Abstract

In this work we present a technique for optically modulating a terahertz pulse inside a parallel plate waveguide. A novel semiconductor filled waveguide is formed by coating both sides of a thin, high resistivity silicon slab with a transparent conducting oxide. While the waveguide is intrinsically lossy due to the low conductivity of the oxides, it permits photoexcitation through the plates, generating free carriers within the silicon that modulates the terahertz pulse transmission. We demonstrate this modulation by observing the Drude response of photoexcited carriers within the silicon in a narrow strip inside the waveguide.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, "Flexible all-plastic mirrors for the THz range," Appl. Phys. A 74, 291-293 (2002).
    [CrossRef]
  2. K. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006).
    [CrossRef]
  3. J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q.-H. Park, and P. C. M. Planken," Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 141253-1259 (2006).
    [CrossRef] [PubMed]
  4. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17851-863 (2000).
    [CrossRef]
  5. R. Mendis and D. Grischkowsky, "Undistored guided-wave propagation of subpicosecond terahertz pulses," Opt. Lett. 26846-848 (2001).
    [CrossRef]
  6. K. Wang and D. M. Mittleman, "Metal wires for terahertz waveguiding," Nature 432376-379 (2004).
    [CrossRef] [PubMed]
  7. I. H. Libon, S. Baumgartner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, "An optically controllable terahertz filter," Appl. Phys. Lett. 762821-2823 (2000).
    [CrossRef]
  8. R. Kersting, G. Strasser, and K. Unterrainer, "Terahertz phase modulator," Electron. Lett. 36, 1156-1158 (2000).
    [CrossRef]
  9. T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, "Room-temperature operation of an electrically driven terahertz modulator," Appl. Phys. Lett. 84, 3555-3557 (2004).
    [CrossRef]
  10. L. Fekete, F. Kadlec, P. Kuzel, and H. Nemec, "Ultrafast opto-terahertz photonic crystal modulator," Opt. Lett. 32, 680-682 (2007).
    [CrossRef] [PubMed]
  11. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444597-600 (2006).
    [CrossRef] [PubMed]
  12. R. Mendis, "Nature of subpicosecond terahertz pulse propagation in practical dielectric-filled parallel-plate waveguides," Opt. Lett. 312643-2645 (2006).
    [CrossRef] [PubMed]
  13. N. Lamon and D. Grischkowsky, "Reduced conductivity in the terahertz skin-depth layer of metals," Appl. Phys. Lett. 90122115 (2007).
    [CrossRef]
  14. P. Uhd Jepsen and B. M. Fischer, "Dynamic range in terahertz time-domain transmission and reflection spectroscopy," Opt. Lett. 3029-31 (2005).
    [CrossRef]
  15. M. Dressel and G. Gruner, Electrodynamics of solids: optical properties of electrons in matter (Cambridge University Press, 2002).
    [CrossRef]
  16. I. -C. Anderson Chen, S. Park, C. Karaalioglu, A. Meshal, N. Vallestro, and R. Martini, "Semiconductor based optically controlled THz optics," Proc. SPIE 6549, 65490Q (2007).
    [CrossRef]
  17. F. A. Hegmann and M. S. Sherwin, "Generation of picosecond far-infrared pulses using laser-activated semiconductor reflection switches," Proc. SPIE 284290 (1996).
  18. H. Schulenburg and H. Trivutsch, "Electropassivation of silicon adn bulk lifetime determination with dry polymer contact," J. Phys. D 33851-858 (2000).
    [CrossRef]
  19. T. -I. Jeon, and D. Grischkowsky, "Nature of Conduction in Doped Silicon," Phys. Rev. Lett. 781106-1109 (1997).
    [CrossRef]

2007 (3)

L. Fekete, F. Kadlec, P. Kuzel, and H. Nemec, "Ultrafast opto-terahertz photonic crystal modulator," Opt. Lett. 32, 680-682 (2007).
[CrossRef] [PubMed]

N. Lamon and D. Grischkowsky, "Reduced conductivity in the terahertz skin-depth layer of metals," Appl. Phys. Lett. 90122115 (2007).
[CrossRef]

I. -C. Anderson Chen, S. Park, C. Karaalioglu, A. Meshal, N. Vallestro, and R. Martini, "Semiconductor based optically controlled THz optics," Proc. SPIE 6549, 65490Q (2007).
[CrossRef]

2006 (4)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444597-600 (2006).
[CrossRef] [PubMed]

R. Mendis, "Nature of subpicosecond terahertz pulse propagation in practical dielectric-filled parallel-plate waveguides," Opt. Lett. 312643-2645 (2006).
[CrossRef] [PubMed]

K. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006).
[CrossRef]

J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q.-H. Park, and P. C. M. Planken," Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 141253-1259 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, "Room-temperature operation of an electrically driven terahertz modulator," Appl. Phys. Lett. 84, 3555-3557 (2004).
[CrossRef]

K. Wang and D. M. Mittleman, "Metal wires for terahertz waveguiding," Nature 432376-379 (2004).
[CrossRef] [PubMed]

2002 (1)

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, "Flexible all-plastic mirrors for the THz range," Appl. Phys. A 74, 291-293 (2002).
[CrossRef]

2001 (1)

2000 (4)

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17851-863 (2000).
[CrossRef]

I. H. Libon, S. Baumgartner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, "An optically controllable terahertz filter," Appl. Phys. Lett. 762821-2823 (2000).
[CrossRef]

R. Kersting, G. Strasser, and K. Unterrainer, "Terahertz phase modulator," Electron. Lett. 36, 1156-1158 (2000).
[CrossRef]

H. Schulenburg and H. Trivutsch, "Electropassivation of silicon adn bulk lifetime determination with dry polymer contact," J. Phys. D 33851-858 (2000).
[CrossRef]

1997 (1)

T. -I. Jeon, and D. Grischkowsky, "Nature of Conduction in Doped Silicon," Phys. Rev. Lett. 781106-1109 (1997).
[CrossRef]

1996 (1)

F. A. Hegmann and M. S. Sherwin, "Generation of picosecond far-infrared pulses using laser-activated semiconductor reflection switches," Proc. SPIE 284290 (1996).

Anderson Chen, I. -C.

I. -C. Anderson Chen, S. Park, C. Karaalioglu, A. Meshal, N. Vallestro, and R. Martini, "Semiconductor based optically controlled THz optics," Proc. SPIE 6549, 65490Q (2007).
[CrossRef]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444597-600 (2006).
[CrossRef] [PubMed]

Baumg¨artner, S.

I. H. Libon, S. Baumgartner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, "An optically controllable terahertz filter," Appl. Phys. Lett. 762821-2823 (2000).
[CrossRef]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444597-600 (2006).
[CrossRef] [PubMed]

Dawson, P.

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, "Room-temperature operation of an electrically driven terahertz modulator," Appl. Phys. Lett. 84, 3555-3557 (2004).
[CrossRef]

I. H. Libon, S. Baumgartner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, "An optically controllable terahertz filter," Appl. Phys. Lett. 762821-2823 (2000).
[CrossRef]

Dobbertin, T.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, "Flexible all-plastic mirrors for the THz range," Appl. Phys. A 74, 291-293 (2002).
[CrossRef]

Fekete, L.

Feldmann, J.

I. H. Libon, S. Baumgartner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, "An optically controllable terahertz filter," Appl. Phys. Lett. 762821-2823 (2000).
[CrossRef]

Fischer, B. M.

Gallot, G.

Gerlach, K.

K. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006).
[CrossRef]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444597-600 (2006).
[CrossRef] [PubMed]

Grischkowsky, D.

N. Lamon and D. Grischkowsky, "Reduced conductivity in the terahertz skin-depth layer of metals," Appl. Phys. Lett. 90122115 (2007).
[CrossRef]

R. Mendis and D. Grischkowsky, "Undistored guided-wave propagation of subpicosecond terahertz pulses," Opt. Lett. 26846-848 (2001).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17851-863 (2000).
[CrossRef]

T. -I. Jeon, and D. Grischkowsky, "Nature of Conduction in Doped Silicon," Phys. Rev. Lett. 781106-1109 (1997).
[CrossRef]

Hecker, N. E.

I. H. Libon, S. Baumgartner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, "An optically controllable terahertz filter," Appl. Phys. Lett. 762821-2823 (2000).
[CrossRef]

Hegmann, F. A.

F. A. Hegmann and M. S. Sherwin, "Generation of picosecond far-infrared pulses using laser-activated semiconductor reflection switches," Proc. SPIE 284290 (1996).

Hein, G.

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, "Room-temperature operation of an electrically driven terahertz modulator," Appl. Phys. Lett. 84, 3555-3557 (2004).
[CrossRef]

Hempel, M.

I. H. Libon, S. Baumgartner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, "An optically controllable terahertz filter," Appl. Phys. Lett. 762821-2823 (2000).
[CrossRef]

Jamison, S. P.

Jeon, T. -I.

T. -I. Jeon, and D. Grischkowsky, "Nature of Conduction in Doped Silicon," Phys. Rev. Lett. 781106-1109 (1997).
[CrossRef]

Jeoung, S. C.

Kadlec, F.

Kammoun, A.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, "Flexible all-plastic mirrors for the THz range," Appl. Phys. A 74, 291-293 (2002).
[CrossRef]

Karaalioglu, C.

I. -C. Anderson Chen, S. Park, C. Karaalioglu, A. Meshal, N. Vallestro, and R. Martini, "Semiconductor based optically controlled THz optics," Proc. SPIE 6549, 65490Q (2007).
[CrossRef]

Kersting, R.

R. Kersting, G. Strasser, and K. Unterrainer, "Terahertz phase modulator," Electron. Lett. 36, 1156-1158 (2000).
[CrossRef]

Kim, D. S.

Kleine-Ostmann, T.

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, "Room-temperature operation of an electrically driven terahertz modulator," Appl. Phys. Lett. 84, 3555-3557 (2004).
[CrossRef]

Knobloch, P.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, "Flexible all-plastic mirrors for the THz range," Appl. Phys. A 74, 291-293 (2002).
[CrossRef]

Koch, M.

K. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006).
[CrossRef]

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, "Room-temperature operation of an electrically driven terahertz modulator," Appl. Phys. Lett. 84, 3555-3557 (2004).
[CrossRef]

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, "Flexible all-plastic mirrors for the THz range," Appl. Phys. A 74, 291-293 (2002).
[CrossRef]

I. H. Libon, S. Baumgartner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, "An optically controllable terahertz filter," Appl. Phys. Lett. 762821-2823 (2000).
[CrossRef]

Krumbholz, K.

K. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006).
[CrossRef]

Kürner, T.

K. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006).
[CrossRef]

Kuzel, P.

Lamon, N.

N. Lamon and D. Grischkowsky, "Reduced conductivity in the terahertz skin-depth layer of metals," Appl. Phys. Lett. 90122115 (2007).
[CrossRef]

Lee, J. W.

Libon, I. H.

I. H. Libon, S. Baumgartner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, "An optically controllable terahertz filter," Appl. Phys. Lett. 762821-2823 (2000).
[CrossRef]

Lienau, Ch.

Martini, R.

I. -C. Anderson Chen, S. Park, C. Karaalioglu, A. Meshal, N. Vallestro, and R. Martini, "Semiconductor based optically controlled THz optics," Proc. SPIE 6549, 65490Q (2007).
[CrossRef]

McGowan, R. W.

Mendis, R.

Meshal, A.

I. -C. Anderson Chen, S. Park, C. Karaalioglu, A. Meshal, N. Vallestro, and R. Martini, "Semiconductor based optically controlled THz optics," Proc. SPIE 6549, 65490Q (2007).
[CrossRef]

Mittleman, D.

K. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006).
[CrossRef]

Mittleman, D. M.

K. Wang and D. M. Mittleman, "Metal wires for terahertz waveguiding," Nature 432376-379 (2004).
[CrossRef] [PubMed]

Nemec, H.

Padilla, W. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444597-600 (2006).
[CrossRef] [PubMed]

Park, D. J.

Park, Q.-H.

Park, S.

I. -C. Anderson Chen, S. Park, C. Karaalioglu, A. Meshal, N. Vallestro, and R. Martini, "Semiconductor based optically controlled THz optics," Proc. SPIE 6549, 65490Q (2007).
[CrossRef]

Pierz, K.

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, "Room-temperature operation of an electrically driven terahertz modulator," Appl. Phys. Lett. 84, 3555-3557 (2004).
[CrossRef]

Piesiewicz, R.

K. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006).
[CrossRef]

Planken, P. C. M.

Rutz, F.

K. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006).
[CrossRef]

Schulenburg, H.

H. Schulenburg and H. Trivutsch, "Electropassivation of silicon adn bulk lifetime determination with dry polymer contact," J. Phys. D 33851-858 (2000).
[CrossRef]

Seo, M. A.

Sherwin, M. S.

F. A. Hegmann and M. S. Sherwin, "Generation of picosecond far-infrared pulses using laser-activated semiconductor reflection switches," Proc. SPIE 284290 (1996).

Strasser, G.

R. Kersting, G. Strasser, and K. Unterrainer, "Terahertz phase modulator," Electron. Lett. 36, 1156-1158 (2000).
[CrossRef]

Taylor, A. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444597-600 (2006).
[CrossRef] [PubMed]

Trivutsch, H.

H. Schulenburg and H. Trivutsch, "Electropassivation of silicon adn bulk lifetime determination with dry polymer contact," J. Phys. D 33851-858 (2000).
[CrossRef]

Turchinovich, D.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, "Flexible all-plastic mirrors for the THz range," Appl. Phys. A 74, 291-293 (2002).
[CrossRef]

Uhd Jepsen, P.

Unterrainer, K.

R. Kersting, G. Strasser, and K. Unterrainer, "Terahertz phase modulator," Electron. Lett. 36, 1156-1158 (2000).
[CrossRef]

Vallestro, N.

I. -C. Anderson Chen, S. Park, C. Karaalioglu, A. Meshal, N. Vallestro, and R. Martini, "Semiconductor based optically controlled THz optics," Proc. SPIE 6549, 65490Q (2007).
[CrossRef]

Wang, K.

K. Wang and D. M. Mittleman, "Metal wires for terahertz waveguiding," Nature 432376-379 (2004).
[CrossRef] [PubMed]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444597-600 (2006).
[CrossRef] [PubMed]

Appl. Phys. A (1)

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, "Flexible all-plastic mirrors for the THz range," Appl. Phys. A 74, 291-293 (2002).
[CrossRef]

Appl. Phys. Lett. (4)

K. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905 (2006).
[CrossRef]

I. H. Libon, S. Baumgartner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, "An optically controllable terahertz filter," Appl. Phys. Lett. 762821-2823 (2000).
[CrossRef]

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, "Room-temperature operation of an electrically driven terahertz modulator," Appl. Phys. Lett. 84, 3555-3557 (2004).
[CrossRef]

N. Lamon and D. Grischkowsky, "Reduced conductivity in the terahertz skin-depth layer of metals," Appl. Phys. Lett. 90122115 (2007).
[CrossRef]

Electron. Lett. (1)

R. Kersting, G. Strasser, and K. Unterrainer, "Terahertz phase modulator," Electron. Lett. 36, 1156-1158 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

H. Schulenburg and H. Trivutsch, "Electropassivation of silicon adn bulk lifetime determination with dry polymer contact," J. Phys. D 33851-858 (2000).
[CrossRef]

Nature (2)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444597-600 (2006).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, "Metal wires for terahertz waveguiding," Nature 432376-379 (2004).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

T. -I. Jeon, and D. Grischkowsky, "Nature of Conduction in Doped Silicon," Phys. Rev. Lett. 781106-1109 (1997).
[CrossRef]

Proc. SPIE (2)

I. -C. Anderson Chen, S. Park, C. Karaalioglu, A. Meshal, N. Vallestro, and R. Martini, "Semiconductor based optically controlled THz optics," Proc. SPIE 6549, 65490Q (2007).
[CrossRef]

F. A. Hegmann and M. S. Sherwin, "Generation of picosecond far-infrared pulses using laser-activated semiconductor reflection switches," Proc. SPIE 284290 (1996).

Other (1)

M. Dressel and G. Gruner, Electrodynamics of solids: optical properties of electrons in matter (Cambridge University Press, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the setup used for optical modulation experiments. The incoming THz pulses are coupled into the FTO/Si/FTO PPWG through the air-filled Cu PPWG. The optical excitation is provided by a 980 nm CW diode laser, focused to a 60 um wide line on the FTO/Si/FTO waveguide by a cylindrical lens (not shown).

Fig. 2.
Fig. 2.

Measured time-domain THz pulses through the Si cylindrical lenses in confocal geometry, the air-filled Cu PPWG, and the two FTO-coated Si slabs with 3.90 mm and 5.69 mm length.

Fig. 3.
Fig. 3.

Extracted effective index of refraction and absorption coefficient for the FTO-coated Si slab. The lines are fits to the model described in the text.

Fig. 4.
Fig. 4.

Measured time-domain THz pulses transmitted through the Si-filled FTO PPWG with and without CW optical excitation at 980 nm.

Fig. 5.
Fig. 5.

Extracted a) absorption coefficient and b) index of refraction of the line excitation within the Si-filled FTO PPWG, at P opt = 46 (filled circles) and 240 mW (open circles). Lines are fits to the Drude model, with parameters given in the text.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E WG = E air T C 2 exp ( [ α wg α 0 ] L 2 ) exp ( i [ β wg β 0 ] L )
α wg 2 n Si R S Z 0 b
n eff n Si ( 1 + R S 2 2 ( μ 0 ω b ) 2 )
E pump ( ω ) = E ref ( ω ) exp [ α L D 2 ] exp [ i ( n n Si ) ω L D c ]
σ ˜ ( ω ) = ω p 2 ε 0 τ 1 i ω τ
N = P opt τ L λ ( 1 exp ( b δ ) ) h c L D b w

Metrics