Abstract

In this study, time-domain fluorescence diffuse optical tomography in biological tissue is numerically investigated using a total light approach. Total light is a summation of excitation light and zero-lifetime emission light divided by quantum yield. The zero-lifetime emission light is an emitted fluorescence light calculated by assuming that the fluorescence lifetime is zero. The zero-lifetime emission light is calculated by deconvolving the actually measured emission light with a lifetime function, an exponential function for fluorescence decay. The object for numerical simulation is a 2-D 10 mm-radius circle with the optical properties simulating biological tissues for near infrared light, and contains regions with fluorophore. The inverse problem of fluorescence diffuse optical tomography is solved using time-resolved simulated measurement data of the excitation and total lights for reconstructing the absorption coefficient and fluorophore concentration simultaneously. The mean time of flight is used as the featured data-type extracted from the time-resolved data. The reconstructed images of fluorophore concentration show good quantitativeness and spatial reproducibility. By use of the total light approach, computation is performed much faster than the conventional ones.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, "Small animal imaging: current technology and perspectives for oncological imaging," Eur. J. Cancer 38, 2173-88 (2002).
    [CrossRef] [PubMed]
  2. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).
    [CrossRef] [PubMed]
  3. M. Patterson and W. Pogue, "Mathematical model for time-resolved and frequency domain fluorescence spectroscopy in biological tissues," Appl. Opt 33, 1963-1974 (1992).
    [CrossRef]
  4. X. D. Li, M. A. O???Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications," Appl. Opt 35, 3746-3758 (1996).
    [CrossRef] [PubMed]
  5. D. J. Hawrysz and E. M. Sevick-Muraca, "Development toward diagnostic breast cancer imaging using near-infrared optical measurements and contrast agents," Neoplasia 2, 388-417 (2000).
    [CrossRef]
  6. V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized born approximation," Opt. Lett. 26, 893-895 (2001).
    [CrossRef]
  7. E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-650 (2002).
    [CrossRef] [PubMed]
  8. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution for small animal imaging," Med. Phys. 30, 901-911 (2003).
    [CrossRef] [PubMed]
  9. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003).
    [CrossRef] [PubMed]
  10. T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
    [CrossRef] [PubMed]
  11. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt 42, 3081-3094 (2003).
    [CrossRef] [PubMed]
  12. A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffusion tomography using multiple-frequency data," J. Opt. Soc. Am. A 21, 1035-1049 (2004).
    [CrossRef]
  13. S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-48 (2004).
    [CrossRef] [PubMed]
  14. V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotech. 23, 313-320 (2005).
    [CrossRef]
  15. J. Wu, L. Perelman, R. R. Dasari, ans M. S. Feld, "Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms," Proc. Natl. Acad. Sci. USA 94, 8783-8788 (1997).
    [CrossRef] [PubMed]
  16. K. Chen, L. T. Perelman, Q. G. Zhang, R. R. Dasari, and M. S. Feld, "Optical computed tomography in a turbid medium using early arriving photons," J. Biomed. Opt. 5, 144-154 (2000).
    [CrossRef] [PubMed]
  17. D. Hattery, V. Chernomordik, M. Loew, I. Gannot, and A. Gandjbakhche, J. Opt. Soc. Am. A, "Analytical solutions for time-resolved fluorescence lifetime imaging in a turbid medium such as tissue," J. Opt. Soc. Am. 18, 1523-1530 (2001).
    [CrossRef]
  18. M. Sadoqi, P. Riseborough, and S. Kumar, "Analytical models for time resolved fluorescence spectroscopy in tissues," Phys. Med. Biol. 46, 2725-2743 (2001).
    [CrossRef] [PubMed]
  19. D. Hall, G. Ma, F. Lesage, and Y. Wang, "Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium," Opt. Lett. 29, 2258-2260 (2004).
    [CrossRef] [PubMed]
  20. G. M. Turner, G Zacharakis, A. Sourbet, J. Ripoll, and V. Ntziachristos, "Complete-angle projection diffuse optical tomography by use of early photons," Opt. Lett. 30, 409-411 (2005).
    [CrossRef] [PubMed]
  21. G. Ma, N. Mincu, F. Lesage, P. Gallant, and L. McIntosh, "System irf impact on fluorescence lifetime fitting in turbid medium," Proc. SPIE 5699, 263-273 (2005).
    [CrossRef]
  22. S. Bloch, F. Lesage, L. Mackintosh, A. Gandjbakche, K. Liang, and S Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
    [CrossRef] [PubMed]
  23. A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, "Fluorescence lifetime-based tomography for turbid media," Opt. Lett. 30, 3347-3349 (2005).
    [CrossRef]
  24. X. Lam, F. Lesage, and X. Intes, "Time domain fluorescent diffuse optical tomography: analytical expressions," Opt. Express 13, 2263-2275 (2005).
    [CrossRef] [PubMed]
  25. F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography," Opt. Express 14, 7109-7124 (2006).
    [CrossRef] [PubMed]
  26. S. Keren, O. Gheysens, C. S. Levin, and S. S. Gambhir, "A comparison between a time domain and continuous wave small animal optical imaging system," IEEE Trans Med Imaging 27, 58-63 (2008).
    [CrossRef] [PubMed]
  27. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-93 (1999).
    [CrossRef]
  28. F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
    [CrossRef] [PubMed]
  29. R. Model, M. Orlt, and M. Walzel, "Reconstruction algorithm for near-infrared imaging in turbid media by means of time-domain data," J. Opt. Soc. Am. A 14, 313-323 (1997).
    [CrossRef]
  30. M. Schweiger and S. R. Arridge, "Application of temporal filters to time resolved data in optical tomography," Phys. Med. Biol. 44, 1699-1717 (1999).
    [CrossRef] [PubMed]
  31. H. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
    [CrossRef]
  32. F. Gao, P. Poulet and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," Appl. Opt 39, 5898-5910 (2001).
    [CrossRef]
  33. R. Schulz, J. Peter, W. Semmler, and W. Bangerth, "Independent modeling of fluorescence excitation and emission with the finite element method," in OSA Biomedical Optics Topical Meeting, Technical Digest, ThF24, OSA (2004).
  34. A. Marjono, S. Okawa, F. Gao, and Y. Yamada, "Light Propagation for Time-Domain Fluorescence Diffuse Optical Tomography by Convolution Using Lifetime Function," Opt. Rev. 14, 131-138 (2007).
    [CrossRef]
  35. A. Marjono, Y. Akira, S. Okawa, F. Gao, and Y. Yamada, "Full time-resolved fluorescence diffuse optical tomography using total light approach," in OSA Biomedical Optics Topical Meeting, Technical Digest, BMD33, OSA (2008).
  36. Y. Yamada, "Light-tissue interaction and optical imaging in biomedicine," in Annual Review of Heat Transfer, C. L. Tien, ed., (Begell House, 1995), Vol. 6, pp. 1-59.
  37. M. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994).
    [CrossRef] [PubMed]
  38. L. Hutchinson, R. Lakowicz, and M. Sevick-Muraca, "Fluorescence lifetime based sensing in tissues: a computational study," Biophys. J. 68, 1574-1582 (1995).
    [CrossRef] [PubMed]
  39. S. Muraca and L. Burch, "Origins of phosphorescence signals reemitted from tissues," Opt. Lett. 19, 1928-1930 (1994).
    [CrossRef]
  40. K. Furutsu and Y. Yamada, "Diffusion approximation for a dissipative random medium and the application," Phys. Rev. E 50, 3634-3640 (1994).
    [CrossRef]
  41. T. Farrel and M. Patterson, "Diffusion modelling of fluorescence in tissue," in Handbook of Biomedical Fluorescence, M. Mycek and W. Pogue, eds., (Marcel Dekker, 2003), pp. 29-60.
  42. F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique," IEICE Trans. Inf. and Syst. E 85-D, 133-142 (2002).
  43. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. T. Bosch, "Scattering and absorption of turbid material determined from reflection measurements. 1. theory," Appl. Opt 22, 2456-2462 (1983).
    [CrossRef] [PubMed]
  44. W. G. Egan and T. W. Hilgeman, Optical properties of inhomogeneous materials (Academic, 1979).
  45. P. A. Jansson, Deconvolution with Applications in Spectroscopy (Academic Press Inc., 1984).
  46. P. A. Jansson, R. H. Hunt, and E. K. Plyler, "Resolution enhancement of spectra," J. Opt. Soc. Am. 60, 596-599 (1970).
  47. V. Ntziachristos, X. Ma, A. G. Yodh, and B. Chance, "Multichannel photon counting instrument for spatially resolved near infrared spectroscopy," Rev. Sci. Instrum. 70, 193-201 (1999).
    [CrossRef]
  48. F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
    [CrossRef] [PubMed]
  49. F. Gao, P. Poulet, and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," Appl. Opt. 39, 5898-5910 (2000).
    [CrossRef]
  50. M. Sevick-Muraca, A. Godavarty, J. Houston, A. Thompson, and R. Roy, "Near-infrared imaging with fluorescent contrast agents," in Handbook of Biomedical Fluorescence, M. Mycek and W. Pogue, eds. (Marcel Dekker, 2003), pp. 445-528.

2008 (1)

S. Keren, O. Gheysens, C. S. Levin, and S. S. Gambhir, "A comparison between a time domain and continuous wave small animal optical imaging system," IEEE Trans Med Imaging 27, 58-63 (2008).
[CrossRef] [PubMed]

2007 (1)

A. Marjono, S. Okawa, F. Gao, and Y. Yamada, "Light Propagation for Time-Domain Fluorescence Diffuse Optical Tomography by Convolution Using Lifetime Function," Opt. Rev. 14, 131-138 (2007).
[CrossRef]

2006 (1)

2005 (7)

H. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

G. M. Turner, G Zacharakis, A. Sourbet, J. Ripoll, and V. Ntziachristos, "Complete-angle projection diffuse optical tomography by use of early photons," Opt. Lett. 30, 409-411 (2005).
[CrossRef] [PubMed]

G. Ma, N. Mincu, F. Lesage, P. Gallant, and L. McIntosh, "System irf impact on fluorescence lifetime fitting in turbid medium," Proc. SPIE 5699, 263-273 (2005).
[CrossRef]

S. Bloch, F. Lesage, L. Mackintosh, A. Gandjbakche, K. Liang, and S Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, "Fluorescence lifetime-based tomography for turbid media," Opt. Lett. 30, 3347-3349 (2005).
[CrossRef]

X. Lam, F. Lesage, and X. Intes, "Time domain fluorescent diffuse optical tomography: analytical expressions," Opt. Express 13, 2263-2275 (2005).
[CrossRef] [PubMed]

V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotech. 23, 313-320 (2005).
[CrossRef]

2004 (3)

2003 (4)

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003).
[CrossRef] [PubMed]

T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt 42, 3081-3094 (2003).
[CrossRef] [PubMed]

2002 (6)

J. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, "Small animal imaging: current technology and perspectives for oncological imaging," Eur. J. Cancer 38, 2173-88 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-650 (2002).
[CrossRef] [PubMed]

F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
[CrossRef] [PubMed]

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique," IEICE Trans. Inf. and Syst. E 85-D, 133-142 (2002).

F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
[CrossRef] [PubMed]

2001 (4)

F. Gao, P. Poulet and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," Appl. Opt 39, 5898-5910 (2001).
[CrossRef]

V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized born approximation," Opt. Lett. 26, 893-895 (2001).
[CrossRef]

D. Hattery, V. Chernomordik, M. Loew, I. Gannot, and A. Gandjbakhche, J. Opt. Soc. Am. A, "Analytical solutions for time-resolved fluorescence lifetime imaging in a turbid medium such as tissue," J. Opt. Soc. Am. 18, 1523-1530 (2001).
[CrossRef]

M. Sadoqi, P. Riseborough, and S. Kumar, "Analytical models for time resolved fluorescence spectroscopy in tissues," Phys. Med. Biol. 46, 2725-2743 (2001).
[CrossRef] [PubMed]

2000 (3)

D. J. Hawrysz and E. M. Sevick-Muraca, "Development toward diagnostic breast cancer imaging using near-infrared optical measurements and contrast agents," Neoplasia 2, 388-417 (2000).
[CrossRef]

K. Chen, L. T. Perelman, Q. G. Zhang, R. R. Dasari, and M. S. Feld, "Optical computed tomography in a turbid medium using early arriving photons," J. Biomed. Opt. 5, 144-154 (2000).
[CrossRef] [PubMed]

F. Gao, P. Poulet, and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," Appl. Opt. 39, 5898-5910 (2000).
[CrossRef]

1999 (3)

V. Ntziachristos, X. Ma, A. G. Yodh, and B. Chance, "Multichannel photon counting instrument for spatially resolved near infrared spectroscopy," Rev. Sci. Instrum. 70, 193-201 (1999).
[CrossRef]

S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-93 (1999).
[CrossRef]

M. Schweiger and S. R. Arridge, "Application of temporal filters to time resolved data in optical tomography," Phys. Med. Biol. 44, 1699-1717 (1999).
[CrossRef] [PubMed]

1997 (2)

R. Model, M. Orlt, and M. Walzel, "Reconstruction algorithm for near-infrared imaging in turbid media by means of time-domain data," J. Opt. Soc. Am. A 14, 313-323 (1997).
[CrossRef]

J. Wu, L. Perelman, R. R. Dasari, ans M. S. Feld, "Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms," Proc. Natl. Acad. Sci. USA 94, 8783-8788 (1997).
[CrossRef] [PubMed]

1996 (1)

X. D. Li, M. A. O???Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications," Appl. Opt 35, 3746-3758 (1996).
[CrossRef] [PubMed]

1995 (1)

L. Hutchinson, R. Lakowicz, and M. Sevick-Muraca, "Fluorescence lifetime based sensing in tissues: a computational study," Biophys. J. 68, 1574-1582 (1995).
[CrossRef] [PubMed]

1994 (3)

1992 (1)

M. Patterson and W. Pogue, "Mathematical model for time-resolved and frequency domain fluorescence spectroscopy in biological tissues," Appl. Opt 33, 1963-1974 (1992).
[CrossRef]

1983 (1)

R. A. J. Groenhuis, H. A. Ferwerda, and J. J. T. Bosch, "Scattering and absorption of turbid material determined from reflection measurements. 1. theory," Appl. Opt 22, 2456-2462 (1983).
[CrossRef] [PubMed]

1970 (1)

Achilefu, S

S. Bloch, F. Lesage, L. Mackintosh, A. Gandjbakche, K. Liang, and S Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

Achilefu, S.

J. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, "Small animal imaging: current technology and perspectives for oncological imaging," Eur. J. Cancer 38, 2173-88 (2002).
[CrossRef] [PubMed]

Arridge, S. R.

S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-93 (1999).
[CrossRef]

M. Schweiger and S. R. Arridge, "Application of temporal filters to time resolved data in optical tomography," Phys. Med. Biol. 44, 1699-1717 (1999).
[CrossRef] [PubMed]

Bacskai, B. J.

Bloch, S.

S. Bloch, F. Lesage, L. Mackintosh, A. Gandjbakche, K. Liang, and S Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

Boas, D. A.

Bosch, J. J. T.

R. A. J. Groenhuis, H. A. Ferwerda, and J. J. T. Bosch, "Scattering and absorption of turbid material determined from reflection measurements. 1. theory," Appl. Opt 22, 2456-2462 (1983).
[CrossRef] [PubMed]

Bouman, C. A.

Bremer, C.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

Burch, L.

Chance, B.

V. Ntziachristos, X. Ma, A. G. Yodh, and B. Chance, "Multichannel photon counting instrument for spatially resolved near infrared spectroscopy," Rev. Sci. Instrum. 70, 193-201 (1999).
[CrossRef]

X. D. Li, M. A. O???Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications," Appl. Opt 35, 3746-3758 (1996).
[CrossRef] [PubMed]

Chen, K.

K. Chen, L. T. Perelman, Q. G. Zhang, R. R. Dasari, and M. S. Feld, "Optical computed tomography in a turbid medium using early arriving photons," J. Biomed. Opt. 5, 144-154 (2000).
[CrossRef] [PubMed]

Chernomordik, V.

D. Hattery, V. Chernomordik, M. Loew, I. Gannot, and A. Gandjbakhche, J. Opt. Soc. Am. A, "Analytical solutions for time-resolved fluorescence lifetime imaging in a turbid medium such as tissue," J. Opt. Soc. Am. 18, 1523-1530 (2001).
[CrossRef]

Cherry, S. R.

S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-48 (2004).
[CrossRef] [PubMed]

Dasari, R. R.

K. Chen, L. T. Perelman, Q. G. Zhang, R. R. Dasari, and M. S. Feld, "Optical computed tomography in a turbid medium using early arriving photons," J. Biomed. Opt. 5, 144-154 (2000).
[CrossRef] [PubMed]

J. Wu, L. Perelman, R. R. Dasari, ans M. S. Feld, "Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms," Proc. Natl. Acad. Sci. USA 94, 8783-8788 (1997).
[CrossRef] [PubMed]

Dunn, A. K.

Feld, M. S.

K. Chen, L. T. Perelman, Q. G. Zhang, R. R. Dasari, and M. S. Feld, "Optical computed tomography in a turbid medium using early arriving photons," J. Biomed. Opt. 5, 144-154 (2000).
[CrossRef] [PubMed]

Ferwerda, H. A.

R. A. J. Groenhuis, H. A. Ferwerda, and J. J. T. Bosch, "Scattering and absorption of turbid material determined from reflection measurements. 1. theory," Appl. Opt 22, 2456-2462 (1983).
[CrossRef] [PubMed]

Furutsu, K.

K. Furutsu and Y. Yamada, "Diffusion approximation for a dissipative random medium and the application," Phys. Rev. E 50, 3634-3640 (1994).
[CrossRef]

Gallant, P.

G. Ma, N. Mincu, F. Lesage, P. Gallant, and L. McIntosh, "System irf impact on fluorescence lifetime fitting in turbid medium," Proc. SPIE 5699, 263-273 (2005).
[CrossRef]

Gambhir, S. S.

S. Keren, O. Gheysens, C. S. Levin, and S. S. Gambhir, "A comparison between a time domain and continuous wave small animal optical imaging system," IEEE Trans Med Imaging 27, 58-63 (2008).
[CrossRef] [PubMed]

T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef] [PubMed]

Gandjbakche, A.

S. Bloch, F. Lesage, L. Mackintosh, A. Gandjbakche, K. Liang, and S Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

Gandjbakhche, A.

D. Hattery, V. Chernomordik, M. Loew, I. Gannot, and A. Gandjbakhche, J. Opt. Soc. Am. A, "Analytical solutions for time-resolved fluorescence lifetime imaging in a turbid medium such as tissue," J. Opt. Soc. Am. 18, 1523-1530 (2001).
[CrossRef]

Gannot, I.

D. Hattery, V. Chernomordik, M. Loew, I. Gannot, and A. Gandjbakhche, J. Opt. Soc. Am. A, "Analytical solutions for time-resolved fluorescence lifetime imaging in a turbid medium such as tissue," J. Opt. Soc. Am. 18, 1523-1530 (2001).
[CrossRef]

Gao, F.

A. Marjono, S. Okawa, F. Gao, and Y. Yamada, "Light Propagation for Time-Domain Fluorescence Diffuse Optical Tomography by Convolution Using Lifetime Function," Opt. Rev. 14, 131-138 (2007).
[CrossRef]

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography," Opt. Express 14, 7109-7124 (2006).
[CrossRef] [PubMed]

H. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
[CrossRef] [PubMed]

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique," IEICE Trans. Inf. and Syst. E 85-D, 133-142 (2002).

F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
[CrossRef] [PubMed]

F. Gao, P. Poulet and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," Appl. Opt 39, 5898-5910 (2001).
[CrossRef]

F. Gao, P. Poulet, and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," Appl. Opt. 39, 5898-5910 (2000).
[CrossRef]

Garbow, J. R.

J. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, "Small animal imaging: current technology and perspectives for oncological imaging," Eur. J. Cancer 38, 2173-88 (2002).
[CrossRef] [PubMed]

Gheysens, O.

S. Keren, O. Gheysens, C. S. Levin, and S. S. Gambhir, "A comparison between a time domain and continuous wave small animal optical imaging system," IEEE Trans Med Imaging 27, 58-63 (2008).
[CrossRef] [PubMed]

Graves, E. E.

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

Groenhuis, R. A. J.

R. A. J. Groenhuis, H. A. Ferwerda, and J. J. T. Bosch, "Scattering and absorption of turbid material determined from reflection measurements. 1. theory," Appl. Opt 22, 2456-2462 (1983).
[CrossRef] [PubMed]

Gurfinkel, M.

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-650 (2002).
[CrossRef] [PubMed]

Hall, D.

Hattery, D.

D. Hattery, V. Chernomordik, M. Loew, I. Gannot, and A. Gandjbakhche, J. Opt. Soc. Am. A, "Analytical solutions for time-resolved fluorescence lifetime imaging in a turbid medium such as tissue," J. Opt. Soc. Am. 18, 1523-1530 (2001).
[CrossRef]

Hawrysz, D. J.

D. J. Hawrysz and E. M. Sevick-Muraca, "Development toward diagnostic breast cancer imaging using near-infrared optical measurements and contrast agents," Neoplasia 2, 388-417 (2000).
[CrossRef]

Homma, K.

H. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

Houston, J. P.

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-650 (2002).
[CrossRef] [PubMed]

Hunt, R. H.

Hutchinson, L.

L. Hutchinson, R. Lakowicz, and M. Sevick-Muraca, "Fluorescence lifetime based sensing in tissues: a computational study," Biophys. J. 68, 1574-1582 (1995).
[CrossRef] [PubMed]

Intes, X.

Jansson, P. A.

Keren, S.

S. Keren, O. Gheysens, C. S. Levin, and S. S. Gambhir, "A comparison between a time domain and continuous wave small animal optical imaging system," IEEE Trans Med Imaging 27, 58-63 (2008).
[CrossRef] [PubMed]

Kumar, A. T. N.

Kumar, S.

M. Sadoqi, P. Riseborough, and S. Kumar, "Analytical models for time resolved fluorescence spectroscopy in tissues," Phys. Med. Biol. 46, 2725-2743 (2001).
[CrossRef] [PubMed]

Laforest, R.

J. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, "Small animal imaging: current technology and perspectives for oncological imaging," Eur. J. Cancer 38, 2173-88 (2002).
[CrossRef] [PubMed]

Lakowicz, R.

L. Hutchinson, R. Lakowicz, and M. Sevick-Muraca, "Fluorescence lifetime based sensing in tissues: a computational study," Biophys. J. 68, 1574-1582 (1995).
[CrossRef] [PubMed]

Lam, X.

Lesage, F.

X. Lam, F. Lesage, and X. Intes, "Time domain fluorescent diffuse optical tomography: analytical expressions," Opt. Express 13, 2263-2275 (2005).
[CrossRef] [PubMed]

S. Bloch, F. Lesage, L. Mackintosh, A. Gandjbakche, K. Liang, and S Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

G. Ma, N. Mincu, F. Lesage, P. Gallant, and L. McIntosh, "System irf impact on fluorescence lifetime fitting in turbid medium," Proc. SPIE 5699, 263-273 (2005).
[CrossRef]

D. Hall, G. Ma, F. Lesage, and Y. Wang, "Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium," Opt. Lett. 29, 2258-2260 (2004).
[CrossRef] [PubMed]

Levin, C. S.

S. Keren, O. Gheysens, C. S. Levin, and S. S. Gambhir, "A comparison between a time domain and continuous wave small animal optical imaging system," IEEE Trans Med Imaging 27, 58-63 (2008).
[CrossRef] [PubMed]

Lewis, J.

J. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, "Small animal imaging: current technology and perspectives for oncological imaging," Eur. J. Cancer 38, 2173-88 (2002).
[CrossRef] [PubMed]

Li, X. D.

X. D. Li, M. A. O???Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications," Appl. Opt 35, 3746-3758 (1996).
[CrossRef] [PubMed]

Liang, K.

S. Bloch, F. Lesage, L. Mackintosh, A. Gandjbakche, K. Liang, and S Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

Loew, M.

D. Hattery, V. Chernomordik, M. Loew, I. Gannot, and A. Gandjbakhche, J. Opt. Soc. Am. A, "Analytical solutions for time-resolved fluorescence lifetime imaging in a turbid medium such as tissue," J. Opt. Soc. Am. 18, 1523-1530 (2001).
[CrossRef]

Ma, G.

G. Ma, N. Mincu, F. Lesage, P. Gallant, and L. McIntosh, "System irf impact on fluorescence lifetime fitting in turbid medium," Proc. SPIE 5699, 263-273 (2005).
[CrossRef]

D. Hall, G. Ma, F. Lesage, and Y. Wang, "Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium," Opt. Lett. 29, 2258-2260 (2004).
[CrossRef] [PubMed]

Ma, X.

V. Ntziachristos, X. Ma, A. G. Yodh, and B. Chance, "Multichannel photon counting instrument for spatially resolved near infrared spectroscopy," Rev. Sci. Instrum. 70, 193-201 (1999).
[CrossRef]

Mackintosh, L.

S. Bloch, F. Lesage, L. Mackintosh, A. Gandjbakche, K. Liang, and S Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

Marjono, A.

A. Marjono, S. Okawa, F. Gao, and Y. Yamada, "Light Propagation for Time-Domain Fluorescence Diffuse Optical Tomography by Convolution Using Lifetime Function," Opt. Rev. 14, 131-138 (2007).
[CrossRef]

Massoud, T. F.

T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef] [PubMed]

McIntosh, L.

G. Ma, N. Mincu, F. Lesage, P. Gallant, and L. McIntosh, "System irf impact on fluorescence lifetime fitting in turbid medium," Proc. SPIE 5699, 263-273 (2005).
[CrossRef]

Millane, R. P.

Milstein, A. B.

Mincu, N.

G. Ma, N. Mincu, F. Lesage, P. Gallant, and L. McIntosh, "System irf impact on fluorescence lifetime fitting in turbid medium," Proc. SPIE 5699, 263-273 (2005).
[CrossRef]

Model, R.

Muraca, S.

Ntziachiristos, V.

V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotech. 23, 313-320 (2005).
[CrossRef]

Ntziachristos, V.

G. M. Turner, G Zacharakis, A. Sourbet, J. Ripoll, and V. Ntziachristos, "Complete-angle projection diffuse optical tomography by use of early photons," Opt. Lett. 30, 409-411 (2005).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized born approximation," Opt. Lett. 26, 893-895 (2001).
[CrossRef]

V. Ntziachristos, X. Ma, A. G. Yodh, and B. Chance, "Multichannel photon counting instrument for spatially resolved near infrared spectroscopy," Rev. Sci. Instrum. 70, 193-201 (1999).
[CrossRef]

O???Leary, M. A.

X. D. Li, M. A. O???Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications," Appl. Opt 35, 3746-3758 (1996).
[CrossRef] [PubMed]

Oh, S.

Okawa, S.

A. Marjono, S. Okawa, F. Gao, and Y. Yamada, "Light Propagation for Time-Domain Fluorescence Diffuse Optical Tomography by Convolution Using Lifetime Function," Opt. Rev. 14, 131-138 (2007).
[CrossRef]

Orlt, M.

Patterson, M.

M. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994).
[CrossRef] [PubMed]

M. Patterson and W. Pogue, "Mathematical model for time-resolved and frequency domain fluorescence spectroscopy in biological tissues," Appl. Opt 33, 1963-1974 (1992).
[CrossRef]

Perelman, L.

J. Wu, L. Perelman, R. R. Dasari, ans M. S. Feld, "Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms," Proc. Natl. Acad. Sci. USA 94, 8783-8788 (1997).
[CrossRef] [PubMed]

Perelman, L. T.

K. Chen, L. T. Perelman, Q. G. Zhang, R. R. Dasari, and M. S. Feld, "Optical computed tomography in a turbid medium using early arriving photons," J. Biomed. Opt. 5, 144-154 (2000).
[CrossRef] [PubMed]

Plyler, E. K.

Pogue, B. W.

Pogue, W.

M. Patterson and W. Pogue, "Mathematical model for time-resolved and frequency domain fluorescence spectroscopy in biological tissues," Appl. Opt 33, 1963-1974 (1992).
[CrossRef]

Poulet, P.

F. Gao, P. Poulet and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," Appl. Opt 39, 5898-5910 (2001).
[CrossRef]

F. Gao, P. Poulet, and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," Appl. Opt. 39, 5898-5910 (2000).
[CrossRef]

Ripoll, J.

G. M. Turner, G Zacharakis, A. Sourbet, J. Ripoll, and V. Ntziachristos, "Complete-angle projection diffuse optical tomography by use of early photons," Opt. Lett. 30, 409-411 (2005).
[CrossRef] [PubMed]

V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotech. 23, 313-320 (2005).
[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

Riseborough, P.

M. Sadoqi, P. Riseborough, and S. Kumar, "Analytical models for time resolved fluorescence spectroscopy in tissues," Phys. Med. Biol. 46, 2725-2743 (2001).
[CrossRef] [PubMed]

Sadoqi, M.

M. Sadoqi, P. Riseborough, and S. Kumar, "Analytical models for time resolved fluorescence spectroscopy in tissues," Phys. Med. Biol. 46, 2725-2743 (2001).
[CrossRef] [PubMed]

Schweiger, M.

M. Schweiger and S. R. Arridge, "Application of temporal filters to time resolved data in optical tomography," Phys. Med. Biol. 44, 1699-1717 (1999).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-650 (2002).
[CrossRef] [PubMed]

D. J. Hawrysz and E. M. Sevick-Muraca, "Development toward diagnostic breast cancer imaging using near-infrared optical measurements and contrast agents," Neoplasia 2, 388-417 (2000).
[CrossRef]

Sevick-Muraca, M.

L. Hutchinson, R. Lakowicz, and M. Sevick-Muraca, "Fluorescence lifetime based sensing in tissues: a computational study," Biophys. J. 68, 1574-1582 (1995).
[CrossRef] [PubMed]

Skoch, J.

Sourbet, A.

Stott, J. J.

Tanikawa, Y.

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography," Opt. Express 14, 7109-7124 (2006).
[CrossRef] [PubMed]

H. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique," IEICE Trans. Inf. and Syst. E 85-D, 133-142 (2002).

Tung, C. H.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

Turner, G. M.

Walzel, M.

Wang, L. H. V.

V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotech. 23, 313-320 (2005).
[CrossRef]

Wang, Y.

Webb, K. J.

Weissleder, R.

V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotech. 23, 313-320 (2005).
[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized born approximation," Opt. Lett. 26, 893-895 (2001).
[CrossRef]

Welch, M. J.

J. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, "Small animal imaging: current technology and perspectives for oncological imaging," Eur. J. Cancer 38, 2173-88 (2002).
[CrossRef] [PubMed]

Wu, J.

J. Wu, L. Perelman, R. R. Dasari, ans M. S. Feld, "Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms," Proc. Natl. Acad. Sci. USA 94, 8783-8788 (1997).
[CrossRef] [PubMed]

Yamada, Y.

A. Marjono, S. Okawa, F. Gao, and Y. Yamada, "Light Propagation for Time-Domain Fluorescence Diffuse Optical Tomography by Convolution Using Lifetime Function," Opt. Rev. 14, 131-138 (2007).
[CrossRef]

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography," Opt. Express 14, 7109-7124 (2006).
[CrossRef] [PubMed]

H. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
[CrossRef] [PubMed]

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique," IEICE Trans. Inf. and Syst. E 85-D, 133-142 (2002).

F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
[CrossRef] [PubMed]

F. Gao, P. Poulet and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," Appl. Opt 39, 5898-5910 (2001).
[CrossRef]

F. Gao, P. Poulet, and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," Appl. Opt. 39, 5898-5910 (2000).
[CrossRef]

K. Furutsu and Y. Yamada, "Diffusion approximation for a dissipative random medium and the application," Phys. Rev. E 50, 3634-3640 (1994).
[CrossRef]

Yodh, A. G.

V. Ntziachristos, X. Ma, A. G. Yodh, and B. Chance, "Multichannel photon counting instrument for spatially resolved near infrared spectroscopy," Rev. Sci. Instrum. 70, 193-201 (1999).
[CrossRef]

X. D. Li, M. A. O???Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications," Appl. Opt 35, 3746-3758 (1996).
[CrossRef] [PubMed]

Zacharakis, G

Zhang, Q.

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt 42, 3081-3094 (2003).
[CrossRef] [PubMed]

Zhang, Q. G.

K. Chen, L. T. Perelman, Q. G. Zhang, R. R. Dasari, and M. S. Feld, "Optical computed tomography in a turbid medium using early arriving photons," J. Biomed. Opt. 5, 144-154 (2000).
[CrossRef] [PubMed]

Zhao, H.

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography," Opt. Express 14, 7109-7124 (2006).
[CrossRef] [PubMed]

H. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
[CrossRef] [PubMed]

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique," IEICE Trans. Inf. and Syst. E 85-D, 133-142 (2002).

F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
[CrossRef] [PubMed]

Appl. Opt (5)

M. Patterson and W. Pogue, "Mathematical model for time-resolved and frequency domain fluorescence spectroscopy in biological tissues," Appl. Opt 33, 1963-1974 (1992).
[CrossRef]

X. D. Li, M. A. O???Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications," Appl. Opt 35, 3746-3758 (1996).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt 42, 3081-3094 (2003).
[CrossRef] [PubMed]

F. Gao, P. Poulet and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," Appl. Opt 39, 5898-5910 (2001).
[CrossRef]

R. A. J. Groenhuis, H. A. Ferwerda, and J. J. T. Bosch, "Scattering and absorption of turbid material determined from reflection measurements. 1. theory," Appl. Opt 22, 2456-2462 (1983).
[CrossRef] [PubMed]

Appl. Opt. (6)

Biophys. J. (1)

L. Hutchinson, R. Lakowicz, and M. Sevick-Muraca, "Fluorescence lifetime based sensing in tissues: a computational study," Biophys. J. 68, 1574-1582 (1995).
[CrossRef] [PubMed]

Curr. Opin. Chem. Biol. (1)

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-650 (2002).
[CrossRef] [PubMed]

E (1)

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique," IEICE Trans. Inf. and Syst. E 85-D, 133-142 (2002).

Eur. J. Cancer (1)

J. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, "Small animal imaging: current technology and perspectives for oncological imaging," Eur. J. Cancer 38, 2173-88 (2002).
[CrossRef] [PubMed]

Genes Dev. (1)

T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef] [PubMed]

IEEE Trans Med Imaging (1)

S. Keren, O. Gheysens, C. S. Levin, and S. S. Gambhir, "A comparison between a time domain and continuous wave small animal optical imaging system," IEEE Trans Med Imaging 27, 58-63 (2008).
[CrossRef] [PubMed]

Inverse Probl. (1)

S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-93 (1999).
[CrossRef]

J. Biomed. Opt. (2)

S. Bloch, F. Lesage, L. Mackintosh, A. Gandjbakche, K. Liang, and S Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

K. Chen, L. T. Perelman, Q. G. Zhang, R. R. Dasari, and M. S. Feld, "Optical computed tomography in a turbid medium using early arriving photons," J. Biomed. Opt. 5, 144-154 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (2)

D. Hattery, V. Chernomordik, M. Loew, I. Gannot, and A. Gandjbakhche, J. Opt. Soc. Am. A, "Analytical solutions for time-resolved fluorescence lifetime imaging in a turbid medium such as tissue," J. Opt. Soc. Am. 18, 1523-1530 (2001).
[CrossRef]

P. A. Jansson, R. H. Hunt, and E. K. Plyler, "Resolution enhancement of spectra," J. Opt. Soc. Am. 60, 596-599 (1970).

J. Opt. Soc. Am. A (2)

Med. Phys. (1)

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

Nat. Biotech. (1)

V. Ntziachiristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotech. 23, 313-320 (2005).
[CrossRef]

Nat. Med. (1)

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

Neoplasia (1)

D. J. Hawrysz and E. M. Sevick-Muraca, "Development toward diagnostic breast cancer imaging using near-infrared optical measurements and contrast agents," Neoplasia 2, 388-417 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Opt. Rev. (1)

A. Marjono, S. Okawa, F. Gao, and Y. Yamada, "Light Propagation for Time-Domain Fluorescence Diffuse Optical Tomography by Convolution Using Lifetime Function," Opt. Rev. 14, 131-138 (2007).
[CrossRef]

Phys. Med. Biol. (3)

M. Sadoqi, P. Riseborough, and S. Kumar, "Analytical models for time resolved fluorescence spectroscopy in tissues," Phys. Med. Biol. 46, 2725-2743 (2001).
[CrossRef] [PubMed]

S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-48 (2004).
[CrossRef] [PubMed]

M. Schweiger and S. R. Arridge, "Application of temporal filters to time resolved data in optical tomography," Phys. Med. Biol. 44, 1699-1717 (1999).
[CrossRef] [PubMed]

Phys. Rev. E (1)

K. Furutsu and Y. Yamada, "Diffusion approximation for a dissipative random medium and the application," Phys. Rev. E 50, 3634-3640 (1994).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

J. Wu, L. Perelman, R. R. Dasari, ans M. S. Feld, "Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms," Proc. Natl. Acad. Sci. USA 94, 8783-8788 (1997).
[CrossRef] [PubMed]

Proc. SPIE (1)

G. Ma, N. Mincu, F. Lesage, P. Gallant, and L. McIntosh, "System irf impact on fluorescence lifetime fitting in turbid medium," Proc. SPIE 5699, 263-273 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

V. Ntziachristos, X. Ma, A. G. Yodh, and B. Chance, "Multichannel photon counting instrument for spatially resolved near infrared spectroscopy," Rev. Sci. Instrum. 70, 193-201 (1999).
[CrossRef]

Other (7)

W. G. Egan and T. W. Hilgeman, Optical properties of inhomogeneous materials (Academic, 1979).

P. A. Jansson, Deconvolution with Applications in Spectroscopy (Academic Press Inc., 1984).

A. Marjono, Y. Akira, S. Okawa, F. Gao, and Y. Yamada, "Full time-resolved fluorescence diffuse optical tomography using total light approach," in OSA Biomedical Optics Topical Meeting, Technical Digest, BMD33, OSA (2008).

Y. Yamada, "Light-tissue interaction and optical imaging in biomedicine," in Annual Review of Heat Transfer, C. L. Tien, ed., (Begell House, 1995), Vol. 6, pp. 1-59.

M. Sevick-Muraca, A. Godavarty, J. Houston, A. Thompson, and R. Roy, "Near-infrared imaging with fluorescent contrast agents," in Handbook of Biomedical Fluorescence, M. Mycek and W. Pogue, eds. (Marcel Dekker, 2003), pp. 445-528.

T. Farrel and M. Patterson, "Diffusion modelling of fluorescence in tissue," in Handbook of Biomedical Fluorescence, M. Mycek and W. Pogue, eds., (Marcel Dekker, 2003), pp. 29-60.

R. Schulz, J. Peter, W. Semmler, and W. Bangerth, "Independent modeling of fluorescence excitation and emission with the finite element method," in OSA Biomedical Optics Topical Meeting, Technical Digest, ThF24, OSA (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Normalized deconvolution result of zero-lifetime emission light after five iterations with the measured emission light and lifetime function.

Fig. 2.
Fig. 2.

Diagram of reconstruction diagram process of fluorescence diffuse optical tomography using total light approach.

Fig. 3.
Fig. 3.

Circular model with the diameter of 20 mm and with (a) one circular target with the diameter of 4 mm and the center at (3,0), (b) one circular target with the diameter of 4 mm and the center at (0,0), (c) one circular target with the diameter of 6 mm and the center at (3,0), (d) two circular targets with their diameters of 4 mm and the CCS of 4 mm, 6 mm, 8 mm or 10 mm.

Fig. 4.
Fig. 4.

(a)–(d): meshings of the objects shown in Fig. 3 (a)(d) for generating simulated measurement datasets. (e): meshing for image reconstruction by the inversion process.

Fig. 5.
Fig. 5.

Spatial profiles of the diffuse photon fluence rates in the model of Fig. 3(a), (a) the excitation light, (b) the emission light, (c) the zero-lifetime emission light, and (d) the total light, at the time of 750 ps from the incidence when irradiated from the source position No. 7 with a unit input power.

Fig. 6.
Fig. 6.

Temporal profiles of the fluxes in the model of Fig. 3(a), (a) the excitation light, (b) the emission light, (c) the zero-lifetime emission light, and (d) the total light, at the detectors No. 1, 4 and 10 for the source position No. 7.

Fig. 7.
Fig. 7.

Images of reconstructed (a) µ at [mm-1], (b) µ a , [mm-1] (c) N [µM] for the model of Fig. 3 (a). (d) profile of the reconstructed N along the x-axis, and (e) graph of convergence during 40 iterations.

Fig. 8.
Fig. 8.

Images of reconstructed (a) µ at , (b) µ a , (c) N for the model of Fig. 3 (b). (d) profile of the reconstructed N along the x-axis, and (e) graph of convergence during 40 iterations.

Fig. 9.
Fig. 9.

Images of reconstructed (a) µ at , (b) µ a , (c) N for the model of Fig. 3 (c). (d) profile of N along the x-axis, and (e) graph of convergence during 40 iterations.

Fig. 10.
Fig. 10.

(a). reconstructed image of N [µM] and (b) profile of N along the x-axis for the model of Fig. 3 (d) with CCS = 6 mm.

Fig. 11.
Fig. 11.

(a). reconstructed image of N [µM] and (b) profile of N along the x-axis for the model to Fig. 3(d) with CCS = 8 mm.

Fig. 12.
Fig. 12.

(a). reconstructed image of N [µM] and (b) profile of N along the x-axis for the model to Fig. 3(d) with CCS = 4 mm.

Fig. 13.
Fig. 13.

The parameter S showing the separation between the two targets in the model of Fig. 3(d) with CCS = 4, 6, 8 and 10 mm.

Fig. 14.
Fig. 14.

Reconstructed images from noisy data for the model of Fig. 3(a). SNR of the noise are (a) 55 dB, (b) 40 dB and (c) 25 dB. (d) Profiles of N along the x-axis.

Tables (1)

Tables Icon

Table I. Optical properties and fluorophore concentrations of the medium

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

[ · D x ( r ) + µ ax ( r ) + 1 c t ] Φ x ( r , t ) = q x ( r , t ) ,
[ · D m ( r ) + μ am ( r ) + 1 c t ] Φ m ( r , t ) = γ ε N ( r ) τ 0 t Φ x ( r , t ' ) e t t ' τ d t , '
[ · D ( r ) + µ at ( r ) + 1 c t ] Φ x ( r , t ) = q x ( r , t )
[ · + D ( r ) + µ a ( r ) + 1 c t ] Φ m * ( r , t ) = γ ε N ( r ) Φ x ( r , t )
[ · D ( r ) + µ a ( r ) + 1 c t ] Φ t ( r , t ) = q x ( r , t )
Φ t ( r , t ) = 1 γ Φ m * ( r , t ) + Φ x ( r , t )
Φ m * ( r , t ) = γ ( Φ t ( r , t ) Φ x ( r , t ) ) .
Φ m ( r , t ) = 1 τ 0 t Φ m * ( r , t ' ) e ( t t ' ) τ d t '
D ( r b ) n Φ v ( r b , t ) = 1 2 A Φ v ( r b , t ) , ( ν = x , t )
R f = 1 . 440 n 2 + 0 . 710 n 1 + 0 . 668 + 0 . 0636 n ,
Φ v ( r , t ) = 0 for t 0 , ( ν = x , t )
Ψ v ( r b , t ) = D ( r b ) n Φ v ( r b , t ) , ( ν = x , m )
Ψ m , k * = Ψ m , k 1 * + ( Ψ m Ψ m , k 1 * * T )
M ν ( ξ d , ς s ) = 0 t Ψ ν ( ξ d , ς s , t ) d t 0 Ψ ν ( ξ d , ς s , t ) d t ( ν = x , t )
J v ( ξ d , ζ s ) = J v T ( 1 ) ( ξ d , ζ s ) E ( 0 ) ( ξ d , ζ s ) M v ( ξ d , ζ s ) J v T ( 0 ) ( ξ d , ζ s ) E ( 0 ) ( ξ d , ζ s ) ( ν = x , t )
J ν T ( 0 ) ( ξ d , ζ s ) = [ Ω E ν ( 0 ) ( ξ d , r ) Ψ ν ( 0 ) ( r , ζ s ) u 1 ( r ) d r Ω E ν ( 0 ) ( ξ d , r ) Ψ ν ( 0 ) ( r , ζ s ) u 2 ( r ) d r Ω E ν ( 0 ) ( ξ d , r ) Ψ ν ( 0 ) ( r , ζ s ) u M ( r ) d r ] T ( ν = x , t )
J ν T ( 1 ) ( ξ d , ζ s ) = [ Ω [ E ν ( 0 ) ( ξ d , r ) Ψ ν ( 1 ) ( r , ζ s ) + E ν ( 1 ) ( ξ d , r ) Ψ ν ( 0 ) ( r , ζ s ) ] u 1 ( r ) d r Ω [ E ν ( 0 ) ( ξ d , r ) Ψ ν ( 1 ) ( r , ζ s ) + E ν ( 1 ) ( ξ d , r ) Ψ ν ( 0 ) ( r , ζ s ) ] u 2 ( r ) d r Ω [ E ν ( 0 ) ( ξ d , r ) Ψ ν ( 1 ) ( r , ζ s ) + E ν ( 1 ) ( ξ d , r ) Ψ ν ( 0 ) ( r , ζ s ) ] u M ( r ) d r ] ( v = x , t ) T
E ν ( i ) ( ξ d , ζ s ) = 1 2 A Ψ ν ( i ) ( ξ d , ζ s ) , ( i = 0 , 1 and ν = x , t )
Ψ ν ( i ) ( ξ d , ζ s ) = 0 t i Φ v ( ξ d , ζ s , t ) d t , ( i = 0 , 1 and ν = x , t )
δ χ k j + 1 = δ χ k j + [ h ( j ) J ν ( j ) ( χ k ) · δ χ k j ] J ν ( j ) ( χ k ) 2 [ J ν ( j ) ( χ k ) ] T ( ν = x , t )
δ χ k j + 1 = 0 , χ k + 1 = χ k + δ χ k N d × N s
j = 0 , 1 , 2 , N d × N s
S = max [ N ( x , 0 ) ] N ( 0 , 0 ) max [ N ( x , 0 ) ] min [ N ( x , 0 ) ]

Metrics