Abstract

A novel refractometric sensor based on an embedded optical nanowire loop resonator is presented. The device sensitivity has been studied in two typical configurations and its dependence on the nanowire diameter and coating thickness determined.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Adams, G. A. DeRose, M. Loncar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
    [CrossRef]
  2. C. Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).
    [CrossRef]
  3. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. D. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett.  87, 201107 (2005).
    [CrossRef]
  4. I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Y. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett.  89, 191106 (2006).
    [CrossRef]
  5. I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. D. Fan, "Refractometric sensors for lab-on-a-chip based on optical. ring resonators," IEEE Sens. J. 7, 28-35 (2007).
    [CrossRef]
  6. L. M. Tong, J. Y. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
    [CrossRef] [PubMed]
  7. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12,2864-2869 (2004).
    [CrossRef] [PubMed]
  8. G. Brambilla, V. Finazzi, and D. J. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Express 12, 2258-2263 (2004).
    [CrossRef] [PubMed]
  9. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The microfiber loop resonator: Theory, experiment, and application," J. Lightwave Technol. 24, 242-250 (2006).
    [CrossRef]
  10. M. Sumetsky, "Optical fiber microcoil resonator," Opt. Express 12, 2303-2316 (2004).
    [CrossRef] [PubMed]
  11. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "Demonstration of a microfiber loop optical resonator," in Optical Fiber Communication Conference, 2005. Technical Digest. OFC/NFOEC(2005), p. 3 pp. Vol. 5.
  12. F. Xu, and G. Brambilla, "Manufacture of 3-D Microfiber Coil Resonators," IEEE Photon. Technol. Lett. 19, 1481-1483 (2007).
    [CrossRef]
  13. F. Xu, and G. Brambilla, "Embedding optical microfiber coil resonators in Teflon," Opt. Lett. 32, 2164-2166 (2007).
    [CrossRef] [PubMed]
  14. M. Sumetsky, Y. Dulashko, and M. Fishteyn, " Demonstration of a Multi-Turn Microfiber Coil Resonator," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP46. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-PDP46.
  15. G. Brambilla, F. Xu and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical characterisation," Electron. Lett. 42, 517-518 (2006).
    [CrossRef]
  16. F. Xu, and G. Brambilla, "Demonstration of optical microfiber coil resonator refractometric sensor," submitted.
  17. F. Xu, P. Horak, and G. Brambilla, "Optical microfiber coil resonator refractometric sensor," Opt. Express 15, 7888-7893 (2007).
    [CrossRef] [PubMed]
  18. F. Xu, P. Horak, and G. Brambilla, "Optical microfiber coil resonator refractometric sensor: erratum," Opt. Express 15, 9385-9385 (2007).
    [CrossRef] [PubMed]
  19. M. S. Dinleyici, and D. B. Patterson, "Vector modal solution of evanescent coupler," J. Lightwave Technol. 15, 2316-2324 (1997).
    [CrossRef]
  20. D. Marcuse, F. Ladouceur, and J. D. Love, "Vector Modes of D-Shaped Fibers," IEE Proc. J. Optoelectronics 139, 117-126 (1992).
    [CrossRef]
  21. C. Y. Chao, and L. J. Guo, "Design and optimization of microring resonators in biochemical sensing applications," J. Lightwave Technol. 24, 1395-1402 (2006).
    [CrossRef]
  22. G. M. Hale, and M. R. Querry, "Optical-Constants of Water in 200-Nm to 200-Mum Wavelength Region," Appl. Opt. 12, 555-563 (1973).
    [CrossRef] [PubMed]

2007 (5)

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. D. Fan, "Refractometric sensors for lab-on-a-chip based on optical. ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

F. Xu, and G. Brambilla, "Manufacture of 3-D Microfiber Coil Resonators," IEEE Photon. Technol. Lett. 19, 1481-1483 (2007).
[CrossRef]

F. Xu, P. Horak, and G. Brambilla, "Optical microfiber coil resonator refractometric sensor," Opt. Express 15, 7888-7893 (2007).
[CrossRef] [PubMed]

F. Xu, P. Horak, and G. Brambilla, "Optical microfiber coil resonator refractometric sensor: erratum," Opt. Express 15, 9385-9385 (2007).
[CrossRef] [PubMed]

F. Xu, and G. Brambilla, "Embedding optical microfiber coil resonators in Teflon," Opt. Lett. 32, 2164-2166 (2007).
[CrossRef] [PubMed]

2006 (5)

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The microfiber loop resonator: Theory, experiment, and application," J. Lightwave Technol. 24, 242-250 (2006).
[CrossRef]

C. Y. Chao, and L. J. Guo, "Design and optimization of microring resonators in biochemical sensing applications," J. Lightwave Technol. 24, 1395-1402 (2006).
[CrossRef]

G. Brambilla, F. Xu and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical characterisation," Electron. Lett. 42, 517-518 (2006).
[CrossRef]

C. Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).
[CrossRef]

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Y. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett.  89, 191106 (2006).
[CrossRef]

2005 (2)

M. Adams, G. A. DeRose, M. Loncar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. D. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett.  87, 201107 (2005).
[CrossRef]

2004 (4)

1997 (1)

M. S. Dinleyici, and D. B. Patterson, "Vector modal solution of evanescent coupler," J. Lightwave Technol. 15, 2316-2324 (1997).
[CrossRef]

1992 (1)

D. Marcuse, F. Ladouceur, and J. D. Love, "Vector Modes of D-Shaped Fibers," IEE Proc. J. Optoelectronics 139, 117-126 (1992).
[CrossRef]

1973 (1)

Adams, M.

M. Adams, G. A. DeRose, M. Loncar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

Birks, T. A.

Brambilla, G.

Chao, C. Y.

C. Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).
[CrossRef]

C. Y. Chao, and L. J. Guo, "Design and optimization of microring resonators in biochemical sensing applications," J. Lightwave Technol. 24, 1395-1402 (2006).
[CrossRef]

DeRose, G. A.

M. Adams, G. A. DeRose, M. Loncar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

DiGiovanni, D. J.

Dinleyici, M. S.

M. S. Dinleyici, and D. B. Patterson, "Vector modal solution of evanescent coupler," J. Lightwave Technol. 15, 2316-2324 (1997).
[CrossRef]

Dulashko, Y.

Fan, X.

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Y. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett.  89, 191106 (2006).
[CrossRef]

Fan, X. D.

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. D. Fan, "Refractometric sensors for lab-on-a-chip based on optical. ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. D. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett.  87, 201107 (2005).
[CrossRef]

Feng, X.

G. Brambilla, F. Xu and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical characterisation," Electron. Lett. 42, 517-518 (2006).
[CrossRef]

Finazzi, V.

Fini, J. M.

Fung, W.

C. Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).
[CrossRef]

Guo, L. J.

C. Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).
[CrossRef]

C. Y. Chao, and L. J. Guo, "Design and optimization of microring resonators in biochemical sensing applications," J. Lightwave Technol. 24, 1395-1402 (2006).
[CrossRef]

Hale, A.

Hale, G. M.

Hanumegowda, N. M.

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. D. Fan, "Refractometric sensors for lab-on-a-chip based on optical. ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. D. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett.  87, 201107 (2005).
[CrossRef]

Horak, P.

Ladouceur, F.

D. Marcuse, F. Ladouceur, and J. D. Love, "Vector Modes of D-Shaped Fibers," IEE Proc. J. Optoelectronics 139, 117-126 (1992).
[CrossRef]

Leon-Saval, S. G.

Loncar, M.

M. Adams, G. A. DeRose, M. Loncar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

Lou, J. Y.

Love, J. D.

D. Marcuse, F. Ladouceur, and J. D. Love, "Vector Modes of D-Shaped Fibers," IEE Proc. J. Optoelectronics 139, 117-126 (1992).
[CrossRef]

Marcuse, D.

D. Marcuse, F. Ladouceur, and J. D. Love, "Vector Modes of D-Shaped Fibers," IEE Proc. J. Optoelectronics 139, 117-126 (1992).
[CrossRef]

Mason, M. W.

Mazur, E.

Oveys, H.

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. D. Fan, "Refractometric sensors for lab-on-a-chip based on optical. ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Y. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett.  89, 191106 (2006).
[CrossRef]

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. D. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett.  87, 201107 (2005).
[CrossRef]

Patterson, D. B.

M. S. Dinleyici, and D. B. Patterson, "Vector modal solution of evanescent coupler," J. Lightwave Technol. 15, 2316-2324 (1997).
[CrossRef]

Querry, M. R.

Richardson, D. J.

Russell, P. S. J.

Scherer, A.

M. Adams, G. A. DeRose, M. Loncar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

Smith, T. L.

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Y. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett.  89, 191106 (2006).
[CrossRef]

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. D. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett.  87, 201107 (2005).
[CrossRef]

Sumetsky, M.

Suter, J. D.

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. D. Fan, "Refractometric sensors for lab-on-a-chip based on optical. ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

Tong, L. M.

Wadsworth, W. J.

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. D. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett.  87, 201107 (2005).
[CrossRef]

White, I. M.

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. D. Fan, "Refractometric sensors for lab-on-a-chip based on optical. ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Y. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett.  89, 191106 (2006).
[CrossRef]

Xu, F.

Zhang, J. Y.

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Y. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett.  89, 191106 (2006).
[CrossRef]

Zhu, H. Y.

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. D. Fan, "Refractometric sensors for lab-on-a-chip based on optical. ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

Zourob, M.

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. D. Fan, "Refractometric sensors for lab-on-a-chip based on optical. ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. D. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett.  87, 201107 (2005).
[CrossRef]

I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Y. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett.  89, 191106 (2006).
[CrossRef]

Electron. Lett. (1)

G. Brambilla, F. Xu and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical characterisation," Electron. Lett. 42, 517-518 (2006).
[CrossRef]

IEE Proc. J. Optoelectronics (1)

D. Marcuse, F. Ladouceur, and J. D. Love, "Vector Modes of D-Shaped Fibers," IEE Proc. J. Optoelectronics 139, 117-126 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

F. Xu, and G. Brambilla, "Manufacture of 3-D Microfiber Coil Resonators," IEEE Photon. Technol. Lett. 19, 1481-1483 (2007).
[CrossRef]

IEEE Sens. J. (1)

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. D. Fan, "Refractometric sensors for lab-on-a-chip based on optical. ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

J. Lightwave Technol. (3)

J. Vac. Sci. Technol. B (1)

M. Adams, G. A. DeRose, M. Loncar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Other (3)

M. Sumetsky, Y. Dulashko, and M. Fishteyn, " Demonstration of a Multi-Turn Microfiber Coil Resonator," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP46. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-PDP46.

F. Xu, and G. Brambilla, "Demonstration of optical microfiber coil resonator refractometric sensor," submitted.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "Demonstration of a microfiber loop optical resonator," in Optical Fiber Communication Conference, 2005. Technical Digest. OFC/NFOEC(2005), p. 3 pp. Vol. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of the manufacturing process of an ENLR.(b) the final structure of the ENLR.

Fig. 2.
Fig. 2.

Cross-section of the ENLR, (I) d1 =d2 =d<1µm, (II) d1 →∞ and d2 =d<1µm

Fig. 3.
Fig. 3.

Dependence of the effective index of a coated nanowire neff on the index of the analyte na for nt =1.311, nc =1.451, r=500 nm, bared nanowire (blue dotted line), d=10 nm (black line) and 100 nm (red) for small coating thicknesses (case I: solid line) and infinitely thick layer on one side (case II: dashed). The wavelength of the propagating mode is (a) λ=600 nm, (b) λ=970 nm.

Fig. 4.
Fig. 4.

Sensitivity of the ENLR versus nanowire radius for (a) λ=600 nm and (b) λ=970 nm and for different values of d in I (solid line) and II (dashed). Here, na =1.332, nt =1.311, and nc =1.451.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

β n = ( 2 n + 1 ) π ( 2 L ) ,
S = λ 0 n a = λ 0 n e f f n e f f n a = λ 0 n e f f n e f f n a

Metrics