Abstract

In this paper we present novel light trapping designs applied to stand alone and multiple junction thin film silicon solar cells. The new designs incorporate one dimensional photonic crystals as band pass filters that reflect short light wavelengths (400 – 1100 nm) and transmit longer wavelengths(1100 – 1800 nm) at the interface between two adjacent cells. In addition, nano structured diffractive gratings that cut into the photonic crystal layers are incorporated to redirect incoming waves and hence increase the optical path length of light within the solar cells. Two designs based on the nano structured gratings that have been realized using the scattering matrix and particle swarm optimization methods are presented. We also show preliminary fabrication results of the proposed light trapping grating structures.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Markvart, Solar Electricity 2nd Ed., (John Wiley and Sons, 2000)
  2. M. A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer, 2003)
  3. A. Barnett, C. Honsberg, D. Kilpatrick,  et al., "50% Efficient Solar Cell Architectures and Designs," in Conference Record of the IEEE 4th World Conference on Photovoltaic Energy Conversion. (Waikoloa, Hawaii, 2006), pp. 2560 - 2564.
  4. K. Yamamoto, "Thin-film crystalline Silicon solar cell." JSAP Int. 7, 12-19 (2003).
  5. A. V. Shah, H. Schade, M. Vanecek, and J. Meier, "Thin-Film Silicon Solar Cell Technology," Prog. Photovoltaics 12, 113 - 142 (2004).
    [CrossRef]
  6. S. Hegedus, "Thin Film Solar Modules: The Low Cost, High Throughput and Versatile Alternative to Si Wafers," Prog. Photovoltaics 14, 393-411 (2006).
    [CrossRef]
  7. M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, "A review of thin-film crystalline silicon for solar cell applications. Part 1: Native substrates," Sol. Energy Mater. Sol. Cells 68,135-171(2001)
    [CrossRef]
  8. K. R. Catchpole, M. J. McCann, K. J. Weber, A. W. Blakers, "A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates," Sol. Energy Mater. Sol. Cells 68, 173-215 (2001)
    [CrossRef]
  9. H. A. Macleod, Thin-Film Optical Filters (Adam Hilger Ltd, 1986)
    [CrossRef]
  10. J. Muller, B. Rech, J. Springer, M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Sol. Energy 77,917-930 (2004)
    [CrossRef]
  11. D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum and A. Leo, "Texturing industrial multicrystalline silicon solar cells." Sol. Energy 76, 277-283 (2004)
    [CrossRef]
  12. M. A. Green, Solar Cells: operating principles, technology, and system applications (Prentice Hall, 1982)
  13. J. Zhao, A. Wang and M. A. Green, "19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells." Appl. Phys Letts 73, 1991-1993 (1998).
    [CrossRef]
  14. E. Yablonovitch and G. Cody, "Intensity Enhancement in Textured Optical Sheets." IEEE Trans. Electron. Devices 29, 300-305 (1982).
    [CrossRef]
  15. A. C. Marsh and J. C Inkson "Scattering matrix theory of transport in heterostructures," Semicond. Sci. Technol. 1, 285 - 290.
  16. J. Yonekura, M. Ikeda, and T. Baba, "Analysis of Finite 2-D Photonic Crystals of Columns and Lightwave Devices using the Scattering Matrix Method," J. Lightwave Technol. 17,1500-1508, (1999).
    [CrossRef]
  17. Q. Wang, Y. Zhang, and B. Ooi, E. Li "Analysis of Finite-Size Coated Electromagnetic Band gap Structure by an Efficient Scattering Matrix Method," IEEE J. Sel. Top. Quantum Electron 11, 485-492 (2005).
    [CrossRef]
  18. R. Eberhart and J. Kennedy, "A new optimizer using particle swarm theory," in Proceedings of the Sixth International Symposium on Micromachine and Human Science, (Academic, Nagoya, Japan. 1995) pp. 39-43.
  19. R. Eberhart and Y. Shi, "Particle swarm optimization: developments, applications and resources," in Proceedings of the 2001 Congress on Evolutionary Computation, (Academic, Seoul, South Korea. 2001) pp. 81-86.
  20. J. M. Gee "Optically enhanced absorption in thin silicon layers using photonic crystals," in Proceedings of 29th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New Orleans, LA, 2002), pp. 150 - 153.
  21. L. Zeng, Y. Yi, C. Hong, B. Alamriu, J. Liu, X. Duan, and L. Kimerling, "New Solar Cells with Novel Light Trapping via Textured Photonic Crystal Back Reflector," in Mater. Res. Soc. Symp. Proc. Vol. 891, (Material Research Society, 2006).
  22. L. Zeng, Y. Yi, C. Hong, J. Liu, X. Duan, and L. Kimerling, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
    [CrossRef]
  23. N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, and L. Kimerling, "Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells," IEEE Trans. Electron. Devices 54, 1926-1933 (2007).
    [CrossRef]
  24. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, "Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals," Opt. Express 15, 16986-17000 (2007).
    [CrossRef] [PubMed]
  25. X. Hu, Particle Swarm Optimization (Swarm Intelligence, 2006). http://www.swarmintelligence.org/
  26. R. Brendel, Thin-Film Crystalline Silicon Solar Cells (Wiley-VCH, 2003), Chaps.1 and 2.
    [CrossRef]
  27. D. W. Prather, A. Sharkawy, and S. Shi, Design and Applications of Photonic Crystals, 2nd ed. (CRC Press, "Nanotechnology Handbook," to appear 2007).
  28. S. Venkataraman, "Fabrication of Two-Dimensional and Tree-Dimensional Photonic Crystal Devices for Applications in Chip-Scale Optical interconnects" (PhD dissertation, University of Delaware, 2005).
  29. C. Heine, "Submicrometer gratings for solar energy applications." Appl. Opt. 34,2476- 2482 (1995).
    [PubMed]
  30. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Second ed. (Princeton: Princeton University Press, 2008), Chap. 4.

2007 (2)

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, and L. Kimerling, "Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells," IEEE Trans. Electron. Devices 54, 1926-1933 (2007).
[CrossRef]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, "Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals," Opt. Express 15, 16986-17000 (2007).
[CrossRef] [PubMed]

2006 (2)

L. Zeng, Y. Yi, C. Hong, J. Liu, X. Duan, and L. Kimerling, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

S. Hegedus, "Thin Film Solar Modules: The Low Cost, High Throughput and Versatile Alternative to Si Wafers," Prog. Photovoltaics 14, 393-411 (2006).
[CrossRef]

2005 (1)

Q. Wang, Y. Zhang, and B. Ooi, E. Li "Analysis of Finite-Size Coated Electromagnetic Band gap Structure by an Efficient Scattering Matrix Method," IEEE J. Sel. Top. Quantum Electron 11, 485-492 (2005).
[CrossRef]

2004 (3)

A. V. Shah, H. Schade, M. Vanecek, and J. Meier, "Thin-Film Silicon Solar Cell Technology," Prog. Photovoltaics 12, 113 - 142 (2004).
[CrossRef]

J. Muller, B. Rech, J. Springer, M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Sol. Energy 77,917-930 (2004)
[CrossRef]

D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum and A. Leo, "Texturing industrial multicrystalline silicon solar cells." Sol. Energy 76, 277-283 (2004)
[CrossRef]

2003 (1)

K. Yamamoto, "Thin-film crystalline Silicon solar cell." JSAP Int. 7, 12-19 (2003).

2001 (2)

M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, "A review of thin-film crystalline silicon for solar cell applications. Part 1: Native substrates," Sol. Energy Mater. Sol. Cells 68,135-171(2001)
[CrossRef]

K. R. Catchpole, M. J. McCann, K. J. Weber, A. W. Blakers, "A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates," Sol. Energy Mater. Sol. Cells 68, 173-215 (2001)
[CrossRef]

1999 (1)

1998 (1)

J. Zhao, A. Wang and M. A. Green, "19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells." Appl. Phys Letts 73, 1991-1993 (1998).
[CrossRef]

1995 (1)

1982 (1)

E. Yablonovitch and G. Cody, "Intensity Enhancement in Textured Optical Sheets." IEEE Trans. Electron. Devices 29, 300-305 (1982).
[CrossRef]

Baba, T.

Bermel, P.

Blakers, A. W.

M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, "A review of thin-film crystalline silicon for solar cell applications. Part 1: Native substrates," Sol. Energy Mater. Sol. Cells 68,135-171(2001)
[CrossRef]

K. R. Catchpole, M. J. McCann, K. J. Weber, A. W. Blakers, "A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates," Sol. Energy Mater. Sol. Cells 68, 173-215 (2001)
[CrossRef]

Catchpole, K. R.

K. R. Catchpole, M. J. McCann, K. J. Weber, A. W. Blakers, "A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates," Sol. Energy Mater. Sol. Cells 68, 173-215 (2001)
[CrossRef]

M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, "A review of thin-film crystalline silicon for solar cell applications. Part 1: Native substrates," Sol. Energy Mater. Sol. Cells 68,135-171(2001)
[CrossRef]

Cody, G.

E. Yablonovitch and G. Cody, "Intensity Enhancement in Textured Optical Sheets." IEEE Trans. Electron. Devices 29, 300-305 (1982).
[CrossRef]

Cuevas, A.

D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum and A. Leo, "Texturing industrial multicrystalline silicon solar cells." Sol. Energy 76, 277-283 (2004)
[CrossRef]

Duan, X.

L. Zeng, Y. Yi, C. Hong, J. Liu, X. Duan, and L. Kimerling, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Feng, N.

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, and L. Kimerling, "Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells," IEEE Trans. Electron. Devices 54, 1926-1933 (2007).
[CrossRef]

Green, M. A.

J. Zhao, A. Wang and M. A. Green, "19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells." Appl. Phys Letts 73, 1991-1993 (1998).
[CrossRef]

Hegedus, S.

S. Hegedus, "Thin Film Solar Modules: The Low Cost, High Throughput and Versatile Alternative to Si Wafers," Prog. Photovoltaics 14, 393-411 (2006).
[CrossRef]

Heine, C.

Hong, C.

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, and L. Kimerling, "Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells," IEEE Trans. Electron. Devices 54, 1926-1933 (2007).
[CrossRef]

L. Zeng, Y. Yi, C. Hong, J. Liu, X. Duan, and L. Kimerling, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Ikeda, M.

Inkson, J. C

A. C. Marsh and J. C Inkson "Scattering matrix theory of transport in heterostructures," Semicond. Sci. Technol. 1, 285 - 290.

Joannopoulos, J. D.

Kerr, M. J.

D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum and A. Leo, "Texturing industrial multicrystalline silicon solar cells." Sol. Energy 76, 277-283 (2004)
[CrossRef]

Kimerling, L.

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, and L. Kimerling, "Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells," IEEE Trans. Electron. Devices 54, 1926-1933 (2007).
[CrossRef]

L. Zeng, Y. Yi, C. Hong, J. Liu, X. Duan, and L. Kimerling, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Kimerling, L. C.

Leo, A.

D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum and A. Leo, "Texturing industrial multicrystalline silicon solar cells." Sol. Energy 76, 277-283 (2004)
[CrossRef]

Li, E.

Q. Wang, Y. Zhang, and B. Ooi, E. Li "Analysis of Finite-Size Coated Electromagnetic Band gap Structure by an Efficient Scattering Matrix Method," IEEE J. Sel. Top. Quantum Electron 11, 485-492 (2005).
[CrossRef]

Liu, J.

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, and L. Kimerling, "Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells," IEEE Trans. Electron. Devices 54, 1926-1933 (2007).
[CrossRef]

L. Zeng, Y. Yi, C. Hong, J. Liu, X. Duan, and L. Kimerling, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Luo, C.

Macdonald, D. H.

D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum and A. Leo, "Texturing industrial multicrystalline silicon solar cells." Sol. Energy 76, 277-283 (2004)
[CrossRef]

Marsh, A. C.

A. C. Marsh and J. C Inkson "Scattering matrix theory of transport in heterostructures," Semicond. Sci. Technol. 1, 285 - 290.

McCann, M. J.

M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, "A review of thin-film crystalline silicon for solar cell applications. Part 1: Native substrates," Sol. Energy Mater. Sol. Cells 68,135-171(2001)
[CrossRef]

K. R. Catchpole, M. J. McCann, K. J. Weber, A. W. Blakers, "A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates," Sol. Energy Mater. Sol. Cells 68, 173-215 (2001)
[CrossRef]

Meier, J.

A. V. Shah, H. Schade, M. Vanecek, and J. Meier, "Thin-Film Silicon Solar Cell Technology," Prog. Photovoltaics 12, 113 - 142 (2004).
[CrossRef]

Michel, J.

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, and L. Kimerling, "Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells," IEEE Trans. Electron. Devices 54, 1926-1933 (2007).
[CrossRef]

Muller, J.

J. Muller, B. Rech, J. Springer, M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Sol. Energy 77,917-930 (2004)
[CrossRef]

Ooi, B.

Q. Wang, Y. Zhang, and B. Ooi, E. Li "Analysis of Finite-Size Coated Electromagnetic Band gap Structure by an Efficient Scattering Matrix Method," IEEE J. Sel. Top. Quantum Electron 11, 485-492 (2005).
[CrossRef]

Rech, B.

J. Muller, B. Rech, J. Springer, M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Sol. Energy 77,917-930 (2004)
[CrossRef]

Ruby, D.

D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum and A. Leo, "Texturing industrial multicrystalline silicon solar cells." Sol. Energy 76, 277-283 (2004)
[CrossRef]

Samundsett, C.

D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum and A. Leo, "Texturing industrial multicrystalline silicon solar cells." Sol. Energy 76, 277-283 (2004)
[CrossRef]

Schade, H.

A. V. Shah, H. Schade, M. Vanecek, and J. Meier, "Thin-Film Silicon Solar Cell Technology," Prog. Photovoltaics 12, 113 - 142 (2004).
[CrossRef]

Shah, A. V.

A. V. Shah, H. Schade, M. Vanecek, and J. Meier, "Thin-Film Silicon Solar Cell Technology," Prog. Photovoltaics 12, 113 - 142 (2004).
[CrossRef]

Springer, J.

J. Muller, B. Rech, J. Springer, M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Sol. Energy 77,917-930 (2004)
[CrossRef]

Vanecek, M.

J. Muller, B. Rech, J. Springer, M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Sol. Energy 77,917-930 (2004)
[CrossRef]

A. V. Shah, H. Schade, M. Vanecek, and J. Meier, "Thin-Film Silicon Solar Cell Technology," Prog. Photovoltaics 12, 113 - 142 (2004).
[CrossRef]

Wang, A.

J. Zhao, A. Wang and M. A. Green, "19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells." Appl. Phys Letts 73, 1991-1993 (1998).
[CrossRef]

Wang, Q.

Q. Wang, Y. Zhang, and B. Ooi, E. Li "Analysis of Finite-Size Coated Electromagnetic Band gap Structure by an Efficient Scattering Matrix Method," IEEE J. Sel. Top. Quantum Electron 11, 485-492 (2005).
[CrossRef]

Weber, K. J.

K. R. Catchpole, M. J. McCann, K. J. Weber, A. W. Blakers, "A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates," Sol. Energy Mater. Sol. Cells 68, 173-215 (2001)
[CrossRef]

M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, "A review of thin-film crystalline silicon for solar cell applications. Part 1: Native substrates," Sol. Energy Mater. Sol. Cells 68,135-171(2001)
[CrossRef]

Winderbaum, S.

D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum and A. Leo, "Texturing industrial multicrystalline silicon solar cells." Sol. Energy 76, 277-283 (2004)
[CrossRef]

Yablonovitch, E.

E. Yablonovitch and G. Cody, "Intensity Enhancement in Textured Optical Sheets." IEEE Trans. Electron. Devices 29, 300-305 (1982).
[CrossRef]

Yamamoto, K.

K. Yamamoto, "Thin-film crystalline Silicon solar cell." JSAP Int. 7, 12-19 (2003).

Yi, Y.

L. Zeng, Y. Yi, C. Hong, J. Liu, X. Duan, and L. Kimerling, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Yonekura, J.

Zeng, L.

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, and L. Kimerling, "Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells," IEEE Trans. Electron. Devices 54, 1926-1933 (2007).
[CrossRef]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, "Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals," Opt. Express 15, 16986-17000 (2007).
[CrossRef] [PubMed]

L. Zeng, Y. Yi, C. Hong, J. Liu, X. Duan, and L. Kimerling, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Zhang, Y.

Q. Wang, Y. Zhang, and B. Ooi, E. Li "Analysis of Finite-Size Coated Electromagnetic Band gap Structure by an Efficient Scattering Matrix Method," IEEE J. Sel. Top. Quantum Electron 11, 485-492 (2005).
[CrossRef]

Zhao, J.

J. Zhao, A. Wang and M. A. Green, "19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells." Appl. Phys Letts 73, 1991-1993 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys Letts (1)

J. Zhao, A. Wang and M. A. Green, "19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells." Appl. Phys Letts 73, 1991-1993 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

L. Zeng, Y. Yi, C. Hong, J. Liu, X. Duan, and L. Kimerling, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron (1)

Q. Wang, Y. Zhang, and B. Ooi, E. Li "Analysis of Finite-Size Coated Electromagnetic Band gap Structure by an Efficient Scattering Matrix Method," IEEE J. Sel. Top. Quantum Electron 11, 485-492 (2005).
[CrossRef]

IEEE Trans. Electron. Devices (2)

N. Feng, J. Michel, L. Zeng, J. Liu, C. Hong, and L. Kimerling, "Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells," IEEE Trans. Electron. Devices 54, 1926-1933 (2007).
[CrossRef]

E. Yablonovitch and G. Cody, "Intensity Enhancement in Textured Optical Sheets." IEEE Trans. Electron. Devices 29, 300-305 (1982).
[CrossRef]

J. Lightwave Technol. (1)

JSAP Int. (1)

K. Yamamoto, "Thin-film crystalline Silicon solar cell." JSAP Int. 7, 12-19 (2003).

Opt. Express (1)

Prog. Photovoltaics (2)

A. V. Shah, H. Schade, M. Vanecek, and J. Meier, "Thin-Film Silicon Solar Cell Technology," Prog. Photovoltaics 12, 113 - 142 (2004).
[CrossRef]

S. Hegedus, "Thin Film Solar Modules: The Low Cost, High Throughput and Versatile Alternative to Si Wafers," Prog. Photovoltaics 14, 393-411 (2006).
[CrossRef]

Sol. Energy (2)

J. Muller, B. Rech, J. Springer, M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Sol. Energy 77,917-930 (2004)
[CrossRef]

D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum and A. Leo, "Texturing industrial multicrystalline silicon solar cells." Sol. Energy 76, 277-283 (2004)
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, "A review of thin-film crystalline silicon for solar cell applications. Part 1: Native substrates," Sol. Energy Mater. Sol. Cells 68,135-171(2001)
[CrossRef]

K. R. Catchpole, M. J. McCann, K. J. Weber, A. W. Blakers, "A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates," Sol. Energy Mater. Sol. Cells 68, 173-215 (2001)
[CrossRef]

Other (15)

H. A. Macleod, Thin-Film Optical Filters (Adam Hilger Ltd, 1986)
[CrossRef]

M. A. Green, Solar Cells: operating principles, technology, and system applications (Prentice Hall, 1982)

T. Markvart, Solar Electricity 2nd Ed., (John Wiley and Sons, 2000)

M. A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer, 2003)

A. Barnett, C. Honsberg, D. Kilpatrick,  et al., "50% Efficient Solar Cell Architectures and Designs," in Conference Record of the IEEE 4th World Conference on Photovoltaic Energy Conversion. (Waikoloa, Hawaii, 2006), pp. 2560 - 2564.

X. Hu, Particle Swarm Optimization (Swarm Intelligence, 2006). http://www.swarmintelligence.org/

R. Brendel, Thin-Film Crystalline Silicon Solar Cells (Wiley-VCH, 2003), Chaps.1 and 2.
[CrossRef]

D. W. Prather, A. Sharkawy, and S. Shi, Design and Applications of Photonic Crystals, 2nd ed. (CRC Press, "Nanotechnology Handbook," to appear 2007).

S. Venkataraman, "Fabrication of Two-Dimensional and Tree-Dimensional Photonic Crystal Devices for Applications in Chip-Scale Optical interconnects" (PhD dissertation, University of Delaware, 2005).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Second ed. (Princeton: Princeton University Press, 2008), Chap. 4.

R. Eberhart and J. Kennedy, "A new optimizer using particle swarm theory," in Proceedings of the Sixth International Symposium on Micromachine and Human Science, (Academic, Nagoya, Japan. 1995) pp. 39-43.

R. Eberhart and Y. Shi, "Particle swarm optimization: developments, applications and resources," in Proceedings of the 2001 Congress on Evolutionary Computation, (Academic, Seoul, South Korea. 2001) pp. 81-86.

J. M. Gee "Optically enhanced absorption in thin silicon layers using photonic crystals," in Proceedings of 29th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New Orleans, LA, 2002), pp. 150 - 153.

L. Zeng, Y. Yi, C. Hong, B. Alamriu, J. Liu, X. Duan, and L. Kimerling, "New Solar Cells with Novel Light Trapping via Textured Photonic Crystal Back Reflector," in Mater. Res. Soc. Symp. Proc. Vol. 891, (Material Research Society, 2006).

A. C. Marsh and J. C Inkson "Scattering matrix theory of transport in heterostructures," Semicond. Sci. Technol. 1, 285 - 290.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram showing a multiple junction solar cell with the short wavelengths being reflected back into the first cell and long wavelengths being transmitted to the lower energy solar cells.

Fig. 2.
Fig. 2.

(a). The cross section view of the first solar cell design with an inset SEM image of the fabricated grating and another showing an expanded view of the grating. The period of the grating is indicated and its value is 970 nm, the thickness of the layers is 128 nm for the SiO2 layers and 218 nm for the silicon layers, the grating depth, indicated as GD is 1038 nm and there are 6 alternating layers (each alternating layer consists of a Si and SiO2 layer) in the entire 1D PhC stack, the grating etches through the first three alternating layers, (b) simulated short circuit current of the designed structure.

Fig. 3.
Fig. 3.

(a). The cross section view of the second solar cell design with an inset SEM image of the fabricated grating and another showing an expanded view of the grating, the grating widths are indicated and the values are W1 = 104 nm, W2 = 312 nm, W3 = 416 nm,(b) the simulated short circuit current characteristics of the designed structure.

Fig. 4.
Fig. 4.

(a). Enhancement factors of the different structures over the wavelength range of 867 – 1100nm, (b). short circuit current characteristics of the different structures over the wavelength range of 867 – 1800nm.

Fig. 5.
Fig. 5.

(a). Effect of period on the short circuit current in the cell with a binary grating and, (b) the triangular grating cell.

Fig. 6.
Fig. 6.

(a). Dependence of cell performance on the angle of incidence of the illuminating light in the cell with a binary grating and, (b) cell with triangular grating. The different incident angles (in degrees) corresponding to the graphs are shown in the figure legends.

Tables (3)

Tables Icon

Table 1. Enhancement factors of the different devices when compared to a device with no optical enhancements (i.e. no light trapping nor AR coating)

Tables Icon

Table 2. Short circuit current characteristics and Jsc enhancement of different devices when compared to a device with no optical enhancements (i.e. no light trapping or AR coating)

Tables Icon

Table 3. Short circuit current characteristics of the two devices under illumination from light with different incident angles.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

V i + 1 = V i + c 1 rand ( s i P i ) + c 1 rand ( g i P i ) ,
P i + 1 = P i + V i + 1 ,
MF = λ = 400 λ = 1100 [ ( 1 A ( λ ) ) I rrd ( λ ) ] 2 + [ T ( λ ) I rrd ( λ ) ] 2 d λ
+ λ = 1100 λ = 1800 [ ( 1 T ( λ ) ) I rrd ( λ ' ) ] 2 + [ A ( λ ) I rrd ( λ ) ] 2 d λ ,
EF ( λ ) = λ λ = 1100 A E ( λ ) I rrd ( λ ) d λ λ λ = 1100 A S ( λ ) I rrd ( λ ) d λ ,
J sc = q hc λ λ A ( λ ) I rrd ( λ ) d λ ,

Metrics