Abstract

The generation of high-fidelity femtosecond pulses is experimentally demonstrated in a fiber based chirped-pulse amplification (CPA) system through an adaptive amplitude and phase pre-shaping technique. A pulse shaper, based on a dual-layer liquid crystal spatial light modulator (LC-SLM), was implemented in the fiber CPA system for amplitude and phase shaping prior to amplification. The LC-SLM was controlled using a differential evolution algorithm, to maximize a two-photon absorption detector signal from the compressed fiber CPA output pulses. It is shown that this approach compensates for both accumulated phase from material dispersion and nonlinear phase modulation. A train of pulses was produced with an average power of 12.6W at a 50MHz repetition rate from our fiber CPA system, which were compressible to high fidelity pulses with a duration of 170 fs.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, "High-power ultrafast fiber laser systems," IEEE J. of Sel. Top. in Quantum Electron. 12, 233-244 (2006).
    [CrossRef]
  2. F. Röser, J. Rothhard, B. Ortac¸, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, "131W 220 fs fiber laser system," Opt. Lett. 30, 2754-2756 (2005).
    [CrossRef] [PubMed]
  3. F. Röser, D. Schimpf, O. Schmidt, B. Ortac¸ K. Rademaker, J. Limpert, and A. Tünnermann, "90W average power 100 ?J energy femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 2230-2232 (2007).
    [CrossRef] [PubMed]
  4. F. Röser, T. Eidam, J. Rothhard, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tönnermann, "Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 3495-3497 (2007).
    [CrossRef] [PubMed]
  5. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
    [CrossRef]
  6. Y. H. Chuang, D. D. Meyerhofer, S. Augst, H. Chen, J. Peatross, and S. Uchida, "Supression of the pedestal in a chirped-pulse-amplification laser," J. Opt. Soc. Am. B 8, 1226-1235 (1991).
    [CrossRef]
  7. M. D. Perry, T. Ditmire, and B. C. Stuart, "Self-phase modulation in chirped-pulse amplification," Opt. Lett. 19, 2149-2151 (1994).
    [CrossRef] [PubMed]
  8. B. E. Lemoff and C. P. J. Barty, "Quintic-phase-limited, spatially uniform expansion and recompression of ultrashort optical pulses," Opt. Lett. 18, 1651-1653 (1993).
    [CrossRef] [PubMed]
  9. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulator," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  10. D. Yelin, D. Meshulach, and Y. Silberberg, "Adaptive femtosecond pulse compression," Opt. Lett. 22, 1793-1795 (1997).
    [CrossRef]
  11. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779-782 (1997).
    [CrossRef]
  12. T. Brixner, M. Strehle, and G. Gerber, "Feedback-controlled optimization of amplified femtosecond laser pulses," Appl. Phys. B 68, 281-284 (1999).
    [CrossRef]
  13. K. H. Hong and C. H. Nam, "Adaptive pulse compression of femtosecond laser pulse using a low-loss pulse shaper," Jpn. J. Appl. Phys. 43, 5289-5293 (2004).
    [CrossRef]
  14. R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, "Thinning-out in optimized pulse shaping method using genetic algorithm," Rev. Sci. Instrum. 74, 2670-2674 (2003).
    [CrossRef]
  15. T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, "Feedback-controlled femtosecond pulse shaping," Appl. Phys. B 70, S119-S124 (2000).
    [CrossRef]
  16. K. Ohno, T. Tanabe, and F. Kannari, "Adaptive pulse shaping of phase and amplitude of an amplified femtosecond pulse laser by direct reference to frequency-resolved optical gating traces," J. Opt. Soc. Am. B 19, 2781-2790 (2002).
    [CrossRef]
  17. A. Efimov, M. D. Moores, N. M. Beach, J. L. Krause, and D. H. Reitze, "Adaptive control of pulse phase in a chirped-pulse amplifier," Opt. Lett. 23, 1915-1917 (1998).
    [CrossRef]
  18. A. Efimov and D. H. Reitze, "Programmable dispersion compensation and pulse shaping in a 26-fs chirped-pulse amplifier," Opt. Lett. 23, 1612-1614 (1998).
    [CrossRef]
  19. A. Efimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning," Appl. Phys. B 70, S133-S141 (2000).
    [CrossRef]
  20. G. Chériaux, O. Albert, V. Wänman, J. P. Chambaret, C. Félix, and G. Mourou, "Temporal control of amplified femtosecond pulses with a deformable mirror in a stretcher," Opt. Lett. 26, 169-171 (2001).
    [CrossRef]
  21. T. Tanabe, K. Ohno, T. Okamoto, M. Yamanaka, and F. Kannari, "Feedback control for accurate shaping of ultrashort optical pulses prior to chirped pulse amplification," Jpn. J. Appl. Phys. 43, 1366-1375 (2004).
    [CrossRef]
  22. S. Zhou, L. Kuznetsova, A. Chong, and F. W. Wise, "Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers," Opt. Express 13, 4869-4877 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-4869.
    [CrossRef] [PubMed]
  23. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. C. Cho, and M. E. Fermann, "High energy femtosecond Yb cubicon fiber amplifier," Opt. Express 13, 4717-4722 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-12-4717.
    [CrossRef] [PubMed]
  24. A. Chong, L. Kuznetsova, and F. W. Wise, "Theoretical optimization of nonlinear chirped-pulse fiber amplifiers," J. Opt. Soc. Am. B 24, 1815-1823 (2007).
    [CrossRef]
  25. L. Kuznetsova and F. W. Wise, "Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification," Opt. Lett. 32, 2671-2673 (2007).
    [CrossRef] [PubMed]
  26. L. Kuznetsova, A. Chong, and F. W. Wise, "Interplay of nonlinearity and gain shaping in femtosecond fiber amplifiers," Opt. Lett. 31, 2640-2642 (2006).
    [CrossRef] [PubMed]
  27. T. Schreiber, D. Schimpf, D. Muller, F. Röser, J. Limpert, and A. Tünnermann, "Influence of pulse shape in self-phase-modulation-limited chirped pulse fiber amplifier systems," J. Opt. Soc. Am. B 24, 1809-1814 (2007).
    [CrossRef]
  28. J. van Howe, G. Zhu, and C. Xu, "Compensation of self-phase modulation in fiber-based chirped-pulse amplifi-cation systems," Opt. Lett. 31, 1756 (2006).
    [CrossRef] [PubMed]
  29. G. Zhu, J. Edinberg, and C. Xu, "Nonlinear distortion free fiber-based chirped pulse amplification with self-phase modulation up to 2??," Opt. Express 15, 2530-2534 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2530.
    [CrossRef] [PubMed]
  30. D. N. Schimpf, J. Limpert, and A. Tünnermann, "Controlling the influence of SPM in fiber-based chirped-pulse amplification systems by using an actively shaped parabolic spectrum," Opt. Express 15, 16 945-16 953 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-16945.
  31. F. He, H. S. S. Hung, J. H. V. Price, N. K. Daga, N. Naz, J. Prawiharjo, D. C. Hanna, D. P. Shepherd, D. J. Richardson, J. W. Dawson, C. W. Siders, and C. P. J. Barty, "High energy femtosecond fiber chirped pulse amplification system with adaptive phase control," Opt. Express (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5813.
    [CrossRef] [PubMed]
  32. D. N. Papadopoulos, I. Martial, M. Hanna, F. Druon, and P. Georges, "Active spectral phase control by use of an acousto-optic programmable filter in high-repetition-rate sub-80 fs nonlinear fiber amplifiers," Opt. Lett. 33, 1431-1433 (2008).
    [CrossRef] [PubMed]
  33. L. Lefort, J. H. V. Price, D. J. Richardson, G. J. Spühler, R. Paschotta, U. Keller, J. Fry, and A. R. Weston, "Practical low-noise stretched-pulse Yb3+-doped fiber laser," Opt. Lett. 27, 291-293 (2002).
    [CrossRef]
  34. F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
    [CrossRef]
  35. A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, "Compact, robust, and flexible setup for femtosecond pulse shaping," Rev. Sci. Instrum. 74, 4950-4953 (2003).
    [CrossRef]
  36. R. Storn and K. Price, "Differential evolution - A simple and efficient heuristic for global optimization over continuous space," J. Glob. Optim. 11, 341-359 (1997).
    [CrossRef]
  37. M. A. Ali, C. Khompatraporn, and Z. B. Zabinsky, "A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems," J. Glob. Optim. 31, 635-672 (2005).
    [CrossRef]
  38. H. Y. Fan and J. Lampinen, "A trigonometric mutation operation to differential evolution," J. Glob. Optim. 27, 105-129 (2003).
    [CrossRef]
  39. D. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, "Decrease of pulse-contrast in nonlinear chirpedpulse amplification systems due to high-frequency spectral phase ripple," Opt. Express 16, 8876-8886 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-8876.
    [CrossRef] [PubMed]
  40. B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, "Coherent control using adaptive learning algorithms," Phys. Rev. A 63, 063412/1-12 (2001).
    [CrossRef]

2008

2007

2006

2005

2004

K. H. Hong and C. H. Nam, "Adaptive pulse compression of femtosecond laser pulse using a low-loss pulse shaper," Jpn. J. Appl. Phys. 43, 5289-5293 (2004).
[CrossRef]

T. Tanabe, K. Ohno, T. Okamoto, M. Yamanaka, and F. Kannari, "Feedback control for accurate shaping of ultrashort optical pulses prior to chirped pulse amplification," Jpn. J. Appl. Phys. 43, 1366-1375 (2004).
[CrossRef]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
[CrossRef]

2003

A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, "Compact, robust, and flexible setup for femtosecond pulse shaping," Rev. Sci. Instrum. 74, 4950-4953 (2003).
[CrossRef]

H. Y. Fan and J. Lampinen, "A trigonometric mutation operation to differential evolution," J. Glob. Optim. 27, 105-129 (2003).
[CrossRef]

R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, "Thinning-out in optimized pulse shaping method using genetic algorithm," Rev. Sci. Instrum. 74, 2670-2674 (2003).
[CrossRef]

2002

2001

2000

A. Efimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning," Appl. Phys. B 70, S133-S141 (2000).
[CrossRef]

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, "Feedback-controlled femtosecond pulse shaping," Appl. Phys. B 70, S119-S124 (2000).
[CrossRef]

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulator," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

1999

T. Brixner, M. Strehle, and G. Gerber, "Feedback-controlled optimization of amplified femtosecond laser pulses," Appl. Phys. B 68, 281-284 (1999).
[CrossRef]

1998

1997

D. Yelin, D. Meshulach, and Y. Silberberg, "Adaptive femtosecond pulse compression," Opt. Lett. 22, 1793-1795 (1997).
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

R. Storn and K. Price, "Differential evolution - A simple and efficient heuristic for global optimization over continuous space," J. Glob. Optim. 11, 341-359 (1997).
[CrossRef]

1994

1993

1991

1985

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Albert, O.

Ali, M. A.

M. A. Ali, C. Khompatraporn, and Z. B. Zabinsky, "A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems," J. Glob. Optim. 31, 635-672 (2005).
[CrossRef]

Assion, A.

A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, "Compact, robust, and flexible setup for femtosecond pulse shaping," Rev. Sci. Instrum. 74, 4950-4953 (2003).
[CrossRef]

Augst, S.

Barty, C. P. J.

Baumert, T.

A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, "Compact, robust, and flexible setup for femtosecond pulse shaping," Rev. Sci. Instrum. 74, 4950-4953 (2003).
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

Beach, N. M.

Brixner, T.

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, "Feedback-controlled femtosecond pulse shaping," Appl. Phys. B 70, S119-S124 (2000).
[CrossRef]

T. Brixner, M. Strehle, and G. Gerber, "Feedback-controlled optimization of amplified femtosecond laser pulses," Appl. Phys. B 68, 281-284 (1999).
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

Buckley, J. R.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
[CrossRef]

Chambaret, J. P.

Chen, H.

Chériaux, G.

Cho, G. C.

Chong, A.

Chuang, Y. H.

Clark, W. G.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
[CrossRef]

Ditmire, T.

Druon, F.

Edinberg, J.

Efimov, A.

Eidam, T.

Fan, H. Y.

H. Y. Fan and J. Lampinen, "A trigonometric mutation operation to differential evolution," J. Glob. Optim. 27, 105-129 (2003).
[CrossRef]

Félix, C.

Fermann, M. E.

Fry, J.

Georges, P.

Gerber, G.

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, "Feedback-controlled femtosecond pulse shaping," Appl. Phys. B 70, S119-S124 (2000).
[CrossRef]

T. Brixner, M. Strehle, and G. Gerber, "Feedback-controlled optimization of amplified femtosecond laser pulses," Appl. Phys. B 68, 281-284 (1999).
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

Hanna, M.

Hartl, I.

Hong, K. H.

K. H. Hong and C. H. Nam, "Adaptive pulse compression of femtosecond laser pulse using a low-loss pulse shaper," Jpn. J. Appl. Phys. 43, 5289-5293 (2004).
[CrossRef]

Horn, C.

A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, "Compact, robust, and flexible setup for femtosecond pulse shaping," Rev. Sci. Instrum. 74, 4950-4953 (2003).
[CrossRef]

Ilday, F. O.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
[CrossRef]

Imeshev, G.

Kannari, F.

T. Tanabe, K. Ohno, T. Okamoto, M. Yamanaka, and F. Kannari, "Feedback control for accurate shaping of ultrashort optical pulses prior to chirped pulse amplification," Jpn. J. Appl. Phys. 43, 1366-1375 (2004).
[CrossRef]

K. Ohno, T. Tanabe, and F. Kannari, "Adaptive pulse shaping of phase and amplitude of an amplified femtosecond pulse laser by direct reference to frequency-resolved optical gating traces," J. Opt. Soc. Am. B 19, 2781-2790 (2002).
[CrossRef]

Kano, S. S.

R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, "Thinning-out in optimized pulse shaping method using genetic algorithm," Rev. Sci. Instrum. 74, 2670-2674 (2003).
[CrossRef]

Keller, U.

Khompatraporn, C.

M. A. Ali, C. Khompatraporn, and Z. B. Zabinsky, "A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems," J. Glob. Optim. 31, 635-672 (2005).
[CrossRef]

Krause, J. L.

A. Efimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning," Appl. Phys. B 70, S133-S141 (2000).
[CrossRef]

A. Efimov, M. D. Moores, N. M. Beach, J. L. Krause, and D. H. Reitze, "Adaptive control of pulse phase in a chirped-pulse amplifier," Opt. Lett. 23, 1915-1917 (1998).
[CrossRef]

Kuznetsova, L.

Lampinen, J.

H. Y. Fan and J. Lampinen, "A trigonometric mutation operation to differential evolution," J. Glob. Optim. 27, 105-129 (2003).
[CrossRef]

Lefort, L.

Lemoff, B. E.

Liem, A.

Limpert, J.

Liu, Z.

M¨uller, D.

Martial, I.

Mei, B.

A. Efimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning," Appl. Phys. B 70, S133-S141 (2000).
[CrossRef]

Meshulach, D.

Meyerhofer, D. D.

Mizoguchi, R.

R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, "Thinning-out in optimized pulse shaping method using genetic algorithm," Rev. Sci. Instrum. 74, 2670-2674 (2003).
[CrossRef]

Moores, M. D.

A. Efimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning," Appl. Phys. B 70, S133-S141 (2000).
[CrossRef]

A. Efimov, M. D. Moores, N. M. Beach, J. L. Krause, and D. H. Reitze, "Adaptive control of pulse phase in a chirped-pulse amplifier," Opt. Lett. 23, 1915-1917 (1998).
[CrossRef]

Mourou, G.

Nam, C. H.

K. H. Hong and C. H. Nam, "Adaptive pulse compression of femtosecond laser pulse using a low-loss pulse shaper," Jpn. J. Appl. Phys. 43, 5289-5293 (2004).
[CrossRef]

Oehrlein, A.

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, "Feedback-controlled femtosecond pulse shaping," Appl. Phys. B 70, S119-S124 (2000).
[CrossRef]

Ohno, K.

T. Tanabe, K. Ohno, T. Okamoto, M. Yamanaka, and F. Kannari, "Feedback control for accurate shaping of ultrashort optical pulses prior to chirped pulse amplification," Jpn. J. Appl. Phys. 43, 1366-1375 (2004).
[CrossRef]

K. Ohno, T. Tanabe, and F. Kannari, "Adaptive pulse shaping of phase and amplitude of an amplified femtosecond pulse laser by direct reference to frequency-resolved optical gating traces," J. Opt. Soc. Am. B 19, 2781-2790 (2002).
[CrossRef]

Okamoto, T.

T. Tanabe, K. Ohno, T. Okamoto, M. Yamanaka, and F. Kannari, "Feedback control for accurate shaping of ultrashort optical pulses prior to chirped pulse amplification," Jpn. J. Appl. Phys. 43, 1366-1375 (2004).
[CrossRef]

Onda, K.

R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, "Thinning-out in optimized pulse shaping method using genetic algorithm," Rev. Sci. Instrum. 74, 2670-2674 (2003).
[CrossRef]

Ortac¸, B.

Papadopoulos, D. N.

Paschotta, R.

Peatross, J.

Perry, M. D.

Präkelt, A.

A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, "Compact, robust, and flexible setup for femtosecond pulse shaping," Rev. Sci. Instrum. 74, 4950-4953 (2003).
[CrossRef]

Price, J. H. V.

Price, K.

R. Storn and K. Price, "Differential evolution - A simple and efficient heuristic for global optimization over continuous space," J. Glob. Optim. 11, 341-359 (1997).
[CrossRef]

Reitze, D. H.

Richardson, D. J.

Röser, F.

Rothhard, J.

Sarpe-Tudoran, C.

A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, "Compact, robust, and flexible setup for femtosecond pulse shaping," Rev. Sci. Instrum. 74, 4950-4953 (2003).
[CrossRef]

Schimpf, D.

Schimpf, D. N.

Schmidt, O.

Schreiber, T.

Seise, E.

Seyfried, V.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

Shah, L.

Siders, C. W.

A. Efimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning," Appl. Phys. B 70, S133-S141 (2000).
[CrossRef]

Silberberg, Y.

Spühler, G. J.

Storn, R.

R. Storn and K. Price, "Differential evolution - A simple and efficient heuristic for global optimization over continuous space," J. Glob. Optim. 11, 341-359 (1997).
[CrossRef]

Strehle, M.

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, "Feedback-controlled femtosecond pulse shaping," Appl. Phys. B 70, S119-S124 (2000).
[CrossRef]

T. Brixner, M. Strehle, and G. Gerber, "Feedback-controlled optimization of amplified femtosecond laser pulses," Appl. Phys. B 68, 281-284 (1999).
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

Strickland, D.

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Stuart, B. C.

Tanabe, T.

T. Tanabe, K. Ohno, T. Okamoto, M. Yamanaka, and F. Kannari, "Feedback control for accurate shaping of ultrashort optical pulses prior to chirped pulse amplification," Jpn. J. Appl. Phys. 43, 1366-1375 (2004).
[CrossRef]

K. Ohno, T. Tanabe, and F. Kannari, "Adaptive pulse shaping of phase and amplitude of an amplified femtosecond pulse laser by direct reference to frequency-resolved optical gating traces," J. Opt. Soc. Am. B 19, 2781-2790 (2002).
[CrossRef]

Tönnermann, A.

Tünnermann, A.

Uchida, S.

van Howe, J.

Wada, A.

R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, "Thinning-out in optimized pulse shaping method using genetic algorithm," Rev. Sci. Instrum. 74, 2670-2674 (2003).
[CrossRef]

Wänman, V.

Weiner, A. M.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulator," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Weston, A. R.

Winter, M.

A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, "Compact, robust, and flexible setup for femtosecond pulse shaping," Rev. Sci. Instrum. 74, 4950-4953 (2003).
[CrossRef]

Wise, F. W.

Wollenhaupt, M.

A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, "Compact, robust, and flexible setup for femtosecond pulse shaping," Rev. Sci. Instrum. 74, 4950-4953 (2003).
[CrossRef]

Xu, C.

Yamanaka, M.

T. Tanabe, K. Ohno, T. Okamoto, M. Yamanaka, and F. Kannari, "Feedback control for accurate shaping of ultrashort optical pulses prior to chirped pulse amplification," Jpn. J. Appl. Phys. 43, 1366-1375 (2004).
[CrossRef]

Yelin, D.

Zabinsky, Z. B.

M. A. Ali, C. Khompatraporn, and Z. B. Zabinsky, "A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems," J. Glob. Optim. 31, 635-672 (2005).
[CrossRef]

Zhou, S.

Zhu, G.

Appl. Phys. B

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

T. Brixner, M. Strehle, and G. Gerber, "Feedback-controlled optimization of amplified femtosecond laser pulses," Appl. Phys. B 68, 281-284 (1999).
[CrossRef]

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, "Feedback-controlled femtosecond pulse shaping," Appl. Phys. B 70, S119-S124 (2000).
[CrossRef]

A. Efimov, M. D. Moores, B. Mei, J. L. Krause, C. W. Siders, and D. H. Reitze, "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning," Appl. Phys. B 70, S133-S141 (2000).
[CrossRef]

J. Glob. Optim.

R. Storn and K. Price, "Differential evolution - A simple and efficient heuristic for global optimization over continuous space," J. Glob. Optim. 11, 341-359 (1997).
[CrossRef]

M. A. Ali, C. Khompatraporn, and Z. B. Zabinsky, "A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems," J. Glob. Optim. 31, 635-672 (2005).
[CrossRef]

H. Y. Fan and J. Lampinen, "A trigonometric mutation operation to differential evolution," J. Glob. Optim. 27, 105-129 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

K. H. Hong and C. H. Nam, "Adaptive pulse compression of femtosecond laser pulse using a low-loss pulse shaper," Jpn. J. Appl. Phys. 43, 5289-5293 (2004).
[CrossRef]

T. Tanabe, K. Ohno, T. Okamoto, M. Yamanaka, and F. Kannari, "Feedback control for accurate shaping of ultrashort optical pulses prior to chirped pulse amplification," Jpn. J. Appl. Phys. 43, 1366-1375 (2004).
[CrossRef]

Opt. Commun.

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Opt. Express

Opt. Lett.

D. Yelin, D. Meshulach, and Y. Silberberg, "Adaptive femtosecond pulse compression," Opt. Lett. 22, 1793-1795 (1997).
[CrossRef]

D. N. Papadopoulos, I. Martial, M. Hanna, F. Druon, and P. Georges, "Active spectral phase control by use of an acousto-optic programmable filter in high-repetition-rate sub-80 fs nonlinear fiber amplifiers," Opt. Lett. 33, 1431-1433 (2008).
[CrossRef] [PubMed]

L. Lefort, J. H. V. Price, D. J. Richardson, G. J. Spühler, R. Paschotta, U. Keller, J. Fry, and A. R. Weston, "Practical low-noise stretched-pulse Yb3+-doped fiber laser," Opt. Lett. 27, 291-293 (2002).
[CrossRef]

G. Chériaux, O. Albert, V. Wänman, J. P. Chambaret, C. Félix, and G. Mourou, "Temporal control of amplified femtosecond pulses with a deformable mirror in a stretcher," Opt. Lett. 26, 169-171 (2001).
[CrossRef]

J. van Howe, G. Zhu, and C. Xu, "Compensation of self-phase modulation in fiber-based chirped-pulse amplifi-cation systems," Opt. Lett. 31, 1756 (2006).
[CrossRef] [PubMed]

L. Kuznetsova and F. W. Wise, "Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification," Opt. Lett. 32, 2671-2673 (2007).
[CrossRef] [PubMed]

L. Kuznetsova, A. Chong, and F. W. Wise, "Interplay of nonlinearity and gain shaping in femtosecond fiber amplifiers," Opt. Lett. 31, 2640-2642 (2006).
[CrossRef] [PubMed]

F. Röser, J. Rothhard, B. Ortac¸, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, "131W 220 fs fiber laser system," Opt. Lett. 30, 2754-2756 (2005).
[CrossRef] [PubMed]

F. Röser, D. Schimpf, O. Schmidt, B. Ortac¸ K. Rademaker, J. Limpert, and A. Tünnermann, "90W average power 100 ?J energy femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 2230-2232 (2007).
[CrossRef] [PubMed]

F. Röser, T. Eidam, J. Rothhard, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tönnermann, "Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 3495-3497 (2007).
[CrossRef] [PubMed]

M. D. Perry, T. Ditmire, and B. C. Stuart, "Self-phase modulation in chirped-pulse amplification," Opt. Lett. 19, 2149-2151 (1994).
[CrossRef] [PubMed]

B. E. Lemoff and C. P. J. Barty, "Quintic-phase-limited, spatially uniform expansion and recompression of ultrashort optical pulses," Opt. Lett. 18, 1651-1653 (1993).
[CrossRef] [PubMed]

A. Efimov, M. D. Moores, N. M. Beach, J. L. Krause, and D. H. Reitze, "Adaptive control of pulse phase in a chirped-pulse amplifier," Opt. Lett. 23, 1915-1917 (1998).
[CrossRef]

A. Efimov and D. H. Reitze, "Programmable dispersion compensation and pulse shaping in a 26-fs chirped-pulse amplifier," Opt. Lett. 23, 1612-1614 (1998).
[CrossRef]

Phys. Rev. Lett.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
[CrossRef]

Rev. Sci. Instrum.

A. Präkelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, "Compact, robust, and flexible setup for femtosecond pulse shaping," Rev. Sci. Instrum. 74, 4950-4953 (2003).
[CrossRef]

R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, "Thinning-out in optimized pulse shaping method using genetic algorithm," Rev. Sci. Instrum. 74, 2670-2674 (2003).
[CrossRef]

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulator," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Other

J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, "High-power ultrafast fiber laser systems," IEEE J. of Sel. Top. in Quantum Electron. 12, 233-244 (2006).
[CrossRef]

B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, "Coherent control using adaptive learning algorithms," Phys. Rev. A 63, 063412/1-12 (2001).
[CrossRef]

D. N. Schimpf, J. Limpert, and A. Tünnermann, "Controlling the influence of SPM in fiber-based chirped-pulse amplification systems by using an actively shaped parabolic spectrum," Opt. Express 15, 16 945-16 953 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-16945.

F. He, H. S. S. Hung, J. H. V. Price, N. K. Daga, N. Naz, J. Prawiharjo, D. C. Hanna, D. P. Shepherd, D. J. Richardson, J. W. Dawson, C. W. Siders, and C. P. J. Barty, "High energy femtosecond fiber chirped pulse amplification system with adaptive phase control," Opt. Express (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5813.
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic illustration of the ultrafast fiber laser system. HWP: Half-wave plate, QWP: Quarter-wave plate, OI: Optical isolator, WDM: Wavelength division multiplexer, SM: Single-mode, PBS: Polarizing beam splitter, FR: Faraday rotator, APP: Anamorphic prism pair, G: Gratings, CM: Cylindrical mirror, SLM: Spatial light modulator, PCF: Photonic crystal fiber, T: Telescope arrangement, TPA: Two-photon absorption detector, SHG FROG: Second-harmonic generation frequency-resolved optical gating, DE: Differential evolution algorithm on a computer.

Fig. 2.
Fig. 2.

Illustration of the applied voltage on the two layers of the LC-SLM, M0 and M1, as interpolated from the pixels controlled by the adaptive algorithm, indicated by the open circles.

Figure 3
Figure 3

shows typical measured spectra at the output of the oscillator, after the first preamplifier and the pulse shaper, and after the second pre-amplifier. It is worth noting, at this point, that the fringes that appear on the oscillator spectrum, are possibly due to the etalon effect. The fringes grow in subsequent amplifier stages, owing to the SPM [39]. These fringes could not be eliminated experimentally. The effect of the non-uniform spectral gain profile with finite width is evident, as the spectral FWHM of the pulse was reduced from 16nm at the output of oscillator, to 12 nm after the first pre-amplifier, and to 11nm after the second-preamplifier. Nevertheless, the 20dB spectral width of 23nm was maintained.

Fig. 4.
Fig. 4.

(a,b) Contour plot of square-root of measured SHG FROG traces, after interpolation onto a 128 × 128 Fourier grid, of the pulses after the compressor without intentional shaping. The contour lines represent levels [0.02,0.06,0.1,0.2,…,1]. (c,d) Retrieved spectral intensity (blue curves), spectral group delay (green curves), and measured spectra (red curves). (e,f) Retrieved temporal intensity (blue curves) and instantaneous frequency (green curves). The figures correspond to measured average powers of 2.3W (a,c,e) and 12.6W (b,d,f) prior to the compressor.

Fig. 5.
Fig. 5.

Two-photon absorption detector signal, normalized to the case of without intentional shaping, and evaluated from the best individual in the population as a function of generation, for average power of 2.3W (blue dots) and 12.6W (red dots). For the low average power case, a constant number of controlled pixels, N c = 15, was used throughout the optimization. For the high average power case, the number of controlled pixels N c were increased from 15 to 51 during the optimization, at positions indicated by the arrows (see text).

Fig. 6.
Fig. 6.

(a) Contour plot of square-root of measured SHG FROG trace, after interpolation onto a 128 × 128 Fourier grid, of the compressed low average power pulses, after the maximization of the TPA signal by controlling every 8th pixels of the SLM (see text). The contour lines represent levels [0.02,0.06,0.1,0.2,…,1]. (b) Retrieved spectral intensity (blue curve), spectral group delay (green curve), and measured spectrum (red curve). (c) Retrieved temporal intensity (blue curve) and instantaneous frequency (green curve), as well as the calculated transform-limited intensity profile (red curve).

Fig. 7.
Fig. 7.

(a) Calculated applied group delay (blue curve) for the low average power pulses overlayed with the negative of the retrieved group delay for the case without intentional shaping [Fig. 4(c)]. The measured shaped spectrum after the shaper (shaded grey) is shown for reference. (b) Calculated transmission (black curve) of the SLM after maximizing the TPA detector signal. Normalized measured spectra before (shaded) and after (curves) optimization after the pulse shaper, after the second pre-amplifier, and after the compressor are shown, as indicated by the labels.

Fig. 8.
Fig. 8.

Same as Fig. 6, but for high average power, after the maximization of the TPA signal by controlling every 8th pixels of the SLM (see text). Note that the temporal intensity in (c) is shown in linear scale.

Fig. 9.
Fig. 9.

Same as Fig. 6, but for high average power, after the maximization of the TPA signal with increasing numbers controlled pixels of the SLM (see text).

Fig. 10.
Fig. 10.

Same as Fig. 7, but for the case of high average power, after the maximization of the TPA signal with increasing controlled pixels of the SLM [Fig. 9].

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

V i , g + 1 = { X r 1 , g + [ F + ( 1 F ) u g ] ( X r 2 , g X r 3 , g ) if u g > 0.04 , ( X r 1 , g + X r 2 , g + X r 3 , g ) 3 + ( p 1 p 2 ) ( X r 1 , g X r 2 , g ) + ( p 2 p 3 ) ( X r 2 , g X r 3 , g ) + ( p 3 p 1 ) ( X r 3 , g X r 1 , g ) otherwise ,
p 1 = f ( X r 1 , g ) / p , p 2 = f ( X r 2 , g ) / p , p 3 = f ( X r 3 , g ) / p ,
p = f ( X r 1 , g ) + f ( X r 2 , g ) + f ( X r 3 , g )
W j , i , g + 1 = { V j , i , g + 1 if u C r j = w , X j , i , g otherwise,
X i , g + 1 = { W i , g + 1 if f ( W i , g + 1 ) f ( X i , g ) , X i , g otherwise.

Metrics