Abstract

Automated optical trapping of non-spherical objects offers great flexibility as a non-contact micromanipulation tool in various research fields. Computer vision control enables fruitful applications of automated manipulation in biology and material science. Here we demonstrate fully-automated, simultaneous, independent trapping and manipulation of multiple non-spherical objects using multiple-force optical clamps. Customized real-time feature recognition and trapping beam control algorithms are also presented.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  2. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
    [CrossRef] [PubMed]
  3. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, "Pattern-formation and flow-control of fine particles by laser-scanning micromanipulation," Opt. Lett. 16, 1463-1465 (1991).
    [CrossRef] [PubMed]
  4. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
    [CrossRef]
  5. P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Glückstad, "Interactive light-driven and parallel manipulation of inhomogeneous particles," Opt. Express 10, 1550-1556 (2002).
    [PubMed]
  6. F. Arai, K. Yoshikawa, T. Sakami, and T. Fukuda, "Synchronized laser micromanipulation of multiple targets along each trajectory by single laser," Appl. Phys. Lett. 85, 4301-4303 (2004).
    [CrossRef]
  7. P. J. Rodrigo, L. Gammelgaard, P. Bøggild, I. R. Perch-Nielsen, and J. Glückstad, "Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps," Opt. Express 13, 6899-6904 (2005).
    [CrossRef] [PubMed]
  8. J. T. Finer, R. M. Simmons, and J. A. Spudich, "Single myosin molecule mechanics: piconewton forces and nanometer steps," Nature 368, 113-119 (1994).
    [CrossRef] [PubMed]
  9. P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, "A new method to study shape recovery of red blood cell using multiple optical trapping," Biophys. J. 69, 1666-1673 (1995).
    [CrossRef] [PubMed]
  10. Y. Tanaka, K. Hirano, H. Nagata, and M. Ishikawa, "Real-time three-dimensional orientation control of non-spherical micro-objects using laser trapping," Electron. Lett. 43, 412-414 (2007).
    [CrossRef]
  11. S. C. Chapin, V. Germain, and E. R. Dufresne, "Automated trapping, assembly, and sorting with holographic optical tweezers," Opt. Express 14, 13095-13100 (2006).
    [CrossRef] [PubMed]
  12. I. R. Perch-Nielsen, P. J. Rodrigo, C. A. Alonzo, and J. Glückstad, "Autonomous and 3D real-time multi-beam manipulation in a microfluidic environment," Opt. Express 14, 12199-12205 (2006).
    [CrossRef] [PubMed]
  13. P. J. Rodrigo, L. Kelemen, C. A. Alonzo, I. R. Perch-Nielsen, J. S. Dam, P. Ormos, and J. Glückstad, "2D optical manipulation and assembly of shape-complementary planar microstructures," Opt. Express 15, 9009-9014 (2007).
    [CrossRef] [PubMed]
  14. C. Mio and D. W. M. Marr, "Optical trapping for the manipulation of colloidal particles," Adv. Mater. 12, 917-920 (2000).
    [CrossRef]
  15. D. H. Ballard and C. M. Brown, Computer Vision (Prentice-Hall, 1982), Chap. 3-4.
  16. Y. A. Hicks, D. Marshall, P. L. Rosin, R. R. Martin, D. G. Mann, and S. J. M. Droop, "A model of diatom shape and texture for analysis, synthesis and identification," Mach. Vision Appl. 17, 297-307 (2006).
    [CrossRef]
  17. H. Wada, K. Sakane, T. Kitamura, H. Hata, and H. Kambara, "Synthesis of aluminium borate whiskers in potassium sulphate flux," J. Mater. Sci. Lett. 10, 1076-1077 (1991).
    [CrossRef]
  18. Y. Tanaka, A. Murakami, K. Hirano, H. Nagata, and M. Ishikawa, "Development of PC-controlled laser manipulation system with image processing functions," Proc. SPIE. 6374, 63740P1-P8 (2006).
  19. R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, "Manipulation and assembly of nanowires with holographic optical traps," Opt. Express 13, 8906-8912 (2005).
    [CrossRef] [PubMed]
  20. X. Trepat, L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. Fredberg, "Universal physical responses to stretch in the living cell," Nature 447, 592-596 (2007).</>
    [CrossRef] [PubMed]

2007

Y. Tanaka, K. Hirano, H. Nagata, and M. Ishikawa, "Real-time three-dimensional orientation control of non-spherical micro-objects using laser trapping," Electron. Lett. 43, 412-414 (2007).
[CrossRef]

P. J. Rodrigo, L. Kelemen, C. A. Alonzo, I. R. Perch-Nielsen, J. S. Dam, P. Ormos, and J. Glückstad, "2D optical manipulation and assembly of shape-complementary planar microstructures," Opt. Express 15, 9009-9014 (2007).
[CrossRef] [PubMed]

2006

2005

2004

F. Arai, K. Yoshikawa, T. Sakami, and T. Fukuda, "Synchronized laser micromanipulation of multiple targets along each trajectory by single laser," Appl. Phys. Lett. 85, 4301-4303 (2004).
[CrossRef]

2003

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

2002

2000

C. Mio and D. W. M. Marr, "Optical trapping for the manipulation of colloidal particles," Adv. Mater. 12, 917-920 (2000).
[CrossRef]

1995

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, "A new method to study shape recovery of red blood cell using multiple optical trapping," Biophys. J. 69, 1666-1673 (1995).
[CrossRef] [PubMed]

1994

J. T. Finer, R. M. Simmons, and J. A. Spudich, "Single myosin molecule mechanics: piconewton forces and nanometer steps," Nature 368, 113-119 (1994).
[CrossRef] [PubMed]

1991

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, "Pattern-formation and flow-control of fine particles by laser-scanning micromanipulation," Opt. Lett. 16, 1463-1465 (1991).
[CrossRef] [PubMed]

H. Wada, K. Sakane, T. Kitamura, H. Hata, and H. Kambara, "Synthesis of aluminium borate whiskers in potassium sulphate flux," J. Mater. Sci. Lett. 10, 1076-1077 (1991).
[CrossRef]

1970

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Agarwal, R.

Alonzo, C. A.

Arai, F.

F. Arai, K. Yoshikawa, T. Sakami, and T. Fukuda, "Synchronized laser micromanipulation of multiple targets along each trajectory by single laser," Appl. Phys. Lett. 85, 4301-4303 (2004).
[CrossRef]

Ashkin, A.

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Bøggild, P.

Brakenhoff, G. J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, "A new method to study shape recovery of red blood cell using multiple optical trapping," Biophys. J. 69, 1666-1673 (1995).
[CrossRef] [PubMed]

Bronkhorst, P. J. H.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, "A new method to study shape recovery of red blood cell using multiple optical trapping," Biophys. J. 69, 1666-1673 (1995).
[CrossRef] [PubMed]

Chapin, S. C.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Dam, J. S.

Daria, V. R.

Droop, S. J. M.

Y. A. Hicks, D. Marshall, P. L. Rosin, R. R. Martin, D. G. Mann, and S. J. M. Droop, "A model of diatom shape and texture for analysis, synthesis and identification," Mach. Vision Appl. 17, 297-307 (2006).
[CrossRef]

Dufresne, E. R.

Eriksen, R. L.

Finer, J. T.

J. T. Finer, R. M. Simmons, and J. A. Spudich, "Single myosin molecule mechanics: piconewton forces and nanometer steps," Nature 368, 113-119 (1994).
[CrossRef] [PubMed]

Fukuda, T.

F. Arai, K. Yoshikawa, T. Sakami, and T. Fukuda, "Synchronized laser micromanipulation of multiple targets along each trajectory by single laser," Appl. Phys. Lett. 85, 4301-4303 (2004).
[CrossRef]

Gammelgaard, L.

Germain, V.

Glückstad, J.

Grier, D. G.

R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, "Manipulation and assembly of nanowires with holographic optical traps," Opt. Express 13, 8906-8912 (2005).
[CrossRef] [PubMed]

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Grimbergen, J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, "A new method to study shape recovery of red blood cell using multiple optical trapping," Biophys. J. 69, 1666-1673 (1995).
[CrossRef] [PubMed]

Hata, H.

H. Wada, K. Sakane, T. Kitamura, H. Hata, and H. Kambara, "Synthesis of aluminium borate whiskers in potassium sulphate flux," J. Mater. Sci. Lett. 10, 1076-1077 (1991).
[CrossRef]

Hicks, Y. A.

Y. A. Hicks, D. Marshall, P. L. Rosin, R. R. Martin, D. G. Mann, and S. J. M. Droop, "A model of diatom shape and texture for analysis, synthesis and identification," Mach. Vision Appl. 17, 297-307 (2006).
[CrossRef]

Hirano, K.

Y. Tanaka, K. Hirano, H. Nagata, and M. Ishikawa, "Real-time three-dimensional orientation control of non-spherical micro-objects using laser trapping," Electron. Lett. 43, 412-414 (2007).
[CrossRef]

Ishikawa, M.

Y. Tanaka, K. Hirano, H. Nagata, and M. Ishikawa, "Real-time three-dimensional orientation control of non-spherical micro-objects using laser trapping," Electron. Lett. 43, 412-414 (2007).
[CrossRef]

Kambara, H.

H. Wada, K. Sakane, T. Kitamura, H. Hata, and H. Kambara, "Synthesis of aluminium borate whiskers in potassium sulphate flux," J. Mater. Sci. Lett. 10, 1076-1077 (1991).
[CrossRef]

Kelemen, L.

Kitamura, N.

Kitamura, T.

H. Wada, K. Sakane, T. Kitamura, H. Hata, and H. Kambara, "Synthesis of aluminium borate whiskers in potassium sulphate flux," J. Mater. Sci. Lett. 10, 1076-1077 (1991).
[CrossRef]

Koshioka, M.

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Ladavac, K.

Lieber, C. M.

Mann, D. G.

Y. A. Hicks, D. Marshall, P. L. Rosin, R. R. Martin, D. G. Mann, and S. J. M. Droop, "A model of diatom shape and texture for analysis, synthesis and identification," Mach. Vision Appl. 17, 297-307 (2006).
[CrossRef]

Marr, D. W. M.

C. Mio and D. W. M. Marr, "Optical trapping for the manipulation of colloidal particles," Adv. Mater. 12, 917-920 (2000).
[CrossRef]

Marshall, D.

Y. A. Hicks, D. Marshall, P. L. Rosin, R. R. Martin, D. G. Mann, and S. J. M. Droop, "A model of diatom shape and texture for analysis, synthesis and identification," Mach. Vision Appl. 17, 297-307 (2006).
[CrossRef]

Martin, R. R.

Y. A. Hicks, D. Marshall, P. L. Rosin, R. R. Martin, D. G. Mann, and S. J. M. Droop, "A model of diatom shape and texture for analysis, synthesis and identification," Mach. Vision Appl. 17, 297-307 (2006).
[CrossRef]

Masuhara, H.

Mio, C.

C. Mio and D. W. M. Marr, "Optical trapping for the manipulation of colloidal particles," Adv. Mater. 12, 917-920 (2000).
[CrossRef]

Misawa, H.

Nagata, H.

Y. Tanaka, K. Hirano, H. Nagata, and M. Ishikawa, "Real-time three-dimensional orientation control of non-spherical micro-objects using laser trapping," Electron. Lett. 43, 412-414 (2007).
[CrossRef]

Nijhof, E. J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, "A new method to study shape recovery of red blood cell using multiple optical trapping," Biophys. J. 69, 1666-1673 (1995).
[CrossRef] [PubMed]

Ormos, P.

Perch-Nielsen, I. R.

Rodrigo, P. J.

Roichman, Y.

Rosin, P. L.

Y. A. Hicks, D. Marshall, P. L. Rosin, R. R. Martin, D. G. Mann, and S. J. M. Droop, "A model of diatom shape and texture for analysis, synthesis and identification," Mach. Vision Appl. 17, 297-307 (2006).
[CrossRef]

Sakami, T.

F. Arai, K. Yoshikawa, T. Sakami, and T. Fukuda, "Synchronized laser micromanipulation of multiple targets along each trajectory by single laser," Appl. Phys. Lett. 85, 4301-4303 (2004).
[CrossRef]

Sakane, K.

H. Wada, K. Sakane, T. Kitamura, H. Hata, and H. Kambara, "Synthesis of aluminium borate whiskers in potassium sulphate flux," J. Mater. Sci. Lett. 10, 1076-1077 (1991).
[CrossRef]

Sasaki, K.

Simmons, R. M.

J. T. Finer, R. M. Simmons, and J. A. Spudich, "Single myosin molecule mechanics: piconewton forces and nanometer steps," Nature 368, 113-119 (1994).
[CrossRef] [PubMed]

Sixma, J. J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, "A new method to study shape recovery of red blood cell using multiple optical trapping," Biophys. J. 69, 1666-1673 (1995).
[CrossRef] [PubMed]

Spudich, J. A.

J. T. Finer, R. M. Simmons, and J. A. Spudich, "Single myosin molecule mechanics: piconewton forces and nanometer steps," Nature 368, 113-119 (1994).
[CrossRef] [PubMed]

Streekstra, G. J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, "A new method to study shape recovery of red blood cell using multiple optical trapping," Biophys. J. 69, 1666-1673 (1995).
[CrossRef] [PubMed]

Tanaka, Y.

Y. Tanaka, K. Hirano, H. Nagata, and M. Ishikawa, "Real-time three-dimensional orientation control of non-spherical micro-objects using laser trapping," Electron. Lett. 43, 412-414 (2007).
[CrossRef]

Wada, H.

H. Wada, K. Sakane, T. Kitamura, H. Hata, and H. Kambara, "Synthesis of aluminium borate whiskers in potassium sulphate flux," J. Mater. Sci. Lett. 10, 1076-1077 (1991).
[CrossRef]

Yoshikawa, K.

F. Arai, K. Yoshikawa, T. Sakami, and T. Fukuda, "Synchronized laser micromanipulation of multiple targets along each trajectory by single laser," Appl. Phys. Lett. 85, 4301-4303 (2004).
[CrossRef]

Yu, G.

Adv. Mater.

C. Mio and D. W. M. Marr, "Optical trapping for the manipulation of colloidal particles," Adv. Mater. 12, 917-920 (2000).
[CrossRef]

Appl. Phys. Lett.

F. Arai, K. Yoshikawa, T. Sakami, and T. Fukuda, "Synchronized laser micromanipulation of multiple targets along each trajectory by single laser," Appl. Phys. Lett. 85, 4301-4303 (2004).
[CrossRef]

Biophys. J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, "A new method to study shape recovery of red blood cell using multiple optical trapping," Biophys. J. 69, 1666-1673 (1995).
[CrossRef] [PubMed]

Electron. Lett.

Y. Tanaka, K. Hirano, H. Nagata, and M. Ishikawa, "Real-time three-dimensional orientation control of non-spherical micro-objects using laser trapping," Electron. Lett. 43, 412-414 (2007).
[CrossRef]

J. Mater. Sci. Lett.

H. Wada, K. Sakane, T. Kitamura, H. Hata, and H. Kambara, "Synthesis of aluminium borate whiskers in potassium sulphate flux," J. Mater. Sci. Lett. 10, 1076-1077 (1991).
[CrossRef]

Mach. Vision Appl.

Y. A. Hicks, D. Marshall, P. L. Rosin, R. R. Martin, D. G. Mann, and S. J. M. Droop, "A model of diatom shape and texture for analysis, synthesis and identification," Mach. Vision Appl. 17, 297-307 (2006).
[CrossRef]

Nature

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

J. T. Finer, R. M. Simmons, and J. A. Spudich, "Single myosin molecule mechanics: piconewton forces and nanometer steps," Nature 368, 113-119 (1994).
[CrossRef] [PubMed]

Opt. Commun.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Other

D. H. Ballard and C. M. Brown, Computer Vision (Prentice-Hall, 1982), Chap. 3-4.

Y. Tanaka, A. Murakami, K. Hirano, H. Nagata, and M. Ishikawa, "Development of PC-controlled laser manipulation system with image processing functions," Proc. SPIE. 6374, 63740P1-P8 (2006).

X. Trepat, L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. Fredberg, "Universal physical responses to stretch in the living cell," Nature 447, 592-596 (2007).</>
[CrossRef] [PubMed]

Supplementary Material (3)

» Media 1: MOV (1023 KB)     
» Media 2: MOV (2103 KB)     
» Media 3: MOV (1581 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of (a): the time-sharing synchronized scanning optical tweezers, (b): the control sequences, for automated multiple clamps and manipulation.

Fig. 2.
Fig. 2.

Left: Elliptic model and control parameters for detecting and manipulating diatoms. Right: (Media 1) Automated multiple clamps and simultaneous manipulation of multiple diatoms. Each diatom is automatically clamped at three edge points C3, and is rotated/translated to be arranged in the same final orientation.

Fig. 3.
Fig. 3.

(Media 2) Automated multiple clamps and simultaneous manipulation of multiple diatoms. Each diatom is automatically clamped at two edge points C2 in Fig. 2. In this case, (a): shortly after irradiation of clamp beams, the diatoms autonomously turn 90 degrees about the major axis of elliptic model in Fig. 2; (f): shortly after release of the clamps, the diatoms return to their flat posture because of gravity, which gives a repeatable 2D view in microscope images.

Fig. 4.
Fig. 4.

Left: skeleton model and control parameters for detecting and manipulating whiskers. Right: (Media 3) Automated clamps and simultaneous dexterous manipulation of multiple whiskers for sorting by length. The whiskers are automatically clamped at both tip positions, C2, of each skeleton, and are translated/rotated to be arranged automatically according to their length measured by image processing.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t D = 6 π η w 3 k B T ,

Metrics