Abstract

We present the numerical investigation of the optical limiting behavior based on coupled nonlinear plasmonic waveguides. Exploiting the strong localization of the electromagnetic fields at metal-dielectric interfaces, significant enhancement of the nonlinear absorption was achieved. Two types of optical limiters (OLs), one based on the enhanced optical Kerr (OK) effect and the other based on the enhanced two-photon absorption (TPA), are proposed. Their transmission characteristics at off-resonant band of Au are investigated. The simulation results reveal that the linear transmittances in both cases are higher than 85%, and the limiting thresholds are 250 GW/cm2 and 42.69 GW/cm2 for the OK and TPA based OLs, respectively. As compared with the non-structured slab waveguides, the optical limiting thresholds are greatly reduced. Wideband operation over 200 nm was confirmed and TPA induced free carrier absorption (FCA) discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. He, L. Yuan, J. D. Bhawalkar, and P. N. Prasad, "Optical limiting, pulse reshaping, and stabilization with a nonlinear absorptive fiber system," Appl. Opt. 36, 3387-3392 (1997).
    [CrossRef] [PubMed]
  2. G. S. He, R. Gvishi, P. N. Prasad, and B. A. Reinhardt, "Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials," Opt. Comm. 117, 133-136 (1995).
    [CrossRef]
  3. A. Nevejina-Sturhan, O. Werhahn, and U. Siegner, "Low-threshold high-dynamic-range optical limiter for ultra-short laser pulses," Appl, Phys. B 74, 553-557 (2002).
    [CrossRef]
  4. R. C. C. Leite, S. P. S. Porto, and T. C. Domen, "The thermal lens effect as a power-limiting device," Appl. Phys. Lett. 10, 100-101 (1967).
    [CrossRef]
  5. K. M. Nashold and D. P. Walter, "Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions," J. Opt. Soc. Am. B 12, 1228-1237 (1995).
    [CrossRef]
  6. D. Vincent and J. Cruickshank, "Optical limiting with C60 and other fullerenes," Appl. Opt. 36, 7794-7798 (1997).
    [CrossRef]
  7. B. L. Justus, A. J. Campillo, and A. L. Huston, "Thermal-defocusing/scattering optical limiter," Opt. Lett. 19, 673-675 (1994).
    [CrossRef] [PubMed]
  8. J. A. Hermann, "External self-focusing, self-bending and optical limiting with thin non-linear media," Opt. Quant. Electron. 19, 169-178 (1987).
    [CrossRef]
  9. Q. Li, C. Liu, Z. Liu, and Q. Gong, "Broadband optical limiting and two-photon absorption properties of colloidal GaAs nanocrystals," Opt. Express 13, 1833-1838 (2005).
    [CrossRef] [PubMed]
  10. L. Porres, O. Mongin, C. Katan, M. Charlor, T. Pons, J. Mertz, and M. Blanchard-Desce, "Enchanced two-photon absorption with novel octupolar propeller-shaped fluorophores derived from triphenylamine," Org. Lett. 6, 47-50 (2004).
    [CrossRef] [PubMed]
  11. O. Mongin, T. R. Krishna, M. H. V. Werts, A.-M. Caminade, J.-P. Majoral, and M. Blanchar-Desce, "A modular approach to two-photon absorption organic nanodots: brilliant dendrimers as alternative to semiconductor quantum dots," Chem. Commun. 915-917 (2006).
    [CrossRef] [PubMed]
  12. S. Qu, Y. Gao, X. Jiang, H. Zeng, Y. Song, J. Qiu, C. Zhu, and K. Hirao, "Noninear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser," Opt. Comm. 224, 321-327 (2003).
    [CrossRef]
  13. P. P. Kiran, B. N. S. Bhaktha, and D. N. Rao, "Nonlinear optical properties and surface plasmon enhanced optical limiting in Ag-Cu nanoclusters co-doped in SiO2 Sol-Gel films," J. Appl. Phys. 96, 6717-6723 (2004).
    [CrossRef]
  14. N. Izard, P. Billaud, D. Riehl, and E. Ahglaret, "Influence of structure on the optical limiting properties of nanotubes," Opt. Lett. 30, 1509-1511 (2005).
    [CrossRef] [PubMed]
  15. J.-B. Han, D.-J. Chen, S. Ding, H.-J. Zhou, Y.-B. Han, G.-G. Xiong, and Q.-Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
    [CrossRef]
  16. H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, "Optical limiting properties of metal nanowires," Appl. Phys. Lett. 88, 223106 (2006).
    [CrossRef]
  17. H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, "Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods," Appl. Phys. Lett. 88, 083107 (2006).
    [CrossRef]
  18. S. Porel, N. Venkatram, D. N. Rao, and T. P. Radhakrishnan, "Optical power limiting in the femtosecond regime by siliver nanoparticle-embedded polymer film, "J. Appl. Phys. 102, 033107 (2007).
    [CrossRef]
  19. S. H. Chang, T. Chiu, and C.-Y. Tai, "Propagation characteristics of the supermode based on two coupled semi-infinite rib plasmonic waveguides," Opt. Express 15, 1755-1761 (2007).
    [CrossRef] [PubMed]
  20. M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, "A simple and rigorous verification FDTD algorithms by optical parametric four-wave mixing," Microwave Opt. Technol. Lett. 48, 88-91 (2006).
    [CrossRef]
  21. I. S. Maksymov, L. F. Marsal, and J. Pallares, "Modeling of two-photon absorption in nonlinear photonic crystal all optical switch," Opt. Commun. 269, 137-141 (2007).
    [CrossRef]
  22. N. Suzuki, "FDTD analysis of two-photon absorption and free-carrier absorption in Si High-index-constrast waveguides," J. Lightwave Technol. 25, 2495-2501 (2007).
    [CrossRef]
  23. G. X. Fan and Q. H. Liu, "An FDTD algorithm with perfectly matched layers for general dispersive media," IEEE Trans. Antennas Propagate. 48, 637-646 (2000).
    [CrossRef]
  24. Q. Chen, L. Kuang, E. H. Sargent, and Z. Y. Wang, "Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelength," Appl. Phys. Lett. 83, 2115-2117 (2003).
    [CrossRef]
  25. C. R. Pollock and M. Lipson, Integrated Photonics (Kluwer Academic Publishers, Boston, 2003), Chap. 11.
  26. M. Koshiba and K. Saitoh, "Structural dependence of effective area and mode field diameter for holey fibers," Opt. Express 11, 1746-1756 (2003).
    [CrossRef] [PubMed]
  27. G. C. Duree, G. J. Salamo, M. Segev, A. Yariv, E. J. Sharp, and R. R. Neurgaonkar, "Photorefractive self-focusing and defocusing as an optical limiter," Proc. SPIE 2229, 192-199 (1994).
    [CrossRef]
  28. R. G. Hunsperger, Integrated Optics 5th ed. (Springer, Berlin, 2002), Chap. 4.
  29. D. W. Peters, "Infrared modulator utilizing field-induced free carrier absorption," Appl. Opt. 6, 1033-1042 (1967).
    [CrossRef] [PubMed]
  30. V. R. Almeida, Q. Xu, and M. Lipson," Ultrafast integrated semiconductor optical modulator based on the plasma-dispersion effect," Opt. Lett. 30, 2043-2045 (2005).
    [CrossRef]
  31. SelinH. G. Teo, A. Q. Liu, J. B. Zhang, and M. H. Hong, "Induced free carrier modulation of photonic crystal optical intersection via localized optical absorption effect," Appl. Phys. Lett. 89, 091910 (2006).
    [CrossRef]
  32. Charles Kittel, Introduction to Solid State Physics 7th ed. (John Wiley & Sons, 1996).
  33. S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, "Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures," Appl. Phys. Lett. 59, 3276-3278 (1991).
    [CrossRef]
  34. C. Y. Tai, S. H. Chang, and T. Chiu, "Numerical optimization of wide-angle, broadband operational polarization beam splitter based on anisotropically coupled surface-plasmon-polariton waves," J. Opt. Soc. Am. B 25, 1387-1392 (2008).
    [CrossRef]

2008

2007

S. Porel, N. Venkatram, D. N. Rao, and T. P. Radhakrishnan, "Optical power limiting in the femtosecond regime by siliver nanoparticle-embedded polymer film, "J. Appl. Phys. 102, 033107 (2007).
[CrossRef]

S. H. Chang, T. Chiu, and C.-Y. Tai, "Propagation characteristics of the supermode based on two coupled semi-infinite rib plasmonic waveguides," Opt. Express 15, 1755-1761 (2007).
[CrossRef] [PubMed]

I. S. Maksymov, L. F. Marsal, and J. Pallares, "Modeling of two-photon absorption in nonlinear photonic crystal all optical switch," Opt. Commun. 269, 137-141 (2007).
[CrossRef]

N. Suzuki, "FDTD analysis of two-photon absorption and free-carrier absorption in Si High-index-constrast waveguides," J. Lightwave Technol. 25, 2495-2501 (2007).
[CrossRef]

2006

M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, "A simple and rigorous verification FDTD algorithms by optical parametric four-wave mixing," Microwave Opt. Technol. Lett. 48, 88-91 (2006).
[CrossRef]

J.-B. Han, D.-J. Chen, S. Ding, H.-J. Zhou, Y.-B. Han, G.-G. Xiong, and Q.-Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
[CrossRef]

H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, "Optical limiting properties of metal nanowires," Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, "Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods," Appl. Phys. Lett. 88, 083107 (2006).
[CrossRef]

SelinH. G. Teo, A. Q. Liu, J. B. Zhang, and M. H. Hong, "Induced free carrier modulation of photonic crystal optical intersection via localized optical absorption effect," Appl. Phys. Lett. 89, 091910 (2006).
[CrossRef]

2005

2004

L. Porres, O. Mongin, C. Katan, M. Charlor, T. Pons, J. Mertz, and M. Blanchard-Desce, "Enchanced two-photon absorption with novel octupolar propeller-shaped fluorophores derived from triphenylamine," Org. Lett. 6, 47-50 (2004).
[CrossRef] [PubMed]

P. P. Kiran, B. N. S. Bhaktha, and D. N. Rao, "Nonlinear optical properties and surface plasmon enhanced optical limiting in Ag-Cu nanoclusters co-doped in SiO2 Sol-Gel films," J. Appl. Phys. 96, 6717-6723 (2004).
[CrossRef]

2003

S. Qu, Y. Gao, X. Jiang, H. Zeng, Y. Song, J. Qiu, C. Zhu, and K. Hirao, "Noninear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser," Opt. Comm. 224, 321-327 (2003).
[CrossRef]

Q. Chen, L. Kuang, E. H. Sargent, and Z. Y. Wang, "Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelength," Appl. Phys. Lett. 83, 2115-2117 (2003).
[CrossRef]

M. Koshiba and K. Saitoh, "Structural dependence of effective area and mode field diameter for holey fibers," Opt. Express 11, 1746-1756 (2003).
[CrossRef] [PubMed]

2002

A. Nevejina-Sturhan, O. Werhahn, and U. Siegner, "Low-threshold high-dynamic-range optical limiter for ultra-short laser pulses," Appl, Phys. B 74, 553-557 (2002).
[CrossRef]

2000

G. X. Fan and Q. H. Liu, "An FDTD algorithm with perfectly matched layers for general dispersive media," IEEE Trans. Antennas Propagate. 48, 637-646 (2000).
[CrossRef]

1997

1995

G. S. He, R. Gvishi, P. N. Prasad, and B. A. Reinhardt, "Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials," Opt. Comm. 117, 133-136 (1995).
[CrossRef]

K. M. Nashold and D. P. Walter, "Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions," J. Opt. Soc. Am. B 12, 1228-1237 (1995).
[CrossRef]

1994

B. L. Justus, A. J. Campillo, and A. L. Huston, "Thermal-defocusing/scattering optical limiter," Opt. Lett. 19, 673-675 (1994).
[CrossRef] [PubMed]

G. C. Duree, G. J. Salamo, M. Segev, A. Yariv, E. J. Sharp, and R. R. Neurgaonkar, "Photorefractive self-focusing and defocusing as an optical limiter," Proc. SPIE 2229, 192-199 (1994).
[CrossRef]

1991

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, "Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures," Appl. Phys. Lett. 59, 3276-3278 (1991).
[CrossRef]

1987

J. A. Hermann, "External self-focusing, self-bending and optical limiting with thin non-linear media," Opt. Quant. Electron. 19, 169-178 (1987).
[CrossRef]

1967

R. C. C. Leite, S. P. S. Porto, and T. C. Domen, "The thermal lens effect as a power-limiting device," Appl. Phys. Lett. 10, 100-101 (1967).
[CrossRef]

D. W. Peters, "Infrared modulator utilizing field-induced free carrier absorption," Appl. Opt. 6, 1033-1042 (1967).
[CrossRef] [PubMed]

Ahglaret, E.

Almeida, V. R.

V. R. Almeida, Q. Xu, and M. Lipson," Ultrafast integrated semiconductor optical modulator based on the plasma-dispersion effect," Opt. Lett. 30, 2043-2045 (2005).
[CrossRef]

Bhaktha, B. N. S.

P. P. Kiran, B. N. S. Bhaktha, and D. N. Rao, "Nonlinear optical properties and surface plasmon enhanced optical limiting in Ag-Cu nanoclusters co-doped in SiO2 Sol-Gel films," J. Appl. Phys. 96, 6717-6723 (2004).
[CrossRef]

Bhawalkar, J. D.

Billaud, P.

Blanchard-Desce, M.

L. Porres, O. Mongin, C. Katan, M. Charlor, T. Pons, J. Mertz, and M. Blanchard-Desce, "Enchanced two-photon absorption with novel octupolar propeller-shaped fluorophores derived from triphenylamine," Org. Lett. 6, 47-50 (2004).
[CrossRef] [PubMed]

Campillo, A. J.

Chang, S. H.

Charlor, M.

L. Porres, O. Mongin, C. Katan, M. Charlor, T. Pons, J. Mertz, and M. Blanchard-Desce, "Enchanced two-photon absorption with novel octupolar propeller-shaped fluorophores derived from triphenylamine," Org. Lett. 6, 47-50 (2004).
[CrossRef] [PubMed]

Chen, D.-J.

J.-B. Han, D.-J. Chen, S. Ding, H.-J. Zhou, Y.-B. Han, G.-G. Xiong, and Q.-Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
[CrossRef]

Chen, Q.

Q. Chen, L. Kuang, E. H. Sargent, and Z. Y. Wang, "Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelength," Appl. Phys. Lett. 83, 2115-2117 (2003).
[CrossRef]

Chen, W.

H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, "Optical limiting properties of metal nanowires," Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

Chiu, T.

Cruickshank, J.

Ding, S.

J.-B. Han, D.-J. Chen, S. Ding, H.-J. Zhou, Y.-B. Han, G.-G. Xiong, and Q.-Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
[CrossRef]

Domen, T. C.

R. C. C. Leite, S. P. S. Porto, and T. C. Domen, "The thermal lens effect as a power-limiting device," Appl. Phys. Lett. 10, 100-101 (1967).
[CrossRef]

Duree, G. C.

G. C. Duree, G. J. Salamo, M. Segev, A. Yariv, E. J. Sharp, and R. R. Neurgaonkar, "Photorefractive self-focusing and defocusing as an optical limiter," Proc. SPIE 2229, 192-199 (1994).
[CrossRef]

Elim, H. I.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, "Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods," Appl. Phys. Lett. 88, 083107 (2006).
[CrossRef]

Fan, G. X.

G. X. Fan and Q. H. Liu, "An FDTD algorithm with perfectly matched layers for general dispersive media," IEEE Trans. Antennas Propagate. 48, 637-646 (2000).
[CrossRef]

Feng, Y. P.

H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, "Optical limiting properties of metal nanowires," Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

Frankel, M. Y.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, "Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures," Appl. Phys. Lett. 59, 3276-3278 (1991).
[CrossRef]

Freude, W.

M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, "A simple and rigorous verification FDTD algorithms by optical parametric four-wave mixing," Microwave Opt. Technol. Lett. 48, 88-91 (2006).
[CrossRef]

Fujii, M.

M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, "A simple and rigorous verification FDTD algorithms by optical parametric four-wave mixing," Microwave Opt. Technol. Lett. 48, 88-91 (2006).
[CrossRef]

Gao, Y.

S. Qu, Y. Gao, X. Jiang, H. Zeng, Y. Song, J. Qiu, C. Zhu, and K. Hirao, "Noninear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser," Opt. Comm. 224, 321-327 (2003).
[CrossRef]

Gong, Q.

Gupta, S.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, "Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures," Appl. Phys. Lett. 59, 3276-3278 (1991).
[CrossRef]

Gvishi, R.

G. S. He, R. Gvishi, P. N. Prasad, and B. A. Reinhardt, "Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials," Opt. Comm. 117, 133-136 (1995).
[CrossRef]

Han, J.-B.

J.-B. Han, D.-J. Chen, S. Ding, H.-J. Zhou, Y.-B. Han, G.-G. Xiong, and Q.-Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
[CrossRef]

Han, Y.-B.

J.-B. Han, D.-J. Chen, S. Ding, H.-J. Zhou, Y.-B. Han, G.-G. Xiong, and Q.-Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
[CrossRef]

He, G. S.

G. S. He, L. Yuan, J. D. Bhawalkar, and P. N. Prasad, "Optical limiting, pulse reshaping, and stabilization with a nonlinear absorptive fiber system," Appl. Opt. 36, 3387-3392 (1997).
[CrossRef] [PubMed]

G. S. He, R. Gvishi, P. N. Prasad, and B. A. Reinhardt, "Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials," Opt. Comm. 117, 133-136 (1995).
[CrossRef]

Hermann, J. A.

J. A. Hermann, "External self-focusing, self-bending and optical limiting with thin non-linear media," Opt. Quant. Electron. 19, 169-178 (1987).
[CrossRef]

Hirao, K.

S. Qu, Y. Gao, X. Jiang, H. Zeng, Y. Song, J. Qiu, C. Zhu, and K. Hirao, "Noninear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser," Opt. Comm. 224, 321-327 (2003).
[CrossRef]

Huston, A. L.

Izard, N.

Ji, W.

H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, "Optical limiting properties of metal nanowires," Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, "Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods," Appl. Phys. Lett. 88, 083107 (2006).
[CrossRef]

Jiang, X.

S. Qu, Y. Gao, X. Jiang, H. Zeng, Y. Song, J. Qiu, C. Zhu, and K. Hirao, "Noninear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser," Opt. Comm. 224, 321-327 (2003).
[CrossRef]

Justus, B. L.

Katan, C.

L. Porres, O. Mongin, C. Katan, M. Charlor, T. Pons, J. Mertz, and M. Blanchard-Desce, "Enchanced two-photon absorption with novel octupolar propeller-shaped fluorophores derived from triphenylamine," Org. Lett. 6, 47-50 (2004).
[CrossRef] [PubMed]

Kiran, P. P.

P. P. Kiran, B. N. S. Bhaktha, and D. N. Rao, "Nonlinear optical properties and surface plasmon enhanced optical limiting in Ag-Cu nanoclusters co-doped in SiO2 Sol-Gel films," J. Appl. Phys. 96, 6717-6723 (2004).
[CrossRef]

Koos, C.

M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, "A simple and rigorous verification FDTD algorithms by optical parametric four-wave mixing," Microwave Opt. Technol. Lett. 48, 88-91 (2006).
[CrossRef]

Koshiba, M.

Kuang, L.

Q. Chen, L. Kuang, E. H. Sargent, and Z. Y. Wang, "Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelength," Appl. Phys. Lett. 83, 2115-2117 (2003).
[CrossRef]

Lee, J.-Y.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, "Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods," Appl. Phys. Lett. 88, 083107 (2006).
[CrossRef]

Leite, R. C. C.

R. C. C. Leite, S. P. S. Porto, and T. C. Domen, "The thermal lens effect as a power-limiting device," Appl. Phys. Lett. 10, 100-101 (1967).
[CrossRef]

Leuthold, J.

M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, "A simple and rigorous verification FDTD algorithms by optical parametric four-wave mixing," Microwave Opt. Technol. Lett. 48, 88-91 (2006).
[CrossRef]

Li, Q.

Lin, J.

H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, "Optical limiting properties of metal nanowires," Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

Lipson, M.

V. R. Almeida, Q. Xu, and M. Lipson," Ultrafast integrated semiconductor optical modulator based on the plasma-dispersion effect," Opt. Lett. 30, 2043-2045 (2005).
[CrossRef]

Liu, C.

Liu, Q. H.

G. X. Fan and Q. H. Liu, "An FDTD algorithm with perfectly matched layers for general dispersive media," IEEE Trans. Antennas Propagate. 48, 637-646 (2000).
[CrossRef]

Liu, Z.

Maksymov, I. S.

I. S. Maksymov, L. F. Marsal, and J. Pallares, "Modeling of two-photon absorption in nonlinear photonic crystal all optical switch," Opt. Commun. 269, 137-141 (2007).
[CrossRef]

Marsal, L. F.

I. S. Maksymov, L. F. Marsal, and J. Pallares, "Modeling of two-photon absorption in nonlinear photonic crystal all optical switch," Opt. Commun. 269, 137-141 (2007).
[CrossRef]

Mertz, J.

L. Porres, O. Mongin, C. Katan, M. Charlor, T. Pons, J. Mertz, and M. Blanchard-Desce, "Enchanced two-photon absorption with novel octupolar propeller-shaped fluorophores derived from triphenylamine," Org. Lett. 6, 47-50 (2004).
[CrossRef] [PubMed]

Mi, J.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, "Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods," Appl. Phys. Lett. 88, 083107 (2006).
[CrossRef]

Mongin, O.

L. Porres, O. Mongin, C. Katan, M. Charlor, T. Pons, J. Mertz, and M. Blanchard-Desce, "Enchanced two-photon absorption with novel octupolar propeller-shaped fluorophores derived from triphenylamine," Org. Lett. 6, 47-50 (2004).
[CrossRef] [PubMed]

Mourou, G. A.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, "Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures," Appl. Phys. Lett. 59, 3276-3278 (1991).
[CrossRef]

Nashold, K. M.

Neurgaonkar, R. R.

G. C. Duree, G. J. Salamo, M. Segev, A. Yariv, E. J. Sharp, and R. R. Neurgaonkar, "Photorefractive self-focusing and defocusing as an optical limiter," Proc. SPIE 2229, 192-199 (1994).
[CrossRef]

Nevejina-Sturhan, A.

A. Nevejina-Sturhan, O. Werhahn, and U. Siegner, "Low-threshold high-dynamic-range optical limiter for ultra-short laser pulses," Appl, Phys. B 74, 553-557 (2002).
[CrossRef]

Pallares, J.

I. S. Maksymov, L. F. Marsal, and J. Pallares, "Modeling of two-photon absorption in nonlinear photonic crystal all optical switch," Opt. Commun. 269, 137-141 (2007).
[CrossRef]

Pan, H.

H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, "Optical limiting properties of metal nanowires," Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

Peters, D. W.

Pons, T.

L. Porres, O. Mongin, C. Katan, M. Charlor, T. Pons, J. Mertz, and M. Blanchard-Desce, "Enchanced two-photon absorption with novel octupolar propeller-shaped fluorophores derived from triphenylamine," Org. Lett. 6, 47-50 (2004).
[CrossRef] [PubMed]

Porel, S.

S. Porel, N. Venkatram, D. N. Rao, and T. P. Radhakrishnan, "Optical power limiting in the femtosecond regime by siliver nanoparticle-embedded polymer film, "J. Appl. Phys. 102, 033107 (2007).
[CrossRef]

Porres, L.

L. Porres, O. Mongin, C. Katan, M. Charlor, T. Pons, J. Mertz, and M. Blanchard-Desce, "Enchanced two-photon absorption with novel octupolar propeller-shaped fluorophores derived from triphenylamine," Org. Lett. 6, 47-50 (2004).
[CrossRef] [PubMed]

Porto, S. P. S.

R. C. C. Leite, S. P. S. Porto, and T. C. Domen, "The thermal lens effect as a power-limiting device," Appl. Phys. Lett. 10, 100-101 (1967).
[CrossRef]

Poulton, C.

M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, "A simple and rigorous verification FDTD algorithms by optical parametric four-wave mixing," Microwave Opt. Technol. Lett. 48, 88-91 (2006).
[CrossRef]

Prasad, P. N.

G. S. He, L. Yuan, J. D. Bhawalkar, and P. N. Prasad, "Optical limiting, pulse reshaping, and stabilization with a nonlinear absorptive fiber system," Appl. Opt. 36, 3387-3392 (1997).
[CrossRef] [PubMed]

G. S. He, R. Gvishi, P. N. Prasad, and B. A. Reinhardt, "Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials," Opt. Comm. 117, 133-136 (1995).
[CrossRef]

Qiu, J.

S. Qu, Y. Gao, X. Jiang, H. Zeng, Y. Song, J. Qiu, C. Zhu, and K. Hirao, "Noninear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser," Opt. Comm. 224, 321-327 (2003).
[CrossRef]

Qu, S.

S. Qu, Y. Gao, X. Jiang, H. Zeng, Y. Song, J. Qiu, C. Zhu, and K. Hirao, "Noninear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser," Opt. Comm. 224, 321-327 (2003).
[CrossRef]

Radhakrishnan, T. P.

S. Porel, N. Venkatram, D. N. Rao, and T. P. Radhakrishnan, "Optical power limiting in the femtosecond regime by siliver nanoparticle-embedded polymer film, "J. Appl. Phys. 102, 033107 (2007).
[CrossRef]

Rao, D. N.

S. Porel, N. Venkatram, D. N. Rao, and T. P. Radhakrishnan, "Optical power limiting in the femtosecond regime by siliver nanoparticle-embedded polymer film, "J. Appl. Phys. 102, 033107 (2007).
[CrossRef]

P. P. Kiran, B. N. S. Bhaktha, and D. N. Rao, "Nonlinear optical properties and surface plasmon enhanced optical limiting in Ag-Cu nanoclusters co-doped in SiO2 Sol-Gel films," J. Appl. Phys. 96, 6717-6723 (2004).
[CrossRef]

Reinhardt, B. A.

G. S. He, R. Gvishi, P. N. Prasad, and B. A. Reinhardt, "Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials," Opt. Comm. 117, 133-136 (1995).
[CrossRef]

Riehl, D.

Saitoh, K.

Sakagami, I.

M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, "A simple and rigorous verification FDTD algorithms by optical parametric four-wave mixing," Microwave Opt. Technol. Lett. 48, 88-91 (2006).
[CrossRef]

Salamo, G. J.

G. C. Duree, G. J. Salamo, M. Segev, A. Yariv, E. J. Sharp, and R. R. Neurgaonkar, "Photorefractive self-focusing and defocusing as an optical limiter," Proc. SPIE 2229, 192-199 (1994).
[CrossRef]

Sargent, E. H.

Q. Chen, L. Kuang, E. H. Sargent, and Z. Y. Wang, "Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelength," Appl. Phys. Lett. 83, 2115-2117 (2003).
[CrossRef]

Segev, M.

G. C. Duree, G. J. Salamo, M. Segev, A. Yariv, E. J. Sharp, and R. R. Neurgaonkar, "Photorefractive self-focusing and defocusing as an optical limiter," Proc. SPIE 2229, 192-199 (1994).
[CrossRef]

Selin,

SelinH. G. Teo, A. Q. Liu, J. B. Zhang, and M. H. Hong, "Induced free carrier modulation of photonic crystal optical intersection via localized optical absorption effect," Appl. Phys. Lett. 89, 091910 (2006).
[CrossRef]

Sharp, E. J.

G. C. Duree, G. J. Salamo, M. Segev, A. Yariv, E. J. Sharp, and R. R. Neurgaonkar, "Photorefractive self-focusing and defocusing as an optical limiter," Proc. SPIE 2229, 192-199 (1994).
[CrossRef]

Siegner, U.

A. Nevejina-Sturhan, O. Werhahn, and U. Siegner, "Low-threshold high-dynamic-range optical limiter for ultra-short laser pulses," Appl, Phys. B 74, 553-557 (2002).
[CrossRef]

Song, Y.

S. Qu, Y. Gao, X. Jiang, H. Zeng, Y. Song, J. Qiu, C. Zhu, and K. Hirao, "Noninear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser," Opt. Comm. 224, 321-327 (2003).
[CrossRef]

Suzuki, N.

Tai, C. Y.

Tai, C.-Y.

Valdmanis, J. A.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, "Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures," Appl. Phys. Lett. 59, 3276-3278 (1991).
[CrossRef]

Venkatram, N.

S. Porel, N. Venkatram, D. N. Rao, and T. P. Radhakrishnan, "Optical power limiting in the femtosecond regime by siliver nanoparticle-embedded polymer film, "J. Appl. Phys. 102, 033107 (2007).
[CrossRef]

Vincent, D.

Walter, D. P.

Wang, Q.-Q.

J.-B. Han, D.-J. Chen, S. Ding, H.-J. Zhou, Y.-B. Han, G.-G. Xiong, and Q.-Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
[CrossRef]

Wang, Z. Y.

Q. Chen, L. Kuang, E. H. Sargent, and Z. Y. Wang, "Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelength," Appl. Phys. Lett. 83, 2115-2117 (2003).
[CrossRef]

Werhahn, O.

A. Nevejina-Sturhan, O. Werhahn, and U. Siegner, "Low-threshold high-dynamic-range optical limiter for ultra-short laser pulses," Appl, Phys. B 74, 553-557 (2002).
[CrossRef]

Whitaker, J. F.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, "Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures," Appl. Phys. Lett. 59, 3276-3278 (1991).
[CrossRef]

Xiong, G.-G.

J.-B. Han, D.-J. Chen, S. Ding, H.-J. Zhou, Y.-B. Han, G.-G. Xiong, and Q.-Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
[CrossRef]

Xu, Q.

V. R. Almeida, Q. Xu, and M. Lipson," Ultrafast integrated semiconductor optical modulator based on the plasma-dispersion effect," Opt. Lett. 30, 2043-2045 (2005).
[CrossRef]

Yang, J.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, "Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods," Appl. Phys. Lett. 88, 083107 (2006).
[CrossRef]

Yariv, A.

G. C. Duree, G. J. Salamo, M. Segev, A. Yariv, E. J. Sharp, and R. R. Neurgaonkar, "Photorefractive self-focusing and defocusing as an optical limiter," Proc. SPIE 2229, 192-199 (1994).
[CrossRef]

Yuan, L.

Zeng, H.

S. Qu, Y. Gao, X. Jiang, H. Zeng, Y. Song, J. Qiu, C. Zhu, and K. Hirao, "Noninear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser," Opt. Comm. 224, 321-327 (2003).
[CrossRef]

Zhou, H.-J.

J.-B. Han, D.-J. Chen, S. Ding, H.-J. Zhou, Y.-B. Han, G.-G. Xiong, and Q.-Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
[CrossRef]

Zhu, C.

S. Qu, Y. Gao, X. Jiang, H. Zeng, Y. Song, J. Qiu, C. Zhu, and K. Hirao, "Noninear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser," Opt. Comm. 224, 321-327 (2003).
[CrossRef]

Appl, Phys. B

A. Nevejina-Sturhan, O. Werhahn, and U. Siegner, "Low-threshold high-dynamic-range optical limiter for ultra-short laser pulses," Appl, Phys. B 74, 553-557 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, "Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures," Appl. Phys. Lett. 59, 3276-3278 (1991).
[CrossRef]

SelinH. G. Teo, A. Q. Liu, J. B. Zhang, and M. H. Hong, "Induced free carrier modulation of photonic crystal optical intersection via localized optical absorption effect," Appl. Phys. Lett. 89, 091910 (2006).
[CrossRef]

R. C. C. Leite, S. P. S. Porto, and T. C. Domen, "The thermal lens effect as a power-limiting device," Appl. Phys. Lett. 10, 100-101 (1967).
[CrossRef]

H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, "Optical limiting properties of metal nanowires," Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, "Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods," Appl. Phys. Lett. 88, 083107 (2006).
[CrossRef]

Q. Chen, L. Kuang, E. H. Sargent, and Z. Y. Wang, "Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelength," Appl. Phys. Lett. 83, 2115-2117 (2003).
[CrossRef]

IEEE Trans. Antennas Propagate.

G. X. Fan and Q. H. Liu, "An FDTD algorithm with perfectly matched layers for general dispersive media," IEEE Trans. Antennas Propagate. 48, 637-646 (2000).
[CrossRef]

J. Appl. Phys.

S. Porel, N. Venkatram, D. N. Rao, and T. P. Radhakrishnan, "Optical power limiting in the femtosecond regime by siliver nanoparticle-embedded polymer film, "J. Appl. Phys. 102, 033107 (2007).
[CrossRef]

P. P. Kiran, B. N. S. Bhaktha, and D. N. Rao, "Nonlinear optical properties and surface plasmon enhanced optical limiting in Ag-Cu nanoclusters co-doped in SiO2 Sol-Gel films," J. Appl. Phys. 96, 6717-6723 (2004).
[CrossRef]

J.-B. Han, D.-J. Chen, S. Ding, H.-J. Zhou, Y.-B. Han, G.-G. Xiong, and Q.-Q. Wang, "Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films," J. Appl. Phys. 99, 023526 (2006).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Microwave Opt. Technol. Lett.

M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, "A simple and rigorous verification FDTD algorithms by optical parametric four-wave mixing," Microwave Opt. Technol. Lett. 48, 88-91 (2006).
[CrossRef]

Opt. Comm.

G. S. He, R. Gvishi, P. N. Prasad, and B. A. Reinhardt, "Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials," Opt. Comm. 117, 133-136 (1995).
[CrossRef]

S. Qu, Y. Gao, X. Jiang, H. Zeng, Y. Song, J. Qiu, C. Zhu, and K. Hirao, "Noninear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser," Opt. Comm. 224, 321-327 (2003).
[CrossRef]

Opt. Commun.

I. S. Maksymov, L. F. Marsal, and J. Pallares, "Modeling of two-photon absorption in nonlinear photonic crystal all optical switch," Opt. Commun. 269, 137-141 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quant. Electron.

J. A. Hermann, "External self-focusing, self-bending and optical limiting with thin non-linear media," Opt. Quant. Electron. 19, 169-178 (1987).
[CrossRef]

Org. Lett.

L. Porres, O. Mongin, C. Katan, M. Charlor, T. Pons, J. Mertz, and M. Blanchard-Desce, "Enchanced two-photon absorption with novel octupolar propeller-shaped fluorophores derived from triphenylamine," Org. Lett. 6, 47-50 (2004).
[CrossRef] [PubMed]

Proc. SPIE

G. C. Duree, G. J. Salamo, M. Segev, A. Yariv, E. J. Sharp, and R. R. Neurgaonkar, "Photorefractive self-focusing and defocusing as an optical limiter," Proc. SPIE 2229, 192-199 (1994).
[CrossRef]

Other

R. G. Hunsperger, Integrated Optics 5th ed. (Springer, Berlin, 2002), Chap. 4.

C. R. Pollock and M. Lipson, Integrated Photonics (Kluwer Academic Publishers, Boston, 2003), Chap. 11.

O. Mongin, T. R. Krishna, M. H. V. Werts, A.-M. Caminade, J.-P. Majoral, and M. Blanchar-Desce, "A modular approach to two-photon absorption organic nanodots: brilliant dendrimers as alternative to semiconductor quantum dots," Chem. Commun. 915-917 (2006).
[CrossRef] [PubMed]

Charles Kittel, Introduction to Solid State Physics 7th ed. (John Wiley & Sons, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Layout of the designed structure.

Fig. 2.
Fig. 2.

(a) Normalized intensity distributions of the input/output (I/O) waveguides and that of the CNPWs. (b) Transmittance and effective modal area as a function of the period of gold.

Fig. 3.
Fig. 3.

Output intensity as a function of input intensity.

Fig. 4.
Fig. 4.

(a) Linear transmittance and limiting threshold as a function of the length of the gold array at wavelength of 1550nm. (b) Output intensity as a function of input intensity.

Fig. 5.
Fig. 5.

Normalized instantaneous power distributions of (a) The non-structured GaAs slab waveguide and (b) the CNPWs at time steps of 50000.

Fig. 6.
Fig. 6.

The impact factor as a function of the input intensity at various input pulse durations.

Tables (2)

Tables Icon

Table I. Material and structural parameters in the simulation

Tables Icon

Table II. Parameters of un-doped GaAs

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

χ Kerr = n 2 i , j = x , y , z i j E i × H j
σ TPA = 1 2 c ε 0 n r α 2 i , j = x , y , z i j E i × H j
σ FCA = [ e 3 ( 4 π 2 f 2 c ε 0 n r ) ] [ 1 ( m ce 2 μ e ) + 1 ( m ch 2 μ h ) ] N fc
d N fc dt + N fc τ = α 2 8 hf [ i , j x , y , z i j E i × H j ] 2
IF = T TPA T FCA + TPA T TPA

Metrics