Abstract

The asynchronous transmission (encoding and decoding) of 64-bit information using binary spectral phase shaping is demonstrated. The accurate introduction and retrieval of the binary information is possible by using multiphoton intrapulse interference phase scan (MIIPS) to measure and correct the spectral phase distortions of the laser and the transmission media. Experimental demonstration is achieved using a sub-6 fs Ti:Sapphire laser with 2.12-GHz repetition rate and an adaptive phase control system.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bartels, T. Dekorsy, and H. Kurz, "Femtosecond Ti : sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy," Opt. Lett. 24, 996-998 (1999).
    [CrossRef]
  2. S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg-199(+) ion," Science 293, 825-828 (2001).
    [CrossRef] [PubMed]
  3. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, "Accurate measurement of large optical frequency differences with a mode-locked laser," Opt. Lett. 24, 881-883 (1999).
    [CrossRef]
  4. U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kartner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, "Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime," Phys. Rev. Lett. 86, 5462-5465 (2001).
    [CrossRef] [PubMed]
  5. G. T. Nogueira and F. C. Cruz, "Efficient 1 GHz Ti : sapphire laser with improved broadband continuum in the infrared," Opt. Lett. 31, 2069-2071 (2006).
    [CrossRef] [PubMed]
  6. G. T. Nogueira, B. Xu, Y. Coello, M. Dantus, and F. C. Cruz, "Broadband 2.12 GHz Ti:sapphire laser compressed to 5.9 femtoseconds using MIIPS," Opt. Express 16, 10033-10038 (2008).
    [CrossRef] [PubMed]
  7. B. Xu, Y. Coello, V. V. Lozovoy, D. A. Harris, and M. Dantus, "Pulse shaping of octave spanning femtosecond laser pulses," Opt. Express 14, 10939-10944 (2006).
    [CrossRef] [PubMed]
  8. V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
    [CrossRef] [PubMed]
  9. B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006).
    [CrossRef]
  10. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
    [CrossRef]
  11. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
    [CrossRef]
  12. V. V. Lozovoy, B. Xu, Y. Coello, and M. Dantus, "Direct measurement of spectral phase for ultrashort laser pulses," Opt. Express 16, 592-597 (2008).
    [CrossRef] [PubMed]
  13. A. M. Weiner, J. P. Heritage, and J. A. Salehi, "Encoding and Decoding of Femtosecond Pulses," Opt. Lett. 13, 300-302 (1988).
    [CrossRef] [PubMed]
  14. E. Frumker and Y. Silberberg, "Femtosecond pulse shaping using a two-dimensional liquid-crystal spatial light modulator," Opt. Lett. 32, 1384-1386 (2007).
    [CrossRef] [PubMed]
  15. J. T. Willits, A. M. Weiner, and S. T. Cundiff, "Theory of rapid-update line-by-line pulse shaping," Opt. Express 16, 315-327 (2008).
    [CrossRef] [PubMed]

2008 (3)

2007 (1)

2006 (3)

2004 (1)

2003 (1)

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

2002 (1)

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

2001 (2)

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg-199(+) ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kartner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, "Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime," Phys. Rev. Lett. 86, 5462-5465 (2001).
[CrossRef] [PubMed]

1999 (2)

1988 (1)

Bartels, A.

Bergquist, J. C.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg-199(+) ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

Coello, Y.

Cruz, F. C.

Cundiff, S. T.

Curtis, E. A.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg-199(+) ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

Dantus, M.

G. T. Nogueira, B. Xu, Y. Coello, M. Dantus, and F. C. Cruz, "Broadband 2.12 GHz Ti:sapphire laser compressed to 5.9 femtoseconds using MIIPS," Opt. Express 16, 10033-10038 (2008).
[CrossRef] [PubMed]

V. V. Lozovoy, B. Xu, Y. Coello, and M. Dantus, "Direct measurement of spectral phase for ultrashort laser pulses," Opt. Express 16, 592-597 (2008).
[CrossRef] [PubMed]

B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006).
[CrossRef]

B. Xu, Y. Coello, V. V. Lozovoy, D. A. Harris, and M. Dantus, "Pulse shaping of octave spanning femtosecond laser pulses," Opt. Express 14, 10939-10944 (2006).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Dekorsy, T.

Dela Cruz, J. M.

Diddams, S. A.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg-199(+) ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

Drullinger, R. E.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg-199(+) ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

Ell, R.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kartner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, "Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime," Phys. Rev. Lett. 86, 5462-5465 (2001).
[CrossRef] [PubMed]

Frumker, E.

Fujimoto, J. G.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kartner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, "Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime," Phys. Rev. Lett. 86, 5462-5465 (2001).
[CrossRef] [PubMed]

Gunn, J. M.

Hansch, T. W.

Harris, D. A.

Haus, H. A.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kartner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, "Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime," Phys. Rev. Lett. 86, 5462-5465 (2001).
[CrossRef] [PubMed]

Heritage, J. P.

Hollberg, L.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg-199(+) ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

Holzwarth, R.

Ippen, E. P.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kartner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, "Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime," Phys. Rev. Lett. 86, 5462-5465 (2001).
[CrossRef] [PubMed]

Itano, W. M.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg-199(+) ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

Kartner, F. X.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kartner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, "Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime," Phys. Rev. Lett. 86, 5462-5465 (2001).
[CrossRef] [PubMed]

Kurz, H.

Lee, W. D.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg-199(+) ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

Lozovoy, V. V.

Metzler, G.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kartner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, "Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime," Phys. Rev. Lett. 86, 5462-5465 (2001).
[CrossRef] [PubMed]

Morgner, U.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kartner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, "Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime," Phys. Rev. Lett. 86, 5462-5465 (2001).
[CrossRef] [PubMed]

Nogueira, G. T.

Oates, C. W.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg-199(+) ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

Pastirk, I.

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Reichert, J.

Salehi, J. A.

Schibli, T. R.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kartner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, "Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime," Phys. Rev. Lett. 86, 5462-5465 (2001).
[CrossRef] [PubMed]

Silberberg, Y.

Udem, T.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg-199(+) ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, "Accurate measurement of large optical frequency differences with a mode-locked laser," Opt. Lett. 24, 881-883 (1999).
[CrossRef]

Vogel, K. R.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg-199(+) ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

Walowicz, K. A.

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Weiner, A. M.

Willits, J. T.

Wineland, D. J.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg-199(+) ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

Xu, B.

J. Chem. Phys. (1)

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kartner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, "Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime," Phys. Rev. Lett. 86, 5462-5465 (2001).
[CrossRef] [PubMed]

Science (1)

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg-199(+) ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic optical setup of the laser system. The laser cavity is shown inside the box on the left. L: lens (FL 3cm); CM: chirped curved mirror (ROC 3cm); CR: Ti: Sapphire crystal; HR: high reflection chirped convex mirror (FL -1m); OC: output coupler. The pulse shaper is shown in the lower-right box. G: grating, SM: spherical mirror, M: mirror and SLM: spatial light modulator.

Fig. 2.
Fig. 2.

Experimental MIIPS traces. The left and right panels correspond to the phase-distorted and to the phase compensated pulses (TL), respectively.

Fig. 3.
Fig. 3.

Spectral phase control. (a) Spectrum (dashed line) and measured spectral phase (solid line). The inset shows the calculated temporal profile. The top panel shows the residual phase after the spectral phase of the system was corrected by MIIPS. (b) Experimental (black dots) and calculated (red line) SHG spectra corresponding to two different 8-bit binary phases. Note the excellent agreement between calculations and experiments.

Fig. 4.
Fig. 4.

Concept of information transmission and retrieval using binary phases. (a) Without encryption, (b) with encryption.

Fig. 5.
Fig. 5.

SHG spectra and their cross-correlations. (a), (b) and (c) illustrate the 64-bit binary phase information, the encryption binary phase and the sum of the first two, respectively. (d) and (f) show the SHG spectra resulting from (a) and (c), respectively. (e) shows the cross-correlation between two SHG spectra corresponding to the same binary phase 5(a), but measured in two different days. (g) shows the cross-correlation between SHG spectra corresponding to different binary phases (d) and (f).

Fig. 6.
Fig. 6.

The CSF for three different randomly picked measured SHG spectra as a function of all the spectra in the reference database, in each case sorted by increasing CSF. Note that the CSF always has the smallest value (circled point) when the cross-correlation is performed between the SHG spectra of corresponding binary phases. Even when one out of 64 bits is different, corresponding to small CSF values, the information can be distinguished.

Metrics