Abstract

Refractive index (RI) sensors based on optical resonance techniques are receiving a high degree of attention because of the need to develop simple, low-cost, high-throughput detection technologies for a number of applications. While the sensing mechanism of most of the reported RI sensors is similar, the construction is quite different from technique to technique. It is desirable to have a uniform mechanism for comparing the various RI sensing techniques, but to date there exists a degree of variation as to how the sensing performance is quantified. Here we set forth a rigorous definition for the detection limit of resonant RI sensors that accounts for all parameters that affect the detection performance. Our work will enable a standard approach for quantifying and comparing the performance of optical resonance-based RI sensors. Additionally, it will lead to design strategies for performance improvement of RI sensors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
    [CrossRef]
  2. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093–1095 (2004).
    [CrossRef] [PubMed]
  3. M. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15, 4530–4535 (2007).
    [CrossRef] [PubMed]
  4. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Hoiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14, 8224–8231 (2006).
    [CrossRef] [PubMed]
  5. N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals - enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.  3 (2007). DOI: 10.1007/s10404-007-0203-2
  6. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
    [CrossRef] [PubMed]
  7. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q ring resonators in thin silicon-on-insulator,” Appl. Phys. Lett. 85, 3346–3347 (2004).
    [CrossRef]
  8. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
    [CrossRef]
  9. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30, 3344–3346 (2005).
    [CrossRef]
  10. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896–1898 (2006).
    [CrossRef] [PubMed]
  11. C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
    [CrossRef]
  12. A. Yalcin, K. C. Popat, O. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
    [CrossRef]
  13. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop rresonator: theory, experiment, and application,” J. Lightwave Technol. 24, 242–250 (2006).
    [CrossRef]
  14. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15, 9139–9146 (2007).
    [CrossRef] [PubMed]
  15. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillaries,” Opt. Express 15, 12011–12016 (2007).
    [CrossRef] [PubMed]
  16. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999).
    [CrossRef]
  17. P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, and P. Steinrucke, “Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy,” Sens. Actuators B 54, 166–175 (1999).
    [CrossRef]
  18. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings,” Appl. Opt. 46, 5456–5460 (2007).
    [CrossRef] [PubMed]
  19. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15, 14376–14381 (2007).
    [CrossRef] [PubMed]
  20. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, and M. Holgado, “Slot-waveguide biochemical sensor,” Opt. Lett. 32, 3080–3082 (2007).
    [CrossRef] [PubMed]
  21. L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65–2.5µm spectral range,” Appl. Opt. 32, 3531–3540 (1993).
    [CrossRef] [PubMed]
  22. J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” App. Opt. 46, 389–396 (2007).
    [CrossRef]
  23. M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32, 1800–1802 (2007).
    [CrossRef] [PubMed]
  24. H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem. 79, 930–937 (2007).
    [CrossRef] [PubMed]
  25. D. Markov, D. Begari, and D. J. Bornhop, “Breaking the 10-7 Barrier for RI measurements in nanoliter volumes,” Anal. Chem. 74, 5438–5441 (2002).
    [CrossRef] [PubMed]
  26. Z. Wang and D. J. Bornhop, “Dual-capillary backscatter interferometry for high-sensitivity nanoliter-volume refractive index detection with density gradient compensation,” Anal. Chem. 77, 7872–7877 (2005).
    [CrossRef] [PubMed]

2007 (10)

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals - enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.  3 (2007). DOI: 10.1007/s10404-007-0203-2

J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” App. Opt. 46, 389–396 (2007).
[CrossRef]

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem. 79, 930–937 (2007).
[CrossRef] [PubMed]

M. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15, 4530–4535 (2007).
[CrossRef] [PubMed]

M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32, 1800–1802 (2007).
[CrossRef] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15, 9139–9146 (2007).
[CrossRef] [PubMed]

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings,” Appl. Opt. 46, 5456–5460 (2007).
[CrossRef] [PubMed]

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillaries,” Opt. Express 15, 12011–12016 (2007).
[CrossRef] [PubMed]

C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, and M. Holgado, “Slot-waveguide biochemical sensor,” Opt. Lett. 32, 3080–3082 (2007).
[CrossRef] [PubMed]

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15, 14376–14381 (2007).
[CrossRef] [PubMed]

2006 (5)

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop rresonator: theory, experiment, and application,” J. Lightwave Technol. 24, 242–250 (2006).
[CrossRef]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896–1898 (2006).
[CrossRef] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Hoiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14, 8224–8231 (2006).
[CrossRef] [PubMed]

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

A. Yalcin, K. C. Popat, O. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[CrossRef]

2005 (3)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Z. Wang and D. J. Bornhop, “Dual-capillary backscatter interferometry for high-sensitivity nanoliter-volume refractive index detection with density gradient compensation,” Anal. Chem. 77, 7872–7877 (2005).
[CrossRef] [PubMed]

A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30, 3344–3346 (2005).
[CrossRef]

2004 (2)

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093–1095 (2004).
[CrossRef] [PubMed]

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q ring resonators in thin silicon-on-insulator,” Appl. Phys. Lett. 85, 3346–3347 (2004).
[CrossRef]

2003 (1)

2002 (1)

D. Markov, D. Begari, and D. J. Bornhop, “Breaking the 10-7 Barrier for RI measurements in nanoliter volumes,” Anal. Chem. 74, 5438–5441 (2002).
[CrossRef] [PubMed]

1999 (3)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999).
[CrossRef]

P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, and P. Steinrucke, “Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy,” Sens. Actuators B 54, 166–175 (1999).
[CrossRef]

1993 (1)

Aldinger, U.

P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, and P. Steinrucke, “Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy,” Sens. Actuators B 54, 166–175 (1999).
[CrossRef]

Aldridge, O. C.

A. Yalcin, K. C. Popat, O. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[CrossRef]

Allsop, T.

Andrés, M. V.

Anthes-Washburn, M.

A. Yalcin, K. C. Popat, O. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[CrossRef]

Armani, A. M.

Arnold, S.

Baehr-Jones, T.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q ring resonators in thin silicon-on-insulator,” Appl. Phys. Lett. 85, 3346–3347 (2004).
[CrossRef]

Bang, O.

Barrios, C. A.

Begari, D.

D. Markov, D. Begari, and D. J. Bornhop, “Breaking the 10-7 Barrier for RI measurements in nanoliter volumes,” Anal. Chem. 74, 5438–5441 (2002).
[CrossRef] [PubMed]

Bennion, I.

Bornhop, D. J.

Z. Wang and D. J. Bornhop, “Dual-capillary backscatter interferometry for high-sensitivity nanoliter-volume refractive index detection with density gradient compensation,” Anal. Chem. 77, 7872–7877 (2005).
[CrossRef] [PubMed]

D. Markov, D. Begari, and D. J. Bornhop, “Breaking the 10-7 Barrier for RI measurements in nanoliter volumes,” Anal. Chem. 74, 5438–5441 (2002).
[CrossRef] [PubMed]

Chao, C.-Y.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

Chbouki, N.

A. Yalcin, K. C. Popat, O. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[CrossRef]

Chow, E.

Chu, S.

A. Yalcin, K. C. Popat, O. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[CrossRef]

Chylek, P.

Dale, P. S.

Desai, T. A.

A. Yalcin, K. C. Popat, O. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[CrossRef]

Diekmann, S.

P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, and P. Steinrucke, “Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy,” Sens. Actuators B 54, 166–175 (1999).
[CrossRef]

Díez, A.

DiGiovanni, D. J.

Dufva, M.

Dulashko, Y.

Fan, X.

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15, 14376–14381 (2007).
[CrossRef] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15, 9139–9146 (2007).
[CrossRef] [PubMed]

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem. 79, 930–937 (2007).
[CrossRef] [PubMed]

J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” App. Opt. 46, 389–396 (2007).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Fauchet, P. M.

Fini, J. M.

Fung, W.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Gill, D.

A. Yalcin, K. C. Popat, O. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[CrossRef]

Gimeno, B.

Girolami, G.

Goldberg, B. B.

A. Yalcin, K. C. Popat, O. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[CrossRef]

Griol, A.

Grot, A.

Guo, L. J.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

Gylfason, K. B.

Hale, A.

Han, M.

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Hochberg, M.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q ring resonators in thin silicon-on-insulator,” Appl. Phys. Lett. 85, 3346–3347 (2004).
[CrossRef]

Hoiby, P. E.

Holgado, M.

Holler, S.

Homola, J.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Hryniewicz, J.

A. Yalcin, K. C. Popat, O. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[CrossRef]

Jensen, J. B.

Khoshsima, M.

King, O.

A. Yalcin, K. C. Popat, O. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[CrossRef]

Kou, L.

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999).
[CrossRef]

Ksendzov, A.

Labrie, D.

Lee, M.

Lin, Y.

Little, B. E.

A. Yalcin, K. C. Popat, O. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[CrossRef]

Mapps, D.

Markov, D.

D. Markov, D. Begari, and D. J. Bornhop, “Breaking the 10-7 Barrier for RI measurements in nanoliter volumes,” Anal. Chem. 74, 5438–5441 (2002).
[CrossRef] [PubMed]

Mirkarimi, L. W.

Mortensen, N. A.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals - enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.  3 (2007). DOI: 10.1007/s10404-007-0203-2

Neal, R.

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Pedersen, J.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals - enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.  3 (2007). DOI: 10.1007/s10404-007-0203-2

Pedersen, L. H.

Pfeifer, P.

P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, and P. Steinrucke, “Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy,” Sens. Actuators B 54, 166–175 (1999).
[CrossRef]

Popat, K. C.

A. Yalcin, K. C. Popat, O. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[CrossRef]

Rehman, S.

Rindorf, L.

Sánchez, B.

Scherer, A.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q ring resonators in thin silicon-on-insulator,” Appl. Phys. Lett. 85, 3346–3347 (2004).
[CrossRef]

Schwotzer, G.

P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, and P. Steinrucke, “Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy,” Sens. Actuators B 54, 166–175 (1999).
[CrossRef]

Sigalas, M.

Sohlström, H.

Steinrucke, P.

P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, and P. Steinrucke, “Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy,” Sens. Actuators B 54, 166–175 (1999).
[CrossRef]

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Sumetsky, M.

Suter, J. D.

J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” App. Opt. 46, 389–396 (2007).
[CrossRef]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15, 9139–9146 (2007).
[CrossRef] [PubMed]

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem. 79, 930–937 (2007).
[CrossRef] [PubMed]

Teraoka, I.

Unlu, M. S.

A. Yalcin, K. C. Popat, O. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[CrossRef]

Vahala, K. J.

Van, V.

A. Yalcin, K. C. Popat, O. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[CrossRef]

Vollmer, F.

Walker, C.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q ring resonators in thin silicon-on-insulator,” Appl. Phys. Lett. 85, 3346–3347 (2004).
[CrossRef]

Wang, A.

Wang, Z.

Z. Wang and D. J. Bornhop, “Dual-capillary backscatter interferometry for high-sensitivity nanoliter-volume refractive index detection with density gradient compensation,” Anal. Chem. 77, 7872–7877 (2005).
[CrossRef] [PubMed]

Webb, D. J.

White, I. M.

J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” App. Opt. 46, 389–396 (2007).
[CrossRef]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15, 9139–9146 (2007).
[CrossRef] [PubMed]

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem. 79, 930–937 (2007).
[CrossRef] [PubMed]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Windeler, R. S.

Xiao, S.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals - enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.  3 (2007). DOI: 10.1007/s10404-007-0203-2

Yalcin, A.

A. Yalcin, K. C. Popat, O. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[CrossRef]

Yee, S. S.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Zamora, V.

Zhu, H.

J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” App. Opt. 46, 389–396 (2007).
[CrossRef]

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem. 79, 930–937 (2007).
[CrossRef] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15, 9139–9146 (2007).
[CrossRef] [PubMed]

Zourob, M.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem. 79, 930–937 (2007).
[CrossRef] [PubMed]

Anal. Chem. (3)

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem. 79, 930–937 (2007).
[CrossRef] [PubMed]

D. Markov, D. Begari, and D. J. Bornhop, “Breaking the 10-7 Barrier for RI measurements in nanoliter volumes,” Anal. Chem. 74, 5438–5441 (2002).
[CrossRef] [PubMed]

Z. Wang and D. J. Bornhop, “Dual-capillary backscatter interferometry for high-sensitivity nanoliter-volume refractive index detection with density gradient compensation,” Anal. Chem. 77, 7872–7877 (2005).
[CrossRef] [PubMed]

App. Opt. (1)

J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” App. Opt. 46, 389–396 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q ring resonators in thin silicon-on-insulator,” Appl. Phys. Lett. 85, 3346–3347 (2004).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

A. Yalcin, K. C. Popat, O. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Microfluid. Nanofluid (1)

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals - enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.  3 (2007). DOI: 10.1007/s10404-007-0203-2

Opt. Express (5)

Opt. Lett. (6)

Sens. Actuators B (3)

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999).
[CrossRef]

P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, and P. Steinrucke, “Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy,” Sens. Actuators B 54, 166–175 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(A). Optical RI sensors typically utilize an optical resonance that has a resonant wavelength dependent upon the RI of the sample. When the sample RI changes, the mode shifts spectrally. (B). The RI sensitivity is determined by measuring the spectral shift of the resonant mode for known changes in sample RI.

Fig. 2.
Fig. 2.

(A). Lorentzian mode amplitude with Gaussian noise added for SNR of 40 dB and 60 dB (SNR=peak power of signal divided by variance of noise distribution). (B). Results of Monte Carlo simulations over a range of Q-factors and amplitude noise variances. Circles are the results of the numerical simulations; lines are the approximation given by Eq. (3). Simulation was run for 400,000 iterations for each Q-factor and SNR. Spectral precision in the simulation is the 0.001 of the mode linewidth (results change very little when using an improved resolution of 0.0005 of the mode linewidth).

Fig. 3.
Fig. 3.

(A). Lorentzian mode of a ring resonator with η=0.01 or η=0.05. λ=1550, Q0=108, α=1000 m-1. (B) Calculated DL using Eqs. (3) and (4) for η=0.01, η=0.05, and η=0.1. For solid lines, only the mode amplitude noise is considered. For the dashed lines, temperature-induced spectral fluctuation with σ=10 fm is also considered. λ=1550, Q0=108, SNR=60 dB.

Tables (2)

Tables Icon

Table 1. Examples of demonstrated RI sensitivity for various RI sensing technologies.

Tables Icon

Table 2. Comparison of the detection limit of two different resonant modes with largely differing Q-factor and RI sensitivity.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = η Δ n s λ n eff
DL = R S .
σ Δ λ 4.5 ( SNR 0.25 )
ηα = 2 π n λ Q α
δ λ λ = σ p α ex 2 π n m 2 n s 2 ε 0 λ 2 n m n s 2 S .
S B = δ λ σ p .

Metrics