Abstract

We study the lasing dynamics of individual ZnO nanorods by time-resolved μ-photoluminescence. The distinct laser modes show gain competition and pronounced shifts as a function of excitation density. This behavior can be understood in terms of many-particle effects within an inverted electron-hole plasma and of the calculated mode spectra of the particular nanorod, whose geometry is known from electron microscope investigations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat. Mater. 4, 42-46 (2005).
    [CrossRef]
  2. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, A. Dadgar, E. Weber, R. Russo, and P. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
    [CrossRef] [PubMed]
  3. H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. Le Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. G¨osele, "Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications," SMALL 2, 561-568 (2006).
    [CrossRef] [PubMed]
  4. H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112 (2007).
    [CrossRef]
  5. R. Hauschild, and H. Kalt, "Guided modes in ZnO nanorods," Appl. Phys. Lett. 89, 123107 (2006)
    [CrossRef]
  6. J. F. Conley Jr, L. Stecker, and Y. Ono, "Directed assembly of ZnO nanowires on a Si substrate without a metal catalyst using a patterned ZnO seed layer," Nanotechnology 16, 292-296 (2005).
    [CrossRef]
  7. W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yia, "Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods," Appl. Phys. Lett. 80, 4232-4234 (2002).
    [CrossRef]
  8. B. Cao, W. Cai, H. Zeng, and G. Duan, "Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates," J. Appl. Phys. 99, 073516 (2006).
    [CrossRef]
  9. G. M. Prinz, A. Reiser, T. Röder, M. Schirra, M. Feneberg, U. Röder, R. Sauer, K. Thonke, S. Gsell, M. Schreck, and B. Stritzker, "Growth of zinc oxide nanopillars on an iridium/yttria-stabilized zirconia/silicon substrate," Appl. Phys. Lett. 90, 233115 (2007).
    [CrossRef]
  10. S. Gsell, M. Fischer, R. Brescia, M. Schreck, P. Huber, F. Bayer, B. Stritzker, and D. G. Schlom, "Reduction of mosaic spread using iridium interlayers: A route to improved oxide heteroepitaxy on silicon," Appl. Phys. Lett. 91, 061501 (2007).
    [CrossRef]
  11. R. Hauschild, H. Lange, H. Priller, C. Klingshirn, R. Kling, A. Waag, H. J. Fan, M. Zacharias, and H. Kalt, "Stimulated emission from ZnO nanorods," Phys. Status SolidiB 243, 853-857 (2006).
    [CrossRef]
  12. K. van Vugt, S. Rühle, and D. Vanmaekelbergh, "Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire," Nano Lett. 6, 2707-2711 (2006).
    [CrossRef] [PubMed]
  13. L. Wischmeier, C. Bekeny, T. Voss, S. Börner, and W. Schade, "Optical properties of single ZnO nanowires," Phys. Status Solidi B  243, 919-923 (2006).
    [CrossRef]
  14. C. Klingshirn, and H. Haug, "Optical properties of highly excited direct gap semiconductors," Physics Rep. 70, 315-398 (1981).
    [CrossRef]
  15. S. W. Koch, and M. Kira, Optics of Semiconductors and their Nanostructures, (Springer, Berlin, 2004).
  16. H. Yoshikawa, and S. Adachi, Jpn. J. Appl. Phys. "Optical constants of ZnO," 36, 6237-6243 (1997).
    [CrossRef]
  17. K. Bohnert, G. Schmieder, and C. Klingshirn, "Gain and reflection spectroscopy and the present understanding of the electron-hole plasma in II-VI compounds," Phys. Status Solidi B  98, 175-188 (1980).
    [CrossRef]
  18. P. Vashishta, and R. K. Kalia, "Universal behavior of exchange-correlation energy in electron-hole liquid," Phys. Rev. B 25, 6492-6495 (1982).
    [CrossRef]
  19. C. Klingshirn, Semiconductor Optics, 3rd ed., (Springer, Berlin, 2007).
  20. C. Klingshirn, "ZnO: From basics towards applications," Phys. Status Solidi B 244, 3027-3073 (2007).
    [CrossRef]
  21. C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, "Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing," Phys. Rev. B 75, 115203 (2007).
    [CrossRef]

2007 (5)

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112 (2007).
[CrossRef]

G. M. Prinz, A. Reiser, T. Röder, M. Schirra, M. Feneberg, U. Röder, R. Sauer, K. Thonke, S. Gsell, M. Schreck, and B. Stritzker, "Growth of zinc oxide nanopillars on an iridium/yttria-stabilized zirconia/silicon substrate," Appl. Phys. Lett. 90, 233115 (2007).
[CrossRef]

S. Gsell, M. Fischer, R. Brescia, M. Schreck, P. Huber, F. Bayer, B. Stritzker, and D. G. Schlom, "Reduction of mosaic spread using iridium interlayers: A route to improved oxide heteroepitaxy on silicon," Appl. Phys. Lett. 91, 061501 (2007).
[CrossRef]

C. Klingshirn, "ZnO: From basics towards applications," Phys. Status Solidi B 244, 3027-3073 (2007).
[CrossRef]

C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, "Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing," Phys. Rev. B 75, 115203 (2007).
[CrossRef]

2006 (6)

R. Hauschild, H. Lange, H. Priller, C. Klingshirn, R. Kling, A. Waag, H. J. Fan, M. Zacharias, and H. Kalt, "Stimulated emission from ZnO nanorods," Phys. Status SolidiB 243, 853-857 (2006).
[CrossRef]

K. van Vugt, S. Rühle, and D. Vanmaekelbergh, "Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire," Nano Lett. 6, 2707-2711 (2006).
[CrossRef] [PubMed]

L. Wischmeier, C. Bekeny, T. Voss, S. Börner, and W. Schade, "Optical properties of single ZnO nanowires," Phys. Status Solidi B  243, 919-923 (2006).
[CrossRef]

R. Hauschild, and H. Kalt, "Guided modes in ZnO nanorods," Appl. Phys. Lett. 89, 123107 (2006)
[CrossRef]

H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. Le Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. G¨osele, "Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications," SMALL 2, 561-568 (2006).
[CrossRef] [PubMed]

B. Cao, W. Cai, H. Zeng, and G. Duan, "Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates," J. Appl. Phys. 99, 073516 (2006).
[CrossRef]

2005 (2)

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat. Mater. 4, 42-46 (2005).
[CrossRef]

J. F. Conley Jr, L. Stecker, and Y. Ono, "Directed assembly of ZnO nanowires on a Si substrate without a metal catalyst using a patterned ZnO seed layer," Nanotechnology 16, 292-296 (2005).
[CrossRef]

2002 (1)

W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yia, "Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods," Appl. Phys. Lett. 80, 4232-4234 (2002).
[CrossRef]

2001 (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, A. Dadgar, E. Weber, R. Russo, and P. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

1982 (1)

P. Vashishta, and R. K. Kalia, "Universal behavior of exchange-correlation energy in electron-hole liquid," Phys. Rev. B 25, 6492-6495 (1982).
[CrossRef]

1981 (1)

C. Klingshirn, and H. Haug, "Optical properties of highly excited direct gap semiconductors," Physics Rep. 70, 315-398 (1981).
[CrossRef]

1980 (1)

K. Bohnert, G. Schmieder, and C. Klingshirn, "Gain and reflection spectroscopy and the present understanding of the electron-hole plasma in II-VI compounds," Phys. Status Solidi B  98, 175-188 (1980).
[CrossRef]

Alexe, M.

H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. Le Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. G¨osele, "Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications," SMALL 2, 561-568 (2006).
[CrossRef] [PubMed]

Bayer, F.

S. Gsell, M. Fischer, R. Brescia, M. Schreck, P. Huber, F. Bayer, B. Stritzker, and D. G. Schlom, "Reduction of mosaic spread using iridium interlayers: A route to improved oxide heteroepitaxy on silicon," Appl. Phys. Lett. 91, 061501 (2007).
[CrossRef]

Bekeny, C.

L. Wischmeier, C. Bekeny, T. Voss, S. Börner, and W. Schade, "Optical properties of single ZnO nanowires," Phys. Status Solidi B  243, 919-923 (2006).
[CrossRef]

Bohnert, K.

K. Bohnert, G. Schmieder, and C. Klingshirn, "Gain and reflection spectroscopy and the present understanding of the electron-hole plasma in II-VI compounds," Phys. Status Solidi B  98, 175-188 (1980).
[CrossRef]

Börner, S.

L. Wischmeier, C. Bekeny, T. Voss, S. Börner, and W. Schade, "Optical properties of single ZnO nanowires," Phys. Status Solidi B  243, 919-923 (2006).
[CrossRef]

Brescia, R.

S. Gsell, M. Fischer, R. Brescia, M. Schreck, P. Huber, F. Bayer, B. Stritzker, and D. G. Schlom, "Reduction of mosaic spread using iridium interlayers: A route to improved oxide heteroepitaxy on silicon," Appl. Phys. Lett. 91, 061501 (2007).
[CrossRef]

Cai, W.

B. Cao, W. Cai, H. Zeng, and G. Duan, "Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates," J. Appl. Phys. 99, 073516 (2006).
[CrossRef]

Cao, B.

B. Cao, W. Cai, H. Zeng, and G. Duan, "Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates," J. Appl. Phys. 99, 073516 (2006).
[CrossRef]

Chichibu, S. F.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat. Mater. 4, 42-46 (2005).
[CrossRef]

Conley, J. F.

J. F. Conley Jr, L. Stecker, and Y. Ono, "Directed assembly of ZnO nanowires on a Si substrate without a metal catalyst using a patterned ZnO seed layer," Nanotechnology 16, 292-296 (2005).
[CrossRef]

Dadgar, A.

H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. Le Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. G¨osele, "Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications," SMALL 2, 561-568 (2006).
[CrossRef] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, A. Dadgar, E. Weber, R. Russo, and P. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Duan, G.

B. Cao, W. Cai, H. Zeng, and G. Duan, "Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates," J. Appl. Phys. 99, 073516 (2006).
[CrossRef]

Fallert, J.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112 (2007).
[CrossRef]

C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, "Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing," Phys. Rev. B 75, 115203 (2007).
[CrossRef]

Fan, H. J.

R. Hauschild, H. Lange, H. Priller, C. Klingshirn, R. Kling, A. Waag, H. J. Fan, M. Zacharias, and H. Kalt, "Stimulated emission from ZnO nanorods," Phys. Status SolidiB 243, 853-857 (2006).
[CrossRef]

H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. Le Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. G¨osele, "Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications," SMALL 2, 561-568 (2006).
[CrossRef] [PubMed]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, A. Dadgar, E. Weber, R. Russo, and P. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Feneberg, M.

G. M. Prinz, A. Reiser, T. Röder, M. Schirra, M. Feneberg, U. Röder, R. Sauer, K. Thonke, S. Gsell, M. Schreck, and B. Stritzker, "Growth of zinc oxide nanopillars on an iridium/yttria-stabilized zirconia/silicon substrate," Appl. Phys. Lett. 90, 233115 (2007).
[CrossRef]

Fischer, M.

S. Gsell, M. Fischer, R. Brescia, M. Schreck, P. Huber, F. Bayer, B. Stritzker, and D. G. Schlom, "Reduction of mosaic spread using iridium interlayers: A route to improved oxide heteroepitaxy on silicon," Appl. Phys. Lett. 91, 061501 (2007).
[CrossRef]

Fuke, S.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat. Mater. 4, 42-46 (2005).
[CrossRef]

Gosele, U.

H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. Le Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. G¨osele, "Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications," SMALL 2, 561-568 (2006).
[CrossRef] [PubMed]

Gsell, S.

S. Gsell, M. Fischer, R. Brescia, M. Schreck, P. Huber, F. Bayer, B. Stritzker, and D. G. Schlom, "Reduction of mosaic spread using iridium interlayers: A route to improved oxide heteroepitaxy on silicon," Appl. Phys. Lett. 91, 061501 (2007).
[CrossRef]

G. M. Prinz, A. Reiser, T. Röder, M. Schirra, M. Feneberg, U. Röder, R. Sauer, K. Thonke, S. Gsell, M. Schreck, and B. Stritzker, "Growth of zinc oxide nanopillars on an iridium/yttria-stabilized zirconia/silicon substrate," Appl. Phys. Lett. 90, 233115 (2007).
[CrossRef]

Haug, H.

C. Klingshirn, and H. Haug, "Optical properties of highly excited direct gap semiconductors," Physics Rep. 70, 315-398 (1981).
[CrossRef]

Hauschild, R.

C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, "Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing," Phys. Rev. B 75, 115203 (2007).
[CrossRef]

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112 (2007).
[CrossRef]

H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. Le Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. G¨osele, "Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications," SMALL 2, 561-568 (2006).
[CrossRef] [PubMed]

R. Hauschild, and H. Kalt, "Guided modes in ZnO nanorods," Appl. Phys. Lett. 89, 123107 (2006)
[CrossRef]

R. Hauschild, H. Lange, H. Priller, C. Klingshirn, R. Kling, A. Waag, H. J. Fan, M. Zacharias, and H. Kalt, "Stimulated emission from ZnO nanorods," Phys. Status SolidiB 243, 853-857 (2006).
[CrossRef]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, A. Dadgar, E. Weber, R. Russo, and P. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Huber, P.

S. Gsell, M. Fischer, R. Brescia, M. Schreck, P. Huber, F. Bayer, B. Stritzker, and D. G. Schlom, "Reduction of mosaic spread using iridium interlayers: A route to improved oxide heteroepitaxy on silicon," Appl. Phys. Lett. 91, 061501 (2007).
[CrossRef]

Jung, S. W.

W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yia, "Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods," Appl. Phys. Lett. 80, 4232-4234 (2002).
[CrossRef]

Kalia, R. K.

P. Vashishta, and R. K. Kalia, "Universal behavior of exchange-correlation energy in electron-hole liquid," Phys. Rev. B 25, 6492-6495 (1982).
[CrossRef]

Kalt, H.

C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, "Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing," Phys. Rev. B 75, 115203 (2007).
[CrossRef]

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112 (2007).
[CrossRef]

R. Hauschild, and H. Kalt, "Guided modes in ZnO nanorods," Appl. Phys. Lett. 89, 123107 (2006)
[CrossRef]

H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. Le Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. G¨osele, "Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications," SMALL 2, 561-568 (2006).
[CrossRef] [PubMed]

R. Hauschild, H. Lange, H. Priller, C. Klingshirn, R. Kling, A. Waag, H. J. Fan, M. Zacharias, and H. Kalt, "Stimulated emission from ZnO nanorods," Phys. Status SolidiB 243, 853-857 (2006).
[CrossRef]

Kawasaki, M.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat. Mater. 4, 42-46 (2005).
[CrossRef]

Kim, D. H.

W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yia, "Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods," Appl. Phys. Lett. 80, 4232-4234 (2002).
[CrossRef]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, A. Dadgar, E. Weber, R. Russo, and P. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Kling, R.

R. Hauschild, H. Lange, H. Priller, C. Klingshirn, R. Kling, A. Waag, H. J. Fan, M. Zacharias, and H. Kalt, "Stimulated emission from ZnO nanorods," Phys. Status SolidiB 243, 853-857 (2006).
[CrossRef]

Klingshirn, C.

C. Klingshirn, "ZnO: From basics towards applications," Phys. Status Solidi B 244, 3027-3073 (2007).
[CrossRef]

C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, "Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing," Phys. Rev. B 75, 115203 (2007).
[CrossRef]

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112 (2007).
[CrossRef]

R. Hauschild, H. Lange, H. Priller, C. Klingshirn, R. Kling, A. Waag, H. J. Fan, M. Zacharias, and H. Kalt, "Stimulated emission from ZnO nanorods," Phys. Status SolidiB 243, 853-857 (2006).
[CrossRef]

C. Klingshirn, and H. Haug, "Optical properties of highly excited direct gap semiconductors," Physics Rep. 70, 315-398 (1981).
[CrossRef]

K. Bohnert, G. Schmieder, and C. Klingshirn, "Gain and reflection spectroscopy and the present understanding of the electron-hole plasma in II-VI compounds," Phys. Status Solidi B  98, 175-188 (1980).
[CrossRef]

Koinuma, H.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat. Mater. 4, 42-46 (2005).
[CrossRef]

Krost, A.

H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. Le Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. G¨osele, "Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications," SMALL 2, 561-568 (2006).
[CrossRef] [PubMed]

Lange, H.

R. Hauschild, H. Lange, H. Priller, C. Klingshirn, R. Kling, A. Waag, H. J. Fan, M. Zacharias, and H. Kalt, "Stimulated emission from ZnO nanorods," Phys. Status SolidiB 243, 853-857 (2006).
[CrossRef]

Le Rhun, G.

H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. Le Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. G¨osele, "Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications," SMALL 2, 561-568 (2006).
[CrossRef] [PubMed]

Lee, W.

H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. Le Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. G¨osele, "Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications," SMALL 2, 561-568 (2006).
[CrossRef] [PubMed]

Makino, T.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat. Mater. 4, 42-46 (2005).
[CrossRef]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, A. Dadgar, E. Weber, R. Russo, and P. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Nielsch, K.

H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. Le Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. G¨osele, "Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications," SMALL 2, 561-568 (2006).
[CrossRef] [PubMed]

Ohno, H.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat. Mater. 4, 42-46 (2005).
[CrossRef]

Ohtani, K.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat. Mater. 4, 42-46 (2005).
[CrossRef]

Ohtani, M.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat. Mater. 4, 42-46 (2005).
[CrossRef]

Ohtomo, A.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat. Mater. 4, 42-46 (2005).
[CrossRef]

Ono, Y.

J. F. Conley Jr, L. Stecker, and Y. Ono, "Directed assembly of ZnO nanowires on a Si substrate without a metal catalyst using a patterned ZnO seed layer," Nanotechnology 16, 292-296 (2005).
[CrossRef]

Onuma, T.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat. Mater. 4, 42-46 (2005).
[CrossRef]

Park, W. I.

W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yia, "Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods," Appl. Phys. Lett. 80, 4232-4234 (2002).
[CrossRef]

Priller, H.

R. Hauschild, H. Lange, H. Priller, C. Klingshirn, R. Kling, A. Waag, H. J. Fan, M. Zacharias, and H. Kalt, "Stimulated emission from ZnO nanorods," Phys. Status SolidiB 243, 853-857 (2006).
[CrossRef]

Prinz, G. M.

G. M. Prinz, A. Reiser, T. Röder, M. Schirra, M. Feneberg, U. Röder, R. Sauer, K. Thonke, S. Gsell, M. Schreck, and B. Stritzker, "Growth of zinc oxide nanopillars on an iridium/yttria-stabilized zirconia/silicon substrate," Appl. Phys. Lett. 90, 233115 (2007).
[CrossRef]

Reiser, A.

G. M. Prinz, A. Reiser, T. Röder, M. Schirra, M. Feneberg, U. Röder, R. Sauer, K. Thonke, S. Gsell, M. Schreck, and B. Stritzker, "Growth of zinc oxide nanopillars on an iridium/yttria-stabilized zirconia/silicon substrate," Appl. Phys. Lett. 90, 233115 (2007).
[CrossRef]

Röder, T.

G. M. Prinz, A. Reiser, T. Röder, M. Schirra, M. Feneberg, U. Röder, R. Sauer, K. Thonke, S. Gsell, M. Schreck, and B. Stritzker, "Growth of zinc oxide nanopillars on an iridium/yttria-stabilized zirconia/silicon substrate," Appl. Phys. Lett. 90, 233115 (2007).
[CrossRef]

Röder, U.

G. M. Prinz, A. Reiser, T. Röder, M. Schirra, M. Feneberg, U. Röder, R. Sauer, K. Thonke, S. Gsell, M. Schreck, and B. Stritzker, "Growth of zinc oxide nanopillars on an iridium/yttria-stabilized zirconia/silicon substrate," Appl. Phys. Lett. 90, 233115 (2007).
[CrossRef]

Rühle, S.

K. van Vugt, S. Rühle, and D. Vanmaekelbergh, "Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire," Nano Lett. 6, 2707-2711 (2006).
[CrossRef] [PubMed]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, A. Dadgar, E. Weber, R. Russo, and P. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Sauer, R.

G. M. Prinz, A. Reiser, T. Röder, M. Schirra, M. Feneberg, U. Röder, R. Sauer, K. Thonke, S. Gsell, M. Schreck, and B. Stritzker, "Growth of zinc oxide nanopillars on an iridium/yttria-stabilized zirconia/silicon substrate," Appl. Phys. Lett. 90, 233115 (2007).
[CrossRef]

Schade, W.

L. Wischmeier, C. Bekeny, T. Voss, S. Börner, and W. Schade, "Optical properties of single ZnO nanowires," Phys. Status Solidi B  243, 919-923 (2006).
[CrossRef]

Schirra, M.

G. M. Prinz, A. Reiser, T. Röder, M. Schirra, M. Feneberg, U. Röder, R. Sauer, K. Thonke, S. Gsell, M. Schreck, and B. Stritzker, "Growth of zinc oxide nanopillars on an iridium/yttria-stabilized zirconia/silicon substrate," Appl. Phys. Lett. 90, 233115 (2007).
[CrossRef]

Schlom, D. G.

S. Gsell, M. Fischer, R. Brescia, M. Schreck, P. Huber, F. Bayer, B. Stritzker, and D. G. Schlom, "Reduction of mosaic spread using iridium interlayers: A route to improved oxide heteroepitaxy on silicon," Appl. Phys. Lett. 91, 061501 (2007).
[CrossRef]

Schmieder, G.

K. Bohnert, G. Schmieder, and C. Klingshirn, "Gain and reflection spectroscopy and the present understanding of the electron-hole plasma in II-VI compounds," Phys. Status Solidi B  98, 175-188 (1980).
[CrossRef]

Scholz, R.

H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. Le Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. G¨osele, "Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications," SMALL 2, 561-568 (2006).
[CrossRef] [PubMed]

Schreck, M.

G. M. Prinz, A. Reiser, T. Röder, M. Schirra, M. Feneberg, U. Röder, R. Sauer, K. Thonke, S. Gsell, M. Schreck, and B. Stritzker, "Growth of zinc oxide nanopillars on an iridium/yttria-stabilized zirconia/silicon substrate," Appl. Phys. Lett. 90, 233115 (2007).
[CrossRef]

S. Gsell, M. Fischer, R. Brescia, M. Schreck, P. Huber, F. Bayer, B. Stritzker, and D. G. Schlom, "Reduction of mosaic spread using iridium interlayers: A route to improved oxide heteroepitaxy on silicon," Appl. Phys. Lett. 91, 061501 (2007).
[CrossRef]

Segawa, Y.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat. Mater. 4, 42-46 (2005).
[CrossRef]

Stecker, L.

J. F. Conley Jr, L. Stecker, and Y. Ono, "Directed assembly of ZnO nanowires on a Si substrate without a metal catalyst using a patterned ZnO seed layer," Nanotechnology 16, 292-296 (2005).
[CrossRef]

Stelzl, F.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112 (2007).
[CrossRef]

Stritzker, B.

G. M. Prinz, A. Reiser, T. Röder, M. Schirra, M. Feneberg, U. Röder, R. Sauer, K. Thonke, S. Gsell, M. Schreck, and B. Stritzker, "Growth of zinc oxide nanopillars on an iridium/yttria-stabilized zirconia/silicon substrate," Appl. Phys. Lett. 90, 233115 (2007).
[CrossRef]

S. Gsell, M. Fischer, R. Brescia, M. Schreck, P. Huber, F. Bayer, B. Stritzker, and D. G. Schlom, "Reduction of mosaic spread using iridium interlayers: A route to improved oxide heteroepitaxy on silicon," Appl. Phys. Lett. 91, 061501 (2007).
[CrossRef]

Sumiya, M.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat. Mater. 4, 42-46 (2005).
[CrossRef]

Thonke, K.

G. M. Prinz, A. Reiser, T. Röder, M. Schirra, M. Feneberg, U. Röder, R. Sauer, K. Thonke, S. Gsell, M. Schreck, and B. Stritzker, "Growth of zinc oxide nanopillars on an iridium/yttria-stabilized zirconia/silicon substrate," Appl. Phys. Lett. 90, 233115 (2007).
[CrossRef]

Tsukazaki, A.

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat. Mater. 4, 42-46 (2005).
[CrossRef]

van Vugt, K.

K. van Vugt, S. Rühle, and D. Vanmaekelbergh, "Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire," Nano Lett. 6, 2707-2711 (2006).
[CrossRef] [PubMed]

Vanmaekelbergh, D.

K. van Vugt, S. Rühle, and D. Vanmaekelbergh, "Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire," Nano Lett. 6, 2707-2711 (2006).
[CrossRef] [PubMed]

Vashishta, P.

P. Vashishta, and R. K. Kalia, "Universal behavior of exchange-correlation energy in electron-hole liquid," Phys. Rev. B 25, 6492-6495 (1982).
[CrossRef]

Voss, T.

L. Wischmeier, C. Bekeny, T. Voss, S. Börner, and W. Schade, "Optical properties of single ZnO nanowires," Phys. Status Solidi B  243, 919-923 (2006).
[CrossRef]

Waag, A.

R. Hauschild, H. Lange, H. Priller, C. Klingshirn, R. Kling, A. Waag, H. J. Fan, M. Zacharias, and H. Kalt, "Stimulated emission from ZnO nanorods," Phys. Status SolidiB 243, 853-857 (2006).
[CrossRef]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, A. Dadgar, E. Weber, R. Russo, and P. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Wischmeier, L.

L. Wischmeier, C. Bekeny, T. Voss, S. Börner, and W. Schade, "Optical properties of single ZnO nanowires," Phys. Status Solidi B  243, 919-923 (2006).
[CrossRef]

Wissinger, M.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112 (2007).
[CrossRef]

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, A. Dadgar, E. Weber, R. Russo, and P. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Yan, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, A. Dadgar, E. Weber, R. Russo, and P. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Yang, P.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, A. Dadgar, E. Weber, R. Russo, and P. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Yia, G. C.

W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yia, "Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods," Appl. Phys. Lett. 80, 4232-4234 (2002).
[CrossRef]

Zacharias, M.

H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. Le Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. G¨osele, "Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications," SMALL 2, 561-568 (2006).
[CrossRef] [PubMed]

R. Hauschild, H. Lange, H. Priller, C. Klingshirn, R. Kling, A. Waag, H. J. Fan, M. Zacharias, and H. Kalt, "Stimulated emission from ZnO nanorods," Phys. Status SolidiB 243, 853-857 (2006).
[CrossRef]

Zeng, H.

B. Cao, W. Cai, H. Zeng, and G. Duan, "Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates," J. Appl. Phys. 99, 073516 (2006).
[CrossRef]

Zhou, H.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112 (2007).
[CrossRef]

Appl. Phys. Lett. (5)

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112 (2007).
[CrossRef]

R. Hauschild, and H. Kalt, "Guided modes in ZnO nanorods," Appl. Phys. Lett. 89, 123107 (2006)
[CrossRef]

W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yia, "Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods," Appl. Phys. Lett. 80, 4232-4234 (2002).
[CrossRef]

G. M. Prinz, A. Reiser, T. Röder, M. Schirra, M. Feneberg, U. Röder, R. Sauer, K. Thonke, S. Gsell, M. Schreck, and B. Stritzker, "Growth of zinc oxide nanopillars on an iridium/yttria-stabilized zirconia/silicon substrate," Appl. Phys. Lett. 90, 233115 (2007).
[CrossRef]

S. Gsell, M. Fischer, R. Brescia, M. Schreck, P. Huber, F. Bayer, B. Stritzker, and D. G. Schlom, "Reduction of mosaic spread using iridium interlayers: A route to improved oxide heteroepitaxy on silicon," Appl. Phys. Lett. 91, 061501 (2007).
[CrossRef]

J. Appl. Phys. (1)

B. Cao, W. Cai, H. Zeng, and G. Duan, "Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates," J. Appl. Phys. 99, 073516 (2006).
[CrossRef]

Nano Lett. (1)

K. van Vugt, S. Rühle, and D. Vanmaekelbergh, "Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire," Nano Lett. 6, 2707-2711 (2006).
[CrossRef] [PubMed]

Nanotechnology (1)

J. F. Conley Jr, L. Stecker, and Y. Ono, "Directed assembly of ZnO nanowires on a Si substrate without a metal catalyst using a patterned ZnO seed layer," Nanotechnology 16, 292-296 (2005).
[CrossRef]

Nat. Mater. (1)

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat. Mater. 4, 42-46 (2005).
[CrossRef]

Phys. Rev. B (2)

P. Vashishta, and R. K. Kalia, "Universal behavior of exchange-correlation energy in electron-hole liquid," Phys. Rev. B 25, 6492-6495 (1982).
[CrossRef]

C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, "Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing," Phys. Rev. B 75, 115203 (2007).
[CrossRef]

Phys. Status Solidi (4)

K. Bohnert, G. Schmieder, and C. Klingshirn, "Gain and reflection spectroscopy and the present understanding of the electron-hole plasma in II-VI compounds," Phys. Status Solidi B  98, 175-188 (1980).
[CrossRef]

C. Klingshirn, "ZnO: From basics towards applications," Phys. Status Solidi B 244, 3027-3073 (2007).
[CrossRef]

L. Wischmeier, C. Bekeny, T. Voss, S. Börner, and W. Schade, "Optical properties of single ZnO nanowires," Phys. Status Solidi B  243, 919-923 (2006).
[CrossRef]

R. Hauschild, H. Lange, H. Priller, C. Klingshirn, R. Kling, A. Waag, H. J. Fan, M. Zacharias, and H. Kalt, "Stimulated emission from ZnO nanorods," Phys. Status SolidiB 243, 853-857 (2006).
[CrossRef]

Physics Rep. (1)

C. Klingshirn, and H. Haug, "Optical properties of highly excited direct gap semiconductors," Physics Rep. 70, 315-398 (1981).
[CrossRef]

Science (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, A. Dadgar, E. Weber, R. Russo, and P. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

SMALL (1)

H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. Le Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. G¨osele, "Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications," SMALL 2, 561-568 (2006).
[CrossRef] [PubMed]

Other (3)

S. W. Koch, and M. Kira, Optics of Semiconductors and their Nanostructures, (Springer, Berlin, 2004).

H. Yoshikawa, and S. Adachi, Jpn. J. Appl. Phys. "Optical constants of ZnO," 36, 6237-6243 (1997).
[CrossRef]

C. Klingshirn, Semiconductor Optics, 3rd ed., (Springer, Berlin, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The experimental set-up. The excitation source is a a frequency-doubled Ti:Sa laser at 355 nm with 150 fs pulse length. The emission signal is detected in a streak camera with a temporal resolution of 5 ps.

Fig. 2.
Fig. 2.

A lasing ZnO nanorod. A superimposed luminescence picture with its surrounding area (a), the emission from the single nanorod (b) and the SEM picture of that particular rod (c).

Fig. 3.
Fig. 3.

(a) The normalized spectra show the emission of the same nanorod as displayed in Fig. 2 for various excitation densities at a temperature of 15 K. In the vertical dimension a time range of 60 ps for each slice is shown. Spectrally sharp and rapidly decaying peaks labelled A to E result from the stimulated emission related to the guided modes of the nanorod. (b) Evolution of the intensity of several modal peaks from (a) as a function of excitation density. (c) Spectral position of the same modal peaks over excitation density.

Fig. 4.
Fig. 4.

(a) Calculated gain spectra for different carrier densities at 10 K. (b) Numerical calculation of guided modes in a hexagonal nanorod with a diameter of 145 nm for a variable length between 3 and 3.2 µm. The solid lines give the expected mode positions for the refractive index n0(λ) of ZnO in the linear regime [16]. A reduction of the refractive index to 0.995 n0(λ) can be easily obtained by high excitation effects and causes shifted mode positions as indicated by the arrows and dashed lines.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g ( h ¯ ω ) ( h ¯ ω E g ) 1 2 ( f e + f h 1 )

Metrics