Abstract

Optical proximity communication (OPxC) with reflecting mirrors is presented. Direct optical links are demonstrated for silicon chips with better than -2.5dB coupling loss, excluding surface losses. OPxC is a true broadband solution with little impairment to the signal integrity for high-speed optical transmission. With wavelength division multiplexing (WDM) enabled OPxC, very high bandwidth density I/O, orders of magnitude higher than the traditional electrical I/O, can be achieved for silicon chips.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Manish, J. Barreh, J. Brooks, R. Golla, G. Grohoski, N. Gura, R. Hetherington, P. Jordan, M. Luttrell, C. Olson, S. Bikram, D. Sheahan, L. Spracklen, and A. Wynn, "UltraSPARC T2: A highly-treaded, power-efficient, SPARC SOC," Solid-State Circuits Conference, 2007. ASSCC '07. IEEE Asian 12-14 Nov. 2007, 22 - 25, 2007.
    [CrossRef]
  2. S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar, "An 80-tile 1.28TFLOPS network-on-chip in 65nm CMOS," IEEE International Solid-State Circuits Conference 2007, ISSCC 2007 Digest of Technical Papers, 98-589, 2007.
  3. International Technology Roadmap for Semiconductors (ITRS), Assembly and packaging Chapter, Semiconductor Industry Association, 2003.
  4. R. J. Drost,  et al., "Challenges in Building a Flat-Bandwidth Memory Hierarchy for a Large-Scale Computer with Proximity Communication," 13th Symposium on High Performance Interconnects (HOTI'05), 13-22, 2005.
    [CrossRef]
  5. R. J. Drost, R. D. Hopkins, R. Ho, and I. E. Sutherland, "Proximity communication," IEEE J. Solid-State Circuits 39, 529-535 (2004).
  6. D. Hopkins, A. Chow, R. Bosnyak, B. Coates, J. Ebergen, S. Fairbanks, J. Gainsley, R. Ho, J. Lexau, F. Liu, T. Ono, J. Schauer, I. Sutherland, and R. Drost, "Circuit techniques to enable 430 Gb/s/mm/mm proximity communication," in IEEE Int. Solid-State Circuits Conf., Feb. 2007, 368-369, 2007.
  7. M. A. Webster, R. M. Pafchek, G. Sukumaran, and T. L. Koch, "Low-Loss Thin SOIWaveguides and High-Q Ring Resonators," Opt. Soc. Am. Annual Meeting, Tucson, October 16-20, 2005.
  8. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, "Silicon waveguide sidewall smoothing by wet chemical oxidation," IEEE J. Lightwave Technol. 23, 2455-2461 (2005).
    [CrossRef]
  9. Barkai, A.  Liu, D. Kim, R. Cohen, N. Elek, H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, "Efficient mode converter for coupling between fiber and micrometer size silicon waveguides," Group IV Photonics, 4th IEEE International Conference, [REMOVED HYPERLINK FIELD]19-21 Sept. 2007, 49-51 2007.
  10. V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
    [CrossRef] [PubMed]
  11. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997).
    [CrossRef]
  12. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007).
    [CrossRef]
  13. M. Lipson, "Compact electro-optic modulators on a silicon chip," IEEE J. Sel. Top. Quantum. Electron. 12, 1520-1526 (2006).
    [CrossRef]
  14. S. J. Emelett, and R. Soref, "Design and simulation of silicon microring optical routing switches," IEEE J. Lightwave Technol. 23, 1800-1807 (2005).
    [CrossRef]
  15. G. Masini, G. Capellini, J. Witzens, and C. Gunn, "A 1550nm, 10Gbps monolithic optical receiver in 130nm CMOS with integrated Ge waveguide photodetector," Group IV Photonics, 4th IEEE International Conference, [REMOVED HYPERLINK FIELD]19-21 Sept. 2007, 28-30, 2007.
  16. A. Narasimha and B. Analui,  et al., "A 40Gbps QSFP optoelectronic transceiver in a 0.13micron CMOS silicon-on-insulator technology," Proc. Optical Fiber Communications (OFC/NFOEC) Conf.,2008. (see also Luxtera Inc., http://www.luxtera.com/multirate-4x10g-optical-active-cable.html).
  17. B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, "Characterization of a 4x4 Gb/s parallel electronic bus to WDM optical link silicon photonic translator," IEEE Photon. Technol. Lett. 19, 456-458 (2007).
    [CrossRef]
  18. L. Vivien and et al, "A high efficiency silicon nitride grating coupler," Group IV Photonics, 4th IEEE International Conference,19-21 Sept. 2007, 162-164 2007.
  19. G. Z. Masanovic, V. M. N. Passaro, and G. T. Reed, "Coupling to nanophotonic waveguides using a dual grating-assisted directional coupler," IEE Proc.-Optoelectron. 152, 41-48 (2005).
    [CrossRef]
  20. D. J. Sadler,  et al, "Optical reflectivity of micromachines {111}-oriented silicon mirrors for optical input-output couplers," J. Micromech. Microeng. 7, 263-269 (1997).
    [CrossRef]

2007

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007).
[CrossRef]

B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, "Characterization of a 4x4 Gb/s parallel electronic bus to WDM optical link silicon photonic translator," IEEE Photon. Technol. Lett. 19, 456-458 (2007).
[CrossRef]

2006

M. Lipson, "Compact electro-optic modulators on a silicon chip," IEEE J. Sel. Top. Quantum. Electron. 12, 1520-1526 (2006).
[CrossRef]

2005

S. J. Emelett, and R. Soref, "Design and simulation of silicon microring optical routing switches," IEEE J. Lightwave Technol. 23, 1800-1807 (2005).
[CrossRef]

G. Z. Masanovic, V. M. N. Passaro, and G. T. Reed, "Coupling to nanophotonic waveguides using a dual grating-assisted directional coupler," IEE Proc.-Optoelectron. 152, 41-48 (2005).
[CrossRef]

D. K. Sparacin, S. J. Spector, and L. C. Kimerling, "Silicon waveguide sidewall smoothing by wet chemical oxidation," IEEE J. Lightwave Technol. 23, 2455-2461 (2005).
[CrossRef]

2004

R. J. Drost, R. D. Hopkins, R. Ho, and I. E. Sutherland, "Proximity communication," IEEE J. Solid-State Circuits 39, 529-535 (2004).

2003

1997

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

D. J. Sadler,  et al, "Optical reflectivity of micromachines {111}-oriented silicon mirrors for optical input-output couplers," J. Micromech. Microeng. 7, 263-269 (1997).
[CrossRef]

Almeida, V. R.

Bergman, K.

B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, "Characterization of a 4x4 Gb/s parallel electronic bus to WDM optical link silicon photonic translator," IEEE Photon. Technol. Lett. 19, 456-458 (2007).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Drost, R. J.

R. J. Drost, R. D. Hopkins, R. Ho, and I. E. Sutherland, "Proximity communication," IEEE J. Solid-State Circuits 39, 529-535 (2004).

Emelett, S. J.

S. J. Emelett, and R. Soref, "Design and simulation of silicon microring optical routing switches," IEEE J. Lightwave Technol. 23, 1800-1807 (2005).
[CrossRef]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Ho, R.

R. J. Drost, R. D. Hopkins, R. Ho, and I. E. Sutherland, "Proximity communication," IEEE J. Solid-State Circuits 39, 529-535 (2004).

Hopkins, R. D.

R. J. Drost, R. D. Hopkins, R. Ho, and I. E. Sutherland, "Proximity communication," IEEE J. Solid-State Circuits 39, 529-535 (2004).

Kimerling, L. C.

D. K. Sparacin, S. J. Spector, and L. C. Kimerling, "Silicon waveguide sidewall smoothing by wet chemical oxidation," IEEE J. Lightwave Technol. 23, 2455-2461 (2005).
[CrossRef]

Laine, J. P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Lee, B. G.

B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, "Characterization of a 4x4 Gb/s parallel electronic bus to WDM optical link silicon photonic translator," IEEE Photon. Technol. Lett. 19, 456-458 (2007).
[CrossRef]

Lipson, M.

B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, "Characterization of a 4x4 Gb/s parallel electronic bus to WDM optical link silicon photonic translator," IEEE Photon. Technol. Lett. 19, 456-458 (2007).
[CrossRef]

M. Lipson, "Compact electro-optic modulators on a silicon chip," IEEE J. Sel. Top. Quantum. Electron. 12, 1520-1526 (2006).
[CrossRef]

V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
[CrossRef] [PubMed]

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Masanovic, G. Z.

G. Z. Masanovic, V. M. N. Passaro, and G. T. Reed, "Coupling to nanophotonic waveguides using a dual grating-assisted directional coupler," IEE Proc.-Optoelectron. 152, 41-48 (2005).
[CrossRef]

Panepucci, R. R.

Passaro, V. M. N.

G. Z. Masanovic, V. M. N. Passaro, and G. T. Reed, "Coupling to nanophotonic waveguides using a dual grating-assisted directional coupler," IEE Proc.-Optoelectron. 152, 41-48 (2005).
[CrossRef]

Reed, G. T.

G. Z. Masanovic, V. M. N. Passaro, and G. T. Reed, "Coupling to nanophotonic waveguides using a dual grating-assisted directional coupler," IEE Proc.-Optoelectron. 152, 41-48 (2005).
[CrossRef]

Sadler, D. J.

D. J. Sadler,  et al, "Optical reflectivity of micromachines {111}-oriented silicon mirrors for optical input-output couplers," J. Micromech. Microeng. 7, 263-269 (1997).
[CrossRef]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007).
[CrossRef]

Small, B. A.

B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, "Characterization of a 4x4 Gb/s parallel electronic bus to WDM optical link silicon photonic translator," IEEE Photon. Technol. Lett. 19, 456-458 (2007).
[CrossRef]

Soref, R.

S. J. Emelett, and R. Soref, "Design and simulation of silicon microring optical routing switches," IEEE J. Lightwave Technol. 23, 1800-1807 (2005).
[CrossRef]

Sparacin, D. K.

D. K. Sparacin, S. J. Spector, and L. C. Kimerling, "Silicon waveguide sidewall smoothing by wet chemical oxidation," IEEE J. Lightwave Technol. 23, 2455-2461 (2005).
[CrossRef]

Spector, S. J.

D. K. Sparacin, S. J. Spector, and L. C. Kimerling, "Silicon waveguide sidewall smoothing by wet chemical oxidation," IEEE J. Lightwave Technol. 23, 2455-2461 (2005).
[CrossRef]

Sutherland, I. E.

R. J. Drost, R. D. Hopkins, R. Ho, and I. E. Sutherland, "Proximity communication," IEEE J. Solid-State Circuits 39, 529-535 (2004).

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007).
[CrossRef]

Xu, Q.

B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, "Characterization of a 4x4 Gb/s parallel electronic bus to WDM optical link silicon photonic translator," IEEE Photon. Technol. Lett. 19, 456-458 (2007).
[CrossRef]

IEEE J. Lightwave Technol.

D. K. Sparacin, S. J. Spector, and L. C. Kimerling, "Silicon waveguide sidewall smoothing by wet chemical oxidation," IEEE J. Lightwave Technol. 23, 2455-2461 (2005).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

S. J. Emelett, and R. Soref, "Design and simulation of silicon microring optical routing switches," IEEE J. Lightwave Technol. 23, 1800-1807 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron.

M. Lipson, "Compact electro-optic modulators on a silicon chip," IEEE J. Sel. Top. Quantum. Electron. 12, 1520-1526 (2006).
[CrossRef]

IEEE J. Solid-State Circuits

R. J. Drost, R. D. Hopkins, R. Ho, and I. E. Sutherland, "Proximity communication," IEEE J. Solid-State Circuits 39, 529-535 (2004).

IEEE Photon. Technol. Lett.

B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, "Characterization of a 4x4 Gb/s parallel electronic bus to WDM optical link silicon photonic translator," IEEE Photon. Technol. Lett. 19, 456-458 (2007).
[CrossRef]

J. Micromech. Microeng.

D. J. Sadler,  et al, "Optical reflectivity of micromachines {111}-oriented silicon mirrors for optical input-output couplers," J. Micromech. Microeng. 7, 263-269 (1997).
[CrossRef]

Nat. Photonics

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007).
[CrossRef]

Opt. Lett.

Optoelectron.

G. Z. Masanovic, V. M. N. Passaro, and G. T. Reed, "Coupling to nanophotonic waveguides using a dual grating-assisted directional coupler," IEE Proc.-Optoelectron. 152, 41-48 (2005).
[CrossRef]

Other

L. Vivien and et al, "A high efficiency silicon nitride grating coupler," Group IV Photonics, 4th IEEE International Conference,19-21 Sept. 2007, 162-164 2007.

G. Masini, G. Capellini, J. Witzens, and C. Gunn, "A 1550nm, 10Gbps monolithic optical receiver in 130nm CMOS with integrated Ge waveguide photodetector," Group IV Photonics, 4th IEEE International Conference, [REMOVED HYPERLINK FIELD]19-21 Sept. 2007, 28-30, 2007.

A. Narasimha and B. Analui,  et al., "A 40Gbps QSFP optoelectronic transceiver in a 0.13micron CMOS silicon-on-insulator technology," Proc. Optical Fiber Communications (OFC/NFOEC) Conf.,2008. (see also Luxtera Inc., http://www.luxtera.com/multirate-4x10g-optical-active-cable.html).

D. Hopkins, A. Chow, R. Bosnyak, B. Coates, J. Ebergen, S. Fairbanks, J. Gainsley, R. Ho, J. Lexau, F. Liu, T. Ono, J. Schauer, I. Sutherland, and R. Drost, "Circuit techniques to enable 430 Gb/s/mm/mm proximity communication," in IEEE Int. Solid-State Circuits Conf., Feb. 2007, 368-369, 2007.

M. A. Webster, R. M. Pafchek, G. Sukumaran, and T. L. Koch, "Low-Loss Thin SOIWaveguides and High-Q Ring Resonators," Opt. Soc. Am. Annual Meeting, Tucson, October 16-20, 2005.

Barkai, A.  Liu, D. Kim, R. Cohen, N. Elek, H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, "Efficient mode converter for coupling between fiber and micrometer size silicon waveguides," Group IV Photonics, 4th IEEE International Conference, [REMOVED HYPERLINK FIELD]19-21 Sept. 2007, 49-51 2007.

S. Manish, J. Barreh, J. Brooks, R. Golla, G. Grohoski, N. Gura, R. Hetherington, P. Jordan, M. Luttrell, C. Olson, S. Bikram, D. Sheahan, L. Spracklen, and A. Wynn, "UltraSPARC T2: A highly-treaded, power-efficient, SPARC SOC," Solid-State Circuits Conference, 2007. ASSCC '07. IEEE Asian 12-14 Nov. 2007, 22 - 25, 2007.
[CrossRef]

S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar, "An 80-tile 1.28TFLOPS network-on-chip in 65nm CMOS," IEEE International Solid-State Circuits Conference 2007, ISSCC 2007 Digest of Technical Papers, 98-589, 2007.

International Technology Roadmap for Semiconductors (ITRS), Assembly and packaging Chapter, Semiconductor Industry Association, 2003.

R. J. Drost,  et al., "Challenges in Building a Flat-Bandwidth Memory Hierarchy for a Large-Scale Computer with Proximity Communication," 13th Symposium on High Performance Interconnects (HOTI'05), 13-22, 2005.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of OPxC with reflecting pit. (a) Silicon chip (SOI) with waveguide terminated by reflecting pit. (b) Two SOI chips are placed face to face, and interconnected by reflecting pit OPxC.

Fig. 2.
Fig. 2.

Reflecting pit OPxC coupling loss versus the chip separation. The pink curve is for 54.7° reflecting pit, while the blue is for 45° reflecting pit.

Fig. 3.
Fig. 3.

Test chip with reflecting pit couplers.

Fig. 4.
Fig. 4.

Experimental demonstration and characterization of reflecting pit OPxC. (a) Detailed cross-section dimensions of the tapered waveguide design entering the reflecting pit and the tapered mode profile. (b) SEM picture showing the details of the silicon waveguide and reflecting pit. (c) Test set showing two test chips that were fiber attached and mounted on two stages with 6-axis alignment capability, one facing up and one facing down.

Fig. 5.
Fig. 5.

Coupling loss of reflecting pit OPxC for different wavelengths. The inset shows the normalized FP fringes, which is mainly due to the reflection from the two waveguide facets.

Fig. 6.
Fig. 6.

Alignment tolerance of the reflecting pit OPxC. (a) Normalized coupling loss versus the chip separation, experimental results in pink and theoretical data in blue (bold). (b) Normalized coupling loss versus later misalignments. Experimental results are shown as red squares and yellow triangles with corresponding simulation data shown in pink and blue lines respectively.

Fig. 7.
Fig. 7.

High speed transmission of Reflecting pit OPxC with low power penalty. (a) 10Gbps “Eye” diagram of the output from the OPxC. The inset shows the transmitter/receiver back-to-back “eye” diagram. (b) Receiver power sensitivity of OPxC for 10Gbps transmission. Less than 0.1dB power penalty observed.

Metrics