Abstract

We theoretically investigate properties of crossing for two perpendicular subwavelength plasmonic slot waveguides. In terms of symmetry consideration and resonant-tunnelling effect, we design compact cavity-based crossing structures for nanoplasmonic waveguides. Our results show that the crosstalk is practically eliminated and the throughput reaches the unity on resonance. Simulation results are in agreement with those from coupled-mode theory. Taking the material loss into account, the symmetry properties of the modes are preserved and the crosstalk remains suppressed, while the throughput is naturally lowered. Our results may open a way to construct nanoscale crossings for high-density nanoplasmonic integration circuits.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lipson, "Guiding, modulating, and emitting light on silicon - challeges and opportunities," J. Lightwave Technol. 23, 4222-4238 (2005).
    [CrossRef]
  2. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
    [CrossRef]
  3. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron 11, 232-240 (2005).
    [CrossRef]
  4. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997).
    [CrossRef] [PubMed]
  5. T. W. Ebbesen, C. Genet, and S. I. Bozhebolnyi, "Surface-plasmon circuitry," Phys. Today 61, 44-50 (2008).
  6. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
    [CrossRef] [PubMed]
  7. K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Opt. Lett. 82, 1158-1160 (2003).
  8. G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005).
    [CrossRef]
  9. L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005).
    [CrossRef] [PubMed]
  10. D. F. P. Pile, T. Ogawa, D. K. Gramotven, Y. Matsuzaki, K. C. Vernon, T. Yamaguchi, K. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionallly localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
    [CrossRef]
  11. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
    [CrossRef] [PubMed]
  12. S. Xiao, L. Liu, and M. Qiu, "Resonator channel drop filters in a plasmon-polaritons metal," Opt. Express 14, 2932-2937(2006).
    [CrossRef] [PubMed]
  13. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004).
    [CrossRef]
  14. W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, "Low-loss, low-cross-talk crossings for silicon-oninsulator nanophotonic waveguides," Opt. Lett. 32, 2801-2803 (2007).
    [CrossRef] [PubMed]
  15. T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides," Jpn. J. Appl. Phys. Part 1 43, 646-647 (2004).
    [CrossRef]
  16. H. Chen and A.W. Poon, "Low-loss multimode-interference-based crossings for silicon wire waveguides," IEEE Photon. Technol. Lett. 18, 2260-2262 (2006).
    [CrossRef]
  17. D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett.  47, 1927-1930 (1981).
    [CrossRef]
  18. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B  61, 10484-10503 (2000).
    [CrossRef]
  19. J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polaritons waveguides for long-range polarization-independent waveguiding," Phys. Rev. B  76, 035434 (2007).
    [CrossRef]
  20. J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).
  21. G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]
  22. I. P. Kamonow, W. L. Mammel, and H. P. Weber, "Metal-clad optical waveguides: analytical and experimental study," Appl. Opt. 13, 396-405 (1974).
    [CrossRef]
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  24. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N. J., 1984).
  25. S. G. Johnson, C. Manolatou, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Elimination of cross talk in waveguide intersections," Opt. Lett. 23, 1855-1857 (1998).
    [CrossRef]
  26. S. A. Marier, "Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides," Opt. Commun. 258, 295-299 (2006).
    [CrossRef]
  27. M. P. Nezhad. K. Tetz, and Y. Fainman, "Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides," Opt. Express 12, 4072-4079 (2006).
    [CrossRef]

2008

T. W. Ebbesen, C. Genet, and S. I. Bozhebolnyi, "Surface-plasmon circuitry," Phys. Today 61, 44-50 (2008).

2007

W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, "Low-loss, low-cross-talk crossings for silicon-oninsulator nanophotonic waveguides," Opt. Lett. 32, 2801-2803 (2007).
[CrossRef] [PubMed]

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polaritons waveguides for long-range polarization-independent waveguiding," Phys. Rev. B  76, 035434 (2007).
[CrossRef]

2006

H. Chen and A.W. Poon, "Low-loss multimode-interference-based crossings for silicon wire waveguides," IEEE Photon. Technol. Lett. 18, 2260-2262 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

S. Xiao, L. Liu, and M. Qiu, "Resonator channel drop filters in a plasmon-polaritons metal," Opt. Express 14, 2932-2937(2006).
[CrossRef] [PubMed]

S. A. Marier, "Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides," Opt. Commun. 258, 295-299 (2006).
[CrossRef]

M. P. Nezhad. K. Tetz, and Y. Fainman, "Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides," Opt. Express 12, 4072-4079 (2006).
[CrossRef]

2005

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005).
[CrossRef]

L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotven, Y. Matsuzaki, K. C. Vernon, T. Yamaguchi, K. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionallly localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

M. Lipson, "Guiding, modulating, and emitting light on silicon - challeges and opportunities," J. Lightwave Technol. 23, 4222-4238 (2005).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron 11, 232-240 (2005).
[CrossRef]

2004

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004).
[CrossRef]

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides," Jpn. J. Appl. Phys. Part 1 43, 646-647 (2004).
[CrossRef]

2003

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Opt. Lett. 82, 1158-1160 (2003).

2000

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B  61, 10484-10503 (2000).
[CrossRef]

1998

1997

1981

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett.  47, 1927-1930 (1981).
[CrossRef]

1974

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Baba, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides," Jpn. J. Appl. Phys. Part 1 43, 646-647 (2004).
[CrossRef]

Baets, R.

Beckx, S.

Berini, P.

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B  61, 10484-10503 (2000).
[CrossRef]

Bienstman, P.

Bogaerts, W.

Bozhebolnyi, S. I.

T. W. Ebbesen, C. Genet, and S. I. Bozhebolnyi, "Surface-plasmon circuitry," Phys. Today 61, 44-50 (2008).

Bozhevolnyi, S. I.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polaritons waveguides for long-range polarization-independent waveguiding," Phys. Rev. B  76, 035434 (2007).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Brongersma, M. L.

Catrysse, P. B.

Chen, H.

H. Chen and A.W. Poon, "Low-loss multimode-interference-based crossings for silicon wire waveguides," IEEE Photon. Technol. Lett. 18, 2260-2262 (2006).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Dumon, P.

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhebolnyi, "Surface-plasmon circuitry," Phys. Today 61, 44-50 (2008).

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Fan, S.

G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005).
[CrossRef]

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Fan, S. H.

Fukazawa, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides," Jpn. J. Appl. Phys. Part 1 43, 646-647 (2004).
[CrossRef]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron 11, 232-240 (2005).
[CrossRef]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotven, Y. Matsuzaki, K. C. Vernon, T. Yamaguchi, K. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionallly localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhebolnyi, "Surface-plasmon circuitry," Phys. Today 61, 44-50 (2008).

Gramotven, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotven, Y. Matsuzaki, K. C. Vernon, T. Yamaguchi, K. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionallly localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Han, Z.

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotven, Y. Matsuzaki, K. C. Vernon, T. Yamaguchi, K. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionallly localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Haus, H. A.

He, S.

Hirano, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides," Jpn. J. Appl. Phys. Part 1 43, 646-647 (2004).
[CrossRef]

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron 11, 232-240 (2005).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Jung, J.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polaritons waveguides for long-range polarization-independent waveguiding," Phys. Rev. B  76, 035434 (2007).
[CrossRef]

Kamonow, I. P.

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Kobayashi, T.

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Lipson, M.

Liu, L.

Luyssaert, B.

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Mammel, W. L.

Manolatou, C.

Marier, S. A.

S. A. Marier, "Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides," Opt. Commun. 258, 295-299 (2006).
[CrossRef]

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotven, Y. Matsuzaki, K. C. Vernon, T. Yamaguchi, K. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionallly localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Morimoto, A.

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron 11, 232-240 (2005).
[CrossRef]

Nezhad, M. P.

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotven, Y. Matsuzaki, K. C. Vernon, T. Yamaguchi, K. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionallly localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Ohno, F.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides," Jpn. J. Appl. Phys. Part 1 43, 646-647 (2004).
[CrossRef]

Okamoto, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotven, Y. Matsuzaki, K. C. Vernon, T. Yamaguchi, K. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionallly localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotven, Y. Matsuzaki, K. C. Vernon, T. Yamaguchi, K. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionallly localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Poon, A.W.

H. Chen and A.W. Poon, "Low-loss multimode-interference-based crossings for silicon wire waveguides," IEEE Photon. Technol. Lett. 18, 2260-2262 (2006).
[CrossRef]

Qiu, M.

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Sarid, D.

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett.  47, 1927-1930 (1981).
[CrossRef]

Selker, M. D.

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron 11, 232-240 (2005).
[CrossRef]

Sondergaard, T.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polaritons waveguides for long-range polarization-independent waveguiding," Phys. Rev. B  76, 035434 (2007).
[CrossRef]

Taillaert, D.

Takahara, J.

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron 11, 232-240 (2005).
[CrossRef]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron 11, 232-240 (2005).
[CrossRef]

Taki, H.

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron 11, 232-240 (2005).
[CrossRef]

Tanaka, K.

K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Opt. Lett. 82, 1158-1160 (2003).

Tanaka, M.

K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Opt. Lett. 82, 1158-1160 (2003).

Thourhout, D. V.

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron 11, 232-240 (2005).
[CrossRef]

Van Campenhout, J.

Van Thourhout, D.

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotven, Y. Matsuzaki, K. C. Vernon, T. Yamaguchi, K. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionallly localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Veronis, G.

G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005).
[CrossRef]

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Villeneuve, P. R.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron 11, 232-240 (2005).
[CrossRef]

Weber, H. P.

Wiaux, V.

Xiao, S.

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron 11, 232-240 (2005).
[CrossRef]

Yamagishi, S.

Yamaguchi, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotven, Y. Matsuzaki, K. C. Vernon, T. Yamaguchi, K. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionallly localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Zia, R.

Appl. Opt.

Appl. Phys. Lett.

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotven, Y. Matsuzaki, K. C. Vernon, T. Yamaguchi, K. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionallly localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron 11, 232-240 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Chen and A.W. Poon, "Low-loss multimode-interference-based crossings for silicon wire waveguides," IEEE Photon. Technol. Lett. 18, 2260-2262 (2006).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides," Jpn. J. Appl. Phys. Part 1 43, 646-647 (2004).
[CrossRef]

Nat. Mater.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Nature

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Opt. Commun.

S. A. Marier, "Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides," Opt. Commun. 258, 295-299 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B  61, 10484-10503 (2000).
[CrossRef]

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polaritons waveguides for long-range polarization-independent waveguiding," Phys. Rev. B  76, 035434 (2007).
[CrossRef]

Phys. Rev. Lett.

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett.  47, 1927-1930 (1981).
[CrossRef]

Phys. Today

T. W. Ebbesen, C. Genet, and S. I. Bozhebolnyi, "Surface-plasmon circuitry," Phys. Today 61, 44-50 (2008).

Other

J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N. J., 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Dependence of complex propagation constants of SPPs in a 2D silver-air-silver plasmonic waveguide on the width (w) of the waveguide and the working wavelength λ 0.

Fig. 2.
Fig. 2.

(a) The forward transmittance (squares) and crosstalk (circles) for the standard direct crossing as a function of the width (w) of the silver-air-silver plasmonic waveguide for λ0 = 1.55 µm. The inset shows its corresponding structure. (b) Spectra for the forward transmittance and the crosstalk when w = 100 nm. The inset shows the profile of a steady-state magnetic field at the wavelength 1.55 µm.

Fig. 3.
Fig. 3.

(a) Transmission spectra of the device [shown in the inset] with different side length of the cavity when w = 100 nm. The solid and dashed lines represent the results for Lx = 700 nm and 660 nm, respectively. (b) Transmission T and reflection R of the device (Lx = 700 nm, Ly = 1000 nm) as a function of the wavelength for w = 50 nm and 100 nm, respectively. The solid and dashed lines represent the results from the FEM method, and the open squares and solid circles are obtained from the coupled-mode theory. The inset shows the profile of a steady-state magnetic field at the resonant frequency for w = 100 nm, which illustrates the complete transmission on resonance.

Fig. 4.
Fig. 4.

(a)–(b) Transmission spectra of the device with direct crossing (dashed lines) and cavity-based crossing (solid lines). (c) Intersection of two-dimensional plasmonic waveguides with a square resonant cavity. (d) Profile of a steady-state magnetic field at the resonant wavelength 1.55 µm for w = 20 nm and L = 700 nm.

Fig. 5.
Fig. 5.

(a) Throughput of the device [Fig. 4(c)] when ignoring the material loss (solid line) and considering the loss (dashed line). (b) Crosstalk of the device when ignoring the material loss and considering the loss.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε 1 p ε m k = 1 exp ( kw ) 1 + exp ( kw ) ,
T = ( 1 τ e ) 2 ( 1 τ 0 + 1 τ e ) 2 ,
R = ( 1 τ 0 ) 2 ( 1 τ 0 + 1 τ e ) 2 ,

Metrics