Abstract

According to our previous theoretical study, sensor sensitivity is proportional to the cube of the side length of the diaphragm in a guided-wave optical pressure sensor consisting of a glass diaphragm and a single-mode waveguide on the diaphragm. Also, to obtain higher sensitivity, an aspect ratio of the diaphragm should be approximately 1 for two waveguide positions: the center and the edge of the diaphragm. In this study, sensitivity dependences on side length and aspect ratio of the diaphragm were experimentally examined. The obtained experimental results strongly supported the theoretical predictions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Li, M. Wang, and H. Li, "Optical MEMS pressure sensor based on Fabry-Perot interferometry," Opt. Express 14, 1497-1504 (2006).
    [CrossRef] [PubMed]
  2. J. Xu, X. Wang, K. L. Cooper, and A. Wang, "Miniature all-silica fiber optic pressure and acoustic sensors," Opt. Lett. 30, 3269-3271 (2005).
    [CrossRef]
  3. A. Kots and A. Paritsky, "Fiber optic microphone for harsh environment," Proc. SPIE 3852, 106-112 (1999).
    [CrossRef]
  4. H. Bezzaoui and E. Voges, "Integrated optics combined with micromechanics on silicon," Sens. Actuators A 29, 219-223 (1991).
    [CrossRef]
  5. N. Pelletier, B. Bêche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot, "SU-8 waveguiding interferometric micro-sensor for gage pressure measurement," Sens. Actuators A 135, 179-184 (2007).
    [CrossRef]
  6. M. Ohkawa, M. Izutsu, and T. Sueta, "Integrated optic pressure sensor on silicon substrate," Appl. Opt. 28, 5153-5157 (1989).
  7. G. N. De Brabander, J. T. Boyd, and G. Beheim, "Integrated optical ring resonator with micromechanical diaphragm for pressure sensing," IEEE Photon. Technol. Lett. 6, 671-673 (1994).
    [CrossRef]
  8. G. N. De Brabander, G. Beheim, and J. T. Boyd, "Integrated optical micromachined pressure sensor with spectrally encoded output and temperature compensation," Appl. Opt. 37, 3264-3267 (1998).
    [CrossRef]
  9. H. Porte, V. Gorel, S. Kiryenko, J. Goedgebuer, W. Daniau, and P. Blind, "Imbalanced Mach-Zehnder interferometer integrated in micromachined silicon substrate for pressure sensor," J. Lightwave Technol. 17, 229-233 (1999).
    [CrossRef]
  10. M. Ohkawa, Y. Shirai, T. Goto, S. Sekine, and T. Sato, "Silicon-based integrated optic pressure sensor using intermodal Interference between TM-like and TE-like modes," Fiber Integrated Opt. 21, 105-113 (2002).
    [CrossRef]
  11. H. Nikkuni, Y. Watanabe, M. Ohkawa, and T. Sato, "Sensitivity dependence with respect to diaphragm thickness in guided-wave optical pressure sensor based on elasto-optic effect," Opt. Eng. 47, 044402 (2008).
    [CrossRef]
  12. M. Ohkawa, K. Hasebe, S. Sekine, and T. Sato, "Relationship between sensitivity and waveguide position on the diaphragm in integrated optic pressure sensors based on the elasto-optic effect," Appl. Opt. 41, 5016-5021 (2002).
    [CrossRef] [PubMed]
  13. M. Tabib-Azar, and G. Beheim, "Modern trends in microstructures and integrated optics for communication, sensing, and actuation," Opt. Eng. 36, 1307-1318 (1997).
    [CrossRef]
  14. P. Rai-Choudhury, MEMS and MOEMS Technology and Applications (SPIE Press, Washington, 2000).

2008

H. Nikkuni, Y. Watanabe, M. Ohkawa, and T. Sato, "Sensitivity dependence with respect to diaphragm thickness in guided-wave optical pressure sensor based on elasto-optic effect," Opt. Eng. 47, 044402 (2008).
[CrossRef]

2007

N. Pelletier, B. Bêche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot, "SU-8 waveguiding interferometric micro-sensor for gage pressure measurement," Sens. Actuators A 135, 179-184 (2007).
[CrossRef]

2006

2005

2002

M. Ohkawa, K. Hasebe, S. Sekine, and T. Sato, "Relationship between sensitivity and waveguide position on the diaphragm in integrated optic pressure sensors based on the elasto-optic effect," Appl. Opt. 41, 5016-5021 (2002).
[CrossRef] [PubMed]

M. Ohkawa, Y. Shirai, T. Goto, S. Sekine, and T. Sato, "Silicon-based integrated optic pressure sensor using intermodal Interference between TM-like and TE-like modes," Fiber Integrated Opt. 21, 105-113 (2002).
[CrossRef]

1999

1998

1997

M. Tabib-Azar, and G. Beheim, "Modern trends in microstructures and integrated optics for communication, sensing, and actuation," Opt. Eng. 36, 1307-1318 (1997).
[CrossRef]

1994

G. N. De Brabander, J. T. Boyd, and G. Beheim, "Integrated optical ring resonator with micromechanical diaphragm for pressure sensing," IEEE Photon. Technol. Lett. 6, 671-673 (1994).
[CrossRef]

1991

H. Bezzaoui and E. Voges, "Integrated optics combined with micromechanics on silicon," Sens. Actuators A 29, 219-223 (1991).
[CrossRef]

1989

Bêche, B.

N. Pelletier, B. Bêche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot, "SU-8 waveguiding interferometric micro-sensor for gage pressure measurement," Sens. Actuators A 135, 179-184 (2007).
[CrossRef]

Beheim, G.

G. N. De Brabander, G. Beheim, and J. T. Boyd, "Integrated optical micromachined pressure sensor with spectrally encoded output and temperature compensation," Appl. Opt. 37, 3264-3267 (1998).
[CrossRef]

M. Tabib-Azar, and G. Beheim, "Modern trends in microstructures and integrated optics for communication, sensing, and actuation," Opt. Eng. 36, 1307-1318 (1997).
[CrossRef]

G. N. De Brabander, J. T. Boyd, and G. Beheim, "Integrated optical ring resonator with micromechanical diaphragm for pressure sensing," IEEE Photon. Technol. Lett. 6, 671-673 (1994).
[CrossRef]

Bezzaoui, H.

H. Bezzaoui and E. Voges, "Integrated optics combined with micromechanics on silicon," Sens. Actuators A 29, 219-223 (1991).
[CrossRef]

Blind, P.

Boyd, J. T.

G. N. De Brabander, G. Beheim, and J. T. Boyd, "Integrated optical micromachined pressure sensor with spectrally encoded output and temperature compensation," Appl. Opt. 37, 3264-3267 (1998).
[CrossRef]

G. N. De Brabander, J. T. Boyd, and G. Beheim, "Integrated optical ring resonator with micromechanical diaphragm for pressure sensing," IEEE Photon. Technol. Lett. 6, 671-673 (1994).
[CrossRef]

Camberlein, L.

N. Pelletier, B. Bêche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot, "SU-8 waveguiding interferometric micro-sensor for gage pressure measurement," Sens. Actuators A 135, 179-184 (2007).
[CrossRef]

Cooper, K. L.

Daniau, W.

De Brabander, G. N.

G. N. De Brabander, G. Beheim, and J. T. Boyd, "Integrated optical micromachined pressure sensor with spectrally encoded output and temperature compensation," Appl. Opt. 37, 3264-3267 (1998).
[CrossRef]

G. N. De Brabander, J. T. Boyd, and G. Beheim, "Integrated optical ring resonator with micromechanical diaphragm for pressure sensing," IEEE Photon. Technol. Lett. 6, 671-673 (1994).
[CrossRef]

Gaviot, E.

N. Pelletier, B. Bêche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot, "SU-8 waveguiding interferometric micro-sensor for gage pressure measurement," Sens. Actuators A 135, 179-184 (2007).
[CrossRef]

Goedgebuer, J.

Gorel, V.

Goto, T.

M. Ohkawa, Y. Shirai, T. Goto, S. Sekine, and T. Sato, "Silicon-based integrated optic pressure sensor using intermodal Interference between TM-like and TE-like modes," Fiber Integrated Opt. 21, 105-113 (2002).
[CrossRef]

Hasebe, K.

Izutsu, M.

Kiryenko, S.

Kots, A.

A. Kots and A. Paritsky, "Fiber optic microphone for harsh environment," Proc. SPIE 3852, 106-112 (1999).
[CrossRef]

Li, H.

Li, M.

Nikkuni, H.

H. Nikkuni, Y. Watanabe, M. Ohkawa, and T. Sato, "Sensitivity dependence with respect to diaphragm thickness in guided-wave optical pressure sensor based on elasto-optic effect," Opt. Eng. 47, 044402 (2008).
[CrossRef]

Ohkawa, M.

H. Nikkuni, Y. Watanabe, M. Ohkawa, and T. Sato, "Sensitivity dependence with respect to diaphragm thickness in guided-wave optical pressure sensor based on elasto-optic effect," Opt. Eng. 47, 044402 (2008).
[CrossRef]

M. Ohkawa, K. Hasebe, S. Sekine, and T. Sato, "Relationship between sensitivity and waveguide position on the diaphragm in integrated optic pressure sensors based on the elasto-optic effect," Appl. Opt. 41, 5016-5021 (2002).
[CrossRef] [PubMed]

M. Ohkawa, Y. Shirai, T. Goto, S. Sekine, and T. Sato, "Silicon-based integrated optic pressure sensor using intermodal Interference between TM-like and TE-like modes," Fiber Integrated Opt. 21, 105-113 (2002).
[CrossRef]

M. Ohkawa, M. Izutsu, and T. Sueta, "Integrated optic pressure sensor on silicon substrate," Appl. Opt. 28, 5153-5157 (1989).

Paritsky, A.

A. Kots and A. Paritsky, "Fiber optic microphone for harsh environment," Proc. SPIE 3852, 106-112 (1999).
[CrossRef]

Pelletier, N.

N. Pelletier, B. Bêche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot, "SU-8 waveguiding interferometric micro-sensor for gage pressure measurement," Sens. Actuators A 135, 179-184 (2007).
[CrossRef]

Porte, H.

Sato, T.

H. Nikkuni, Y. Watanabe, M. Ohkawa, and T. Sato, "Sensitivity dependence with respect to diaphragm thickness in guided-wave optical pressure sensor based on elasto-optic effect," Opt. Eng. 47, 044402 (2008).
[CrossRef]

M. Ohkawa, Y. Shirai, T. Goto, S. Sekine, and T. Sato, "Silicon-based integrated optic pressure sensor using intermodal Interference between TM-like and TE-like modes," Fiber Integrated Opt. 21, 105-113 (2002).
[CrossRef]

M. Ohkawa, K. Hasebe, S. Sekine, and T. Sato, "Relationship between sensitivity and waveguide position on the diaphragm in integrated optic pressure sensors based on the elasto-optic effect," Appl. Opt. 41, 5016-5021 (2002).
[CrossRef] [PubMed]

Sekine, S.

M. Ohkawa, K. Hasebe, S. Sekine, and T. Sato, "Relationship between sensitivity and waveguide position on the diaphragm in integrated optic pressure sensors based on the elasto-optic effect," Appl. Opt. 41, 5016-5021 (2002).
[CrossRef] [PubMed]

M. Ohkawa, Y. Shirai, T. Goto, S. Sekine, and T. Sato, "Silicon-based integrated optic pressure sensor using intermodal Interference between TM-like and TE-like modes," Fiber Integrated Opt. 21, 105-113 (2002).
[CrossRef]

Shirai, Y.

M. Ohkawa, Y. Shirai, T. Goto, S. Sekine, and T. Sato, "Silicon-based integrated optic pressure sensor using intermodal Interference between TM-like and TE-like modes," Fiber Integrated Opt. 21, 105-113 (2002).
[CrossRef]

Sueta, T.

Tabib-Azar, M.

M. Tabib-Azar, and G. Beheim, "Modern trends in microstructures and integrated optics for communication, sensing, and actuation," Opt. Eng. 36, 1307-1318 (1997).
[CrossRef]

Tahani, N.

N. Pelletier, B. Bêche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot, "SU-8 waveguiding interferometric micro-sensor for gage pressure measurement," Sens. Actuators A 135, 179-184 (2007).
[CrossRef]

Voges, E.

H. Bezzaoui and E. Voges, "Integrated optics combined with micromechanics on silicon," Sens. Actuators A 29, 219-223 (1991).
[CrossRef]

Wang, A.

Wang, M.

Wang, X.

Watanabe, Y.

H. Nikkuni, Y. Watanabe, M. Ohkawa, and T. Sato, "Sensitivity dependence with respect to diaphragm thickness in guided-wave optical pressure sensor based on elasto-optic effect," Opt. Eng. 47, 044402 (2008).
[CrossRef]

Xu, J.

Zyss, J.

N. Pelletier, B. Bêche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot, "SU-8 waveguiding interferometric micro-sensor for gage pressure measurement," Sens. Actuators A 135, 179-184 (2007).
[CrossRef]

Appl. Opt.

Fiber Integrated Opt.

M. Ohkawa, Y. Shirai, T. Goto, S. Sekine, and T. Sato, "Silicon-based integrated optic pressure sensor using intermodal Interference between TM-like and TE-like modes," Fiber Integrated Opt. 21, 105-113 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

G. N. De Brabander, J. T. Boyd, and G. Beheim, "Integrated optical ring resonator with micromechanical diaphragm for pressure sensing," IEEE Photon. Technol. Lett. 6, 671-673 (1994).
[CrossRef]

J. Lightwave Technol.

Opt. Eng.

H. Nikkuni, Y. Watanabe, M. Ohkawa, and T. Sato, "Sensitivity dependence with respect to diaphragm thickness in guided-wave optical pressure sensor based on elasto-optic effect," Opt. Eng. 47, 044402 (2008).
[CrossRef]

M. Tabib-Azar, and G. Beheim, "Modern trends in microstructures and integrated optics for communication, sensing, and actuation," Opt. Eng. 36, 1307-1318 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

A. Kots and A. Paritsky, "Fiber optic microphone for harsh environment," Proc. SPIE 3852, 106-112 (1999).
[CrossRef]

Sens. Actuators A

H. Bezzaoui and E. Voges, "Integrated optics combined with micromechanics on silicon," Sens. Actuators A 29, 219-223 (1991).
[CrossRef]

N. Pelletier, B. Bêche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot, "SU-8 waveguiding interferometric micro-sensor for gage pressure measurement," Sens. Actuators A 135, 179-184 (2007).
[CrossRef]

Other

P. Rai-Choudhury, MEMS and MOEMS Technology and Applications (SPIE Press, Washington, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Configuration of the glass-based guided-wave optical pressure sensor placed between a pair of crossed polarizers and (b) its cross-section drawing.

Fig. 2.
Fig. 2.

Phase sensitivity as a function of the side length of the diaphragm for the waveguide on the center of the diaphragm.

Fig. 3.
Fig. 3.

Phase sensitivity as a function of aspect ratio of the diaphragm for the waveguides along (a) the center and (b) the edge of the diaphragm.

Fig. 4.
Fig. 4.

Experimental setup for measuring the output intensity versus the pressure in the guided-wave optical pressure sensor.

Fig. 5.
Fig. 5.

Normalized output intensity versus applied pressure for the waveguide nearest to the center of the diaphragm. Figures (a)(d) are for Sensors #1–4, respectively.

Fig. 6.
Fig. 6.

Sensitivity dependence on the side length of the diaphragm for the waveguide nearest to the center of the diaphragm. Dots show the measured sensitivities of Sensors #1–4. Solid line shows the calculated sensitivity as a function of the side length.

Fig. 7.
Fig. 7.

Normalized output intensity versus applied pressure for the waveguide nearest to the center of the diaphragm. Figures (a)(c) are for Sensors #5–7, respectively.

Fig. 8.
Fig. 8.

Normalized output intensity versus applied pressure for the waveguide nearest to the edge of the diaphragm. Figures (a)(d) are for Sensors #5, #2, #6, and #7, respectively.

Fig. 9.
Fig. 9.

Sensitivity dependence on the aspect ratio of the diaphragm for two waveguide positions: (a) nearest to the center and (b) nearest to the edge. Dots show the measured sensitivities of Sensors #2 and #5–7. Solid lines show the calculated sensitivities as a function of the aspect ratio.

Tables (3)

Tables Icon

Table 1. Dimensions of the fabricated guided-wave optical pressure sensors for sensitivity dependences on side length and aspect ratio of the diaphragm.

Tables Icon

Table 2. Calculated and measured sensitivities of Sensors #1–4.

Tables Icon

Table 3. Calculated and measured sensitivities of Sensors #2 and #5–7.

Metrics