Abstract

Digital symbol synchronization of optical binary phase shift keying signals is experimentally demonstrated. Algorithm of timing error feedback is proposed for coherent intradyne reception. The feedback loop operates stable in the range of symbol rate, 9.7~0.3 GSymbol/s with 20 GSampling/s at relatively high bit error rate of ~2 × 10-2.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Sun, K. Wu, and K. Roberts, "Real-time measurements of a 40 Gb/s coherent system," Opt. Express 16, 873-879 (2008).
  2. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, "Electronic compensation of chromatic dispersion using a digital coherent receiver," Opt. Express 15, 2120-2126 (2007).
    [CrossRef] [PubMed]
  3. S. J. Savory, "Digital filters for coherent optical receivers," Opt. Express 16, 804-817 (2008).
    [CrossRef] [PubMed]
  4. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, "Coherent detection in optical fiber systems," Opt. Express 16, 753-791 (2008).
    [CrossRef] [PubMed]
  5. K. Ho and J. M. Kahn, "Electronic compensation technique to mitigate nonlinear phase noise," J. Lightwave Technol. 22, 779-783 (2004).
    [CrossRef]
  6. K. Kikuchi, "Electronic post-compensation for nonlinear phase fluctuations in a 1000 km 20 Gbit/s optical quadrature phase-shift keying transmission system using the digital coherent receiver," Opt. Express 16, 889-896 (2008).
    [CrossRef] [PubMed]
  7. A. Leven, N. Kaneda, U. Koc, and K. Chen, "Frequency estimation in intradyne reception," IEEE Photon. Technol. Lett. 19, 366-368 (2007).
    [CrossRef]
  8. T. Pfau, S. Hoffmann, O. Adamczyk, R. Peveling, V. Herath, M. Porrmann, and R. Noe, "Coherent optical communication: towards realtime systems at 40Gbit/s and beyond," Opt. Express 16, 866-872 (2008).
    [CrossRef] [PubMed]
  9. H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital communication receivers (John Wiley & Sons Inc, 1998).
  10. F. M. Gardner, "Interpolation in digital modems-part I: fundamentals," IEEE Trans. Commun. 41, 501-507 (1993).
    [CrossRef]
  11. L. Erup, F. M. Gardner, and R. A. Harris, "Interpolation in digital modems-part II: implementation and performance," IEEE Trans. Commun. 41, 998-1008 (1993).
    [CrossRef]
  12. A. H. Gnauck and P. J. Winzer, "Optical phase-shift-keying transmission," J. Lightwave Technol. 23, 115-130 (2005).
    [CrossRef]
  13. W. R. Leeb, "Realization of 90- and 180 degree hybrids for optical frequencies," Arch. Elek. Ubertragung 37, 203-206 (1983).
  14. L. G. Kazovsky, L. Curtis, W. C. Young, and N. K. Cheung, "All-fiber 90? optical hybrid for coherent communications," Appl. Opt. 26, 437-439 (1987).
    [CrossRef]
  15. D. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, "Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation," J. Lightwave Technol. 24, 12-21 (2006).
    [CrossRef]

2008 (5)

2007 (2)

A. Leven, N. Kaneda, U. Koc, and K. Chen, "Frequency estimation in intradyne reception," IEEE Photon. Technol. Lett. 19, 366-368 (2007).
[CrossRef]

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, "Electronic compensation of chromatic dispersion using a digital coherent receiver," Opt. Express 15, 2120-2126 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

2004 (1)

1993 (2)

F. M. Gardner, "Interpolation in digital modems-part I: fundamentals," IEEE Trans. Commun. 41, 501-507 (1993).
[CrossRef]

L. Erup, F. M. Gardner, and R. A. Harris, "Interpolation in digital modems-part II: implementation and performance," IEEE Trans. Commun. 41, 998-1008 (1993).
[CrossRef]

1987 (1)

L. G. Kazovsky, L. Curtis, W. C. Young, and N. K. Cheung, "All-fiber 90? optical hybrid for coherent communications," Appl. Opt. 26, 437-439 (1987).
[CrossRef]

1983 (1)

W. R. Leeb, "Realization of 90- and 180 degree hybrids for optical frequencies," Arch. Elek. Ubertragung 37, 203-206 (1983).

Adamczyk, O.

Barros, D. J. F.

Bayvel, P.

Chen, K.

A. Leven, N. Kaneda, U. Koc, and K. Chen, "Frequency estimation in intradyne reception," IEEE Photon. Technol. Lett. 19, 366-368 (2007).
[CrossRef]

Cheung, N. K.

L. G. Kazovsky, L. Curtis, W. C. Young, and N. K. Cheung, "All-fiber 90? optical hybrid for coherent communications," Appl. Opt. 26, 437-439 (1987).
[CrossRef]

Curtis, L.

L. G. Kazovsky, L. Curtis, W. C. Young, and N. K. Cheung, "All-fiber 90? optical hybrid for coherent communications," Appl. Opt. 26, 437-439 (1987).
[CrossRef]

Erup, L.

L. Erup, F. M. Gardner, and R. A. Harris, "Interpolation in digital modems-part II: implementation and performance," IEEE Trans. Commun. 41, 998-1008 (1993).
[CrossRef]

Gardner, F. M.

L. Erup, F. M. Gardner, and R. A. Harris, "Interpolation in digital modems-part II: implementation and performance," IEEE Trans. Commun. 41, 998-1008 (1993).
[CrossRef]

F. M. Gardner, "Interpolation in digital modems-part I: fundamentals," IEEE Trans. Commun. 41, 501-507 (1993).
[CrossRef]

Gavioli, G.

Gnauck, A. H.

Harris, R. A.

L. Erup, F. M. Gardner, and R. A. Harris, "Interpolation in digital modems-part II: implementation and performance," IEEE Trans. Commun. 41, 998-1008 (1993).
[CrossRef]

Herath, V.

Ho, K.

Hoffmann, S.

Ip, E.

Kahn, J. M.

Kaneda, N.

A. Leven, N. Kaneda, U. Koc, and K. Chen, "Frequency estimation in intradyne reception," IEEE Photon. Technol. Lett. 19, 366-368 (2007).
[CrossRef]

Katoh, K.

Kazovsky, L. G.

L. G. Kazovsky, L. Curtis, W. C. Young, and N. K. Cheung, "All-fiber 90? optical hybrid for coherent communications," Appl. Opt. 26, 437-439 (1987).
[CrossRef]

Kikuchi, K.

Killey, R. I.

Koc, U.

A. Leven, N. Kaneda, U. Koc, and K. Chen, "Frequency estimation in intradyne reception," IEEE Photon. Technol. Lett. 19, 366-368 (2007).
[CrossRef]

Lau, A. P. T.

Leeb, W. R.

W. R. Leeb, "Realization of 90- and 180 degree hybrids for optical frequencies," Arch. Elek. Ubertragung 37, 203-206 (1983).

Leven, A.

A. Leven, N. Kaneda, U. Koc, and K. Chen, "Frequency estimation in intradyne reception," IEEE Photon. Technol. Lett. 19, 366-368 (2007).
[CrossRef]

Ly-Gagnon, D.

Noe, R.

Peveling, R.

Pfau, T.

Porrmann, M.

Roberts, K.

Savory, S. J.

Sun, H.

Tsukamoto, S.

Winzer, P. J.

Wu, K.

Young, W. C.

L. G. Kazovsky, L. Curtis, W. C. Young, and N. K. Cheung, "All-fiber 90? optical hybrid for coherent communications," Appl. Opt. 26, 437-439 (1987).
[CrossRef]

Arch. Elek. Ubertragung (1)

W. R. Leeb, "Realization of 90- and 180 degree hybrids for optical frequencies," Arch. Elek. Ubertragung 37, 203-206 (1983).

IEEE Photon. Technol. Lett. (1)

A. Leven, N. Kaneda, U. Koc, and K. Chen, "Frequency estimation in intradyne reception," IEEE Photon. Technol. Lett. 19, 366-368 (2007).
[CrossRef]

IEEE Trans. Commun. (2)

F. M. Gardner, "Interpolation in digital modems-part I: fundamentals," IEEE Trans. Commun. 41, 501-507 (1993).
[CrossRef]

L. Erup, F. M. Gardner, and R. A. Harris, "Interpolation in digital modems-part II: implementation and performance," IEEE Trans. Commun. 41, 998-1008 (1993).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (6)

Optics (1)

L. G. Kazovsky, L. Curtis, W. C. Young, and N. K. Cheung, "All-fiber 90? optical hybrid for coherent communications," Appl. Opt. 26, 437-439 (1987).
[CrossRef]

Other (1)

H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital communication receivers (John Wiley & Sons Inc, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Block diagram of digital symbol synchronization in optical coherent intradyne reception.

Fig. 2.
Fig. 2.

Explanation of timing parameters in Eq. (1). Mapping of k T I +ε I T I onto m k T s +µ k T S is shown.

Fig. 3.
Fig. 3.

Experimental set-up. PPG: pulse pattern generator, MZM: mach-zehnder modulator, 3 dB: 3 dB coupler, PC: polarization controller, PBS: polarization beam splitter, LO: local oscillator.

Fig. 4.
Fig. 4.

Parameter response in digital symbol synchronization at 10.0 GSymbol/s, OSNR = 43 dB, T I =T/2. T : symbol interval. (a) control word (b) error signal of loop filter (c) basepoint index difference (d) fractional interval.

Fig. 5.
Fig. 5.

Parameter response in digital symbol synchronization at 10.1 GSymbol/s, OSNR = 43 dB, T I =T/2. T : symbol interval. (a) control word (b) error signal of loop filter (c) basepoint index difference (d) fractional interval

Fig. 6.
Fig. 6.

Parameter response in digital symbol synchronization at 10.1 GSymbol/s, OSNR = 10 dB, T I =T/2. T : symbol interval. (a) control word (b) error signal of loop filter (c) basepoint index difference (d) fractional interval

Fig. 7.
Fig. 7.

Measured bit error rate at OSNR = 10 dB with the change of symbol rate. Measurement time is 100 µsec.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

y ( k T I + ε I T I ) = y ( m k T s + μ k T s ) = n = I 1 I 2 x ( ( m k n ) T s ) h n ( μ )
e ( m k ) = Re { y ( m k T s + μ k T s ) y * ˙ ( m k T s + μ k T s ) }
Re { y ( m k T s + μ k T s ) [ y * ( ( m k + 1 ) T s + μ k T s ) y * ( ( m k 1 ) T s + μ k T s ) ] }
e loop ( m 2 n ) = K p e ( m 2 n ) + K i k = n q + 1 n e ( m 2 k )
w ( m 2 n ) = w ( m 2 ( n 1 ) ) + e loop ( m 2 ( n 1 ) )
m k + 1 = m k + floor [ μ k + w ( m k ) ]
μ k + 1 = [ μ k + w ( m k ) ] mod 1

Metrics