv., Atmos. Oceanic Phys. 24, 635-642 (1988).

J. Mar. Res. (1)

C. Cox and W. Munk, "Statistics of the sea surface derived from sun glitter," J. Mar. Res. 13,198-227 (1954).

J. Marine Acoust. Soc. Jpn. (1)

J. H. Churnside, K Sawada, and T. Okumura, "A Comparison of Airborne Lidar and Echo Sounder Performance in Fisheries," J. Marine Acoust. Soc. Jpn. 28, 49-61 (2001)

J. Opt. Soc. Am. (1)

J. Phys. D: Appl. Phys. (1)

D. M. Phillips, R. H. Abbot, and M. F. Penny, "Remote sensing of sea water turbidity with an airborne laser system, J. Phys. D: Appl. Phys. 17, 1749-1758 (1984).
[CrossRef]

Marine Mammal Sci. (1)

H. M. Zorn, J. H. Churnside, and C. W. Oliver, "Laser safety thresholds for Cetaceans and Pinnipeds," Marine Mammal Sci. 16, 186-200 (2000).
[CrossRef]

Marine Tech. Soc. J. (1)

J. L. Squire and H. Krumboltz, "Profiling pelagic fish schools using airborne optical lasers and other remote sensing techniques," Marine Tech. Soc. J. 15, 27-31 (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Laser power P normalized to incident power P C0 for co-polarized (red) and cross-polarized (blue) components for the case of γ=0.1α. Solid lines are the exact calculation, dashed lines are the mostly-polarized approximation, black line is the unpolarized approximation.

Fig. 2.
Fig. 2.

Depolarization of a linearly polarized laser beam propagating through the sea surface as a function of wind speed W. The two curves are for a nadir-pointing beam and for one pointed 15° off nadir.

Fig. 3.
Fig. 3.

Position of measurements showing the near-shore (green) and off-shore (blue) segments, with a vertical mark at the boundary. The solid black line is the 200 m isobath. The mouth of the Columbia River is just to the east of the northern transect.

Fig.4.
Fig.4.

Typical depth profiles of the co-polarized return SC (red), cross-polarized return SX (blue), and depolarization D (black). The solid lines are measured values, and the dashed lines are the theoretical profiles from Eq. (8). The left panel is from the near-shore region. The large, unpolarized return at 22 m depth is the bottom of the ocean. The right panel is from the off-shore region.

Fig. 5.
Fig. 5.

Measured values of attenuation coefficient α as a function of longitude for the northern (red) and southern (blue) east-west transects.

Fig. 6.
Fig. 6.

Total attenuation α (left panel) and depolarization D (right panel) as functions of backscatter. The blue circles and line are the off-shore data and linear regression. The green circles and lines are the near-shore data and a piecewise linear regression.

Fig. 7.
Fig. 7.

Depolarization D as a function of attenuation coefficient α (left panel) and depolarization coefficient γ as a function of backscatter (right panel). Green is near-shore region and blue is off-shore region. Points are data and lines are linear regression.

Fig. 8.
Fig. 8.

Depth profiles using the average parameters of Table 1 (with γ=0 for the near shore) for the near-shore (green) and off-shore (blue) regions. In each case, the upper curve is the co-polarized return and the lower curve is the cross-polarized return.

Tables (1)

Tables Icon

Table 1. Average parameter values.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

d P C dz = α P C + γ P X
d P X dz = α P X + γ P C ,
P C = P C 0 exp ( α z ) cosh ( γ z )
P X = P C 0 exp ( α z ) sinh ( γ z ) .
P C = P C 0 exp ( α z )
P X = P C 0 γ z exp ( α z ) .
P C = P X = 0.5 P C 0 exp ( α z + γ z ) .
σ U 2 = 0.00316 W
σ V 2 = 0.00192 W + 0.003 ,
S C ( t ) = A P C β C ( π ) exp ( α z ) ,
S X ( t ) = A P C β X ( π ) exp ( α z ) + A P X β C ( π ) exp ( α z ) + A P C β C ( π ) γ z exp ( α z ) ,
S C ( t ) = A β C ( π ) exp ( 2 α z )
S X ( t ) = A β X ( π ) exp ( 2 α z ) + 2 A β C ( π ) γ z exp ( 2 α z ) .
D = S X S C = β X ( π ) β C ( π ) + 2 γ z .
α = 1 2 d dz ln ( S C ) .
γ = 1 2 dD dz .
α = 1.11 A β ( π ) + 0.0612 .
α = 1.23 A β ( π ) + 0.115 .
α = 0.249 A β ( π ) + 0.267 .
α = a w + σ T σ π β ( π ) .

Metrics