Abstract

The lack of efficient detection techniques has so far prevented ultrasound-modulated optical tomography from achieving maturity. By applying a quantum spectral filter based on spectral-hole burning, one modulation sideband of the ultrasound-modulated diffuse photons can be efficiently selected while the DC and the other sidebands are blocked. This technique features a large etendue as well as the capability of processing numerous speckles in parallel. It is also immune to speckle decorrelation, potentially allowing real-time in vivo imaging. Both theory and experiments are presented.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. F. Jöbsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198, 1264-1267 (1977).
    [CrossRef] [PubMed]
  2. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Sig. Proc. 18, 57-75 (2001).
    [CrossRef]
  3. L. V. Wang, S. L. Jacques, and X. Zhao, "Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media," Opt. Lett. 20, 629-631 (1995).
    [CrossRef] [PubMed]
  4. M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, "Acousto-optic tomography with multuply scattered light," J. Opt. Soc. Am. A 14, 1151-1158 (1997).
    [CrossRef]
  5. L. V. Wang, "Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model," Opt. Lett. 26, 1191-1193 (2001).
    [CrossRef]
  6. L. V. Wang, "Mechanisms of Ultrasonic Modulation of Multiply Scattered Coherent Light: An Analytic Model," Phys. Rev. Lett. 87, 043903 (2001).
    [CrossRef] [PubMed]
  7. L. V. Wang and G. Ku, "Frequency-swept ultrasound-modulated optical tomography of scattering media," Opt. Lett. 23, 975-977 (1998).
    [CrossRef]
  8. A. Lev and B. G. Sfez, "Pulsed ultrasound-modulated light tomography," Opt. Lett. 28, 1549-1551 (2003).
    [CrossRef] [PubMed]
  9. W. Leutz and G. Maret, "Ultrasonic modulation of multiply scattered light," Physica B 204, 14-19 (1995).
    [CrossRef]
  10. S. Sakadži?? and L. V. Wang, "High-resolution ultrasound-modulated optical tomography in biological tissues," Opt. Lett. 29, 2770-2772 (2004).
    [CrossRef] [PubMed]
  11. S. Lévêque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, "Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing," Opt. Lett. 24, 181-183 (1999).
    [CrossRef]
  12. T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. Blonigen, and C. A. DiMarzio, "Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect," Opt. Lett. 29, 2509-2511 (2004).
    [CrossRef] [PubMed]
  13. F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, "Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues," Opt. Express 12, 5469-5474 (2004).
    [CrossRef] [PubMed]
  14. M. Gross, F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, P. Delaye, and G. Roosen, "Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media," Opt. Express 13, 7097-7112 (2005).
    [CrossRef] [PubMed]
  15. L. Sui, R. A. Roy, C. A. DiMarzio, and T. W. Murray, "Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect," Appl. Opt. 44, 4041-4048 (2005).
    [CrossRef] [PubMed]
  16. X. Xu, H. Zhang, P. Hemmer, D.-k. Qing, C. Kim, and L. V. Wang, "Photorefractive detection of tissue optical and mechanical properties by ultrasound modulated optical tomography," Opt. Lett. 32, 656-658 (2007).
    [CrossRef] [PubMed]
  17. M. Lesaffre, F. Jean, F. Ramaz, A. C. Boccara, P. Delaye, and G. Roosen, "In situ monitoring of the photorefractive response time in a self-adaptive holography setup developed for acousto-optic imaging," Opt. Express 15, 1030-1042 (2007).
    [CrossRef] [PubMed]
  18. Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, "Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter," Appl. Phys. Lett. 93, 011111 (2008).
    [CrossRef]
  19. T. M. Mossberg, "Time-domain frequency-selective optical storage," Opt. Lett. 7, 77-79 (1982).
    [CrossRef] [PubMed]
  20. L. Ménager, I. Lorgeré, J.-L. Le-Gouët, D. Dolfi, and J.-P. Huignard, "Demonstration of a radio-frequency spectrumanalyzer based on spectral hole burning," Opt. Lett. 26, 1245-1247 (2001).
    [CrossRef]
  21. Y. Li, A. Hoskins, F. Schlottau, K. H. Wagner, C. Embry, and W. R. Babbitt, "Ultrawideband coherent noise lidar range-Doppler imaging and signal processing by use of spatial-spectral holography in inhomogeneously broadened absorbers," Appl. Opt. 45, 6409-6420 (2006).
    [CrossRef] [PubMed]
  22. L. Allen and J. H. Eberly, Optical resonance and two-level atoms (Dover Publications, Inc., New York, 1987).
  23. M. Mitsunaga and R. G. Brewer, "Generalized perturbation theory of coherent optical emission," Phys. Rev. A 32, 1605-1613 (1985).
    [CrossRef] [PubMed]
  24. M. Colice, F. Schlottau, and K. H. Wagner, "Broadband radio-frequency spectrum analysis in spectral-hole-burning media," Appl. Opt. 45, 6393-6408 (2006).
    [CrossRef] [PubMed]
  25. P. Meystre and M. S. III, Elements of Quantum Optics, 3 ed. (Springer-Verlag Berlin Heidelberg, New York, 1999).
  26. F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, "A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination," Proc. SPIE 1888, 500-510 (1993).
    [CrossRef]
  27. M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, "Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection," Opt. Lett. 30, 1360-1362 (2005).
    [CrossRef] [PubMed]
  28. M. H. Hayes, Statistical digital signal processing and modeling (John Wiley & Sons, Inc., New York, 1996).
  29. D. Dalecki, "Mechanical bioeffects of ultrasound," Annu. Rev. Biomed. Eng. 6, 229-248 (2004).
    [CrossRef] [PubMed]
  30. P. C. D. Hobbs, "Ultrasensitive laser measurements without tears," Appl. Opt. 36, 903-920 (1997).
    [CrossRef] [PubMed]

2008 (1)

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, "Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter," Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

2007 (2)

2006 (2)

2005 (3)

2004 (4)

2003 (1)

2001 (4)

L. V. Wang, "Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model," Opt. Lett. 26, 1191-1193 (2001).
[CrossRef]

L. Ménager, I. Lorgeré, J.-L. Le-Gouët, D. Dolfi, and J.-P. Huignard, "Demonstration of a radio-frequency spectrumanalyzer based on spectral hole burning," Opt. Lett. 26, 1245-1247 (2001).
[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Sig. Proc. 18, 57-75 (2001).
[CrossRef]

L. V. Wang, "Mechanisms of Ultrasonic Modulation of Multiply Scattered Coherent Light: An Analytic Model," Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

1997 (2)

1995 (2)

1993 (1)

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, "A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination," Proc. SPIE 1888, 500-510 (1993).
[CrossRef]

1985 (1)

M. Mitsunaga and R. G. Brewer, "Generalized perturbation theory of coherent optical emission," Phys. Rev. A 32, 1605-1613 (1985).
[CrossRef] [PubMed]

1982 (1)

1977 (1)

F. F. Jöbsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198, 1264-1267 (1977).
[CrossRef] [PubMed]

Atlan, M.

Babbitt, W. R.

Blonigen, F.

Boas, D. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Sig. Proc. 18, 57-75 (2001).
[CrossRef]

Boccara, A. C.

Brewer, R. G.

M. Mitsunaga and R. G. Brewer, "Generalized perturbation theory of coherent optical emission," Phys. Rev. A 32, 1605-1613 (1985).
[CrossRef] [PubMed]

Brooks, D. H.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Sig. Proc. 18, 57-75 (2001).
[CrossRef]

Brooksby, G. W.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, "A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination," Proc. SPIE 1888, 500-510 (1993).
[CrossRef]

Colice, M.

Dalecki, D.

D. Dalecki, "Mechanical bioeffects of ultrasound," Annu. Rev. Biomed. Eng. 6, 229-248 (2004).
[CrossRef] [PubMed]

Delaye, P.

DiMarzio, C. A.

Dolfi, D.

Embry, C.

Forget, B. C.

Gaudette, R. J.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Sig. Proc. 18, 57-75 (2001).
[CrossRef]

Genack, A. Z.

Gross, M.

Hemmer, P.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, "Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter," Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

X. Xu, H. Zhang, P. Hemmer, D.-k. Qing, C. Kim, and L. V. Wang, "Photorefractive detection of tissue optical and mechanical properties by ultrasound modulated optical tomography," Opt. Lett. 32, 656-658 (2007).
[CrossRef] [PubMed]

Hobbs, P. C. D.

Hoskins, A.

Huignard, J.-P.

Jacques, S. L.

Jean, F.

Jöbsis, F. F.

F. F. Jöbsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198, 1264-1267 (1977).
[CrossRef] [PubMed]

Kempe, M.

Kilmer, M.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Sig. Proc. 18, 57-75 (2001).
[CrossRef]

Kim, C.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, "Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter," Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

X. Xu, H. Zhang, P. Hemmer, D.-k. Qing, C. Kim, and L. V. Wang, "Photorefractive detection of tissue optical and mechanical properties by ultrasound modulated optical tomography," Opt. Lett. 32, 656-658 (2007).
[CrossRef] [PubMed]

Ku, G.

Larionov, M.

Lebec, M.

Le-Gouët, J.-L.

Lesaffre, M.

Leutz, W.

W. Leutz and G. Maret, "Ultrasonic modulation of multiply scattered light," Physica B 204, 14-19 (1995).
[CrossRef]

Lev, A.

Lévêque, S.

Li, Y.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, "Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter," Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Y. Li, A. Hoskins, F. Schlottau, K. H. Wagner, C. Embry, and W. R. Babbitt, "Ultrawideband coherent noise lidar range-Doppler imaging and signal processing by use of spatial-spectral holography in inhomogeneously broadened absorbers," Appl. Opt. 45, 6409-6420 (2006).
[CrossRef] [PubMed]

Lorgeré, I.

Maguluri, G.

Maret, G.

W. Leutz and G. Maret, "Ultrasonic modulation of multiply scattered light," Physica B 204, 14-19 (1995).
[CrossRef]

Marks, F. A.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, "A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination," Proc. SPIE 1888, 500-510 (1993).
[CrossRef]

Ménager, L.

Miller, E. L.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Sig. Proc. 18, 57-75 (2001).
[CrossRef]

Mitsunaga, M.

M. Mitsunaga and R. G. Brewer, "Generalized perturbation theory of coherent optical emission," Phys. Rev. A 32, 1605-1613 (1985).
[CrossRef] [PubMed]

Mossberg, T. M.

Murray, T. W.

Nieva, A.

Qing, D.-k.

Ramaz, F.

Roosen, G.

Roy, R. A.

Saint-Jalmes, H.

Sakadži??, S.

Schlottau, F.

Sfez, B. G.

Sui, L.

Tomlinson, H. W.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, "A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination," Proc. SPIE 1888, 500-510 (1993).
[CrossRef]

Wagner, K. H.

Wang, L. V.

Xu, X.

Zaslavsky, D.

Zhang, H.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, "Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter," Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

X. Xu, H. Zhang, P. Hemmer, D.-k. Qing, C. Kim, and L. V. Wang, "Photorefractive detection of tissue optical and mechanical properties by ultrasound modulated optical tomography," Opt. Lett. 32, 656-658 (2007).
[CrossRef] [PubMed]

Zhang, Q.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Sig. Proc. 18, 57-75 (2001).
[CrossRef]

Zhao, X.

Annu. Rev. Biomed. Eng. (1)

D. Dalecki, "Mechanical bioeffects of ultrasound," Annu. Rev. Biomed. Eng. 6, 229-248 (2004).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, "Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter," Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

IEEE Sig. Proc. (1)

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Sig. Proc. 18, 57-75 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (3)

Opt. Lett. (11)

S. Sakadži?? and L. V. Wang, "High-resolution ultrasound-modulated optical tomography in biological tissues," Opt. Lett. 29, 2770-2772 (2004).
[CrossRef] [PubMed]

M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, "Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection," Opt. Lett. 30, 1360-1362 (2005).
[CrossRef] [PubMed]

X. Xu, H. Zhang, P. Hemmer, D.-k. Qing, C. Kim, and L. V. Wang, "Photorefractive detection of tissue optical and mechanical properties by ultrasound modulated optical tomography," Opt. Lett. 32, 656-658 (2007).
[CrossRef] [PubMed]

T. M. Mossberg, "Time-domain frequency-selective optical storage," Opt. Lett. 7, 77-79 (1982).
[CrossRef] [PubMed]

L. V. Wang, S. L. Jacques, and X. Zhao, "Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media," Opt. Lett. 20, 629-631 (1995).
[CrossRef] [PubMed]

L. V. Wang and G. Ku, "Frequency-swept ultrasound-modulated optical tomography of scattering media," Opt. Lett. 23, 975-977 (1998).
[CrossRef]

S. Lévêque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, "Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing," Opt. Lett. 24, 181-183 (1999).
[CrossRef]

L. V. Wang, "Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model," Opt. Lett. 26, 1191-1193 (2001).
[CrossRef]

L. Ménager, I. Lorgeré, J.-L. Le-Gouët, D. Dolfi, and J.-P. Huignard, "Demonstration of a radio-frequency spectrumanalyzer based on spectral hole burning," Opt. Lett. 26, 1245-1247 (2001).
[CrossRef]

A. Lev and B. G. Sfez, "Pulsed ultrasound-modulated light tomography," Opt. Lett. 28, 1549-1551 (2003).
[CrossRef] [PubMed]

T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. Blonigen, and C. A. DiMarzio, "Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect," Opt. Lett. 29, 2509-2511 (2004).
[CrossRef] [PubMed]

Phys. Rev. A (1)

M. Mitsunaga and R. G. Brewer, "Generalized perturbation theory of coherent optical emission," Phys. Rev. A 32, 1605-1613 (1985).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

L. V. Wang, "Mechanisms of Ultrasonic Modulation of Multiply Scattered Coherent Light: An Analytic Model," Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef] [PubMed]

Physica B (1)

W. Leutz and G. Maret, "Ultrasonic modulation of multiply scattered light," Physica B 204, 14-19 (1995).
[CrossRef]

Proc. SPIE (1)

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, "A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination," Proc. SPIE 1888, 500-510 (1993).
[CrossRef]

Science (1)

F. F. Jöbsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198, 1264-1267 (1977).
[CrossRef] [PubMed]

Other (3)

M. H. Hayes, Statistical digital signal processing and modeling (John Wiley & Sons, Inc., New York, 1996).

P. Meystre and M. S. III, Elements of Quantum Optics, 3 ed. (Springer-Verlag Berlin Heidelberg, New York, 1999).

L. Allen and J. H. Eberly, Optical resonance and two-level atoms (Dover Publications, Inc., New York, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Normalized spectral absorption profile of a SHB crystal with a spectral hole burned at ω P . ΔΓ I : inhomogeneous bandwidth. ΔΓ H : homogeneous linewidth.

Fig. 2.
Fig. 2.

Experimental setup. AOM: acousto-optic modulator. UST: ultrasound transducer. M: mirror. C: crystal. BB: beam block. D: detector. OS: optical shutter. Left top inset: lab coordinates: x, sample scanning direction; y, ultrasound propagation direction; z, light propagation direction.

Fig. 3.
Fig. 3.

Spectral filtering using spectral-hole burning.

Fig. 4.
Fig. 4.

Power spectrum of a UOT signal. Solid line: ultrasound was off. Dotted line: ultrasound was on.

Fig. 5.
Fig. 5.

Typical UOT signals with the pump beam on (red) and off (black). PB: pump beam.

Fig. 6.
Fig. 6.

SNR improvement as a function of the pump beam area.

Fig. 7.
Fig. 7.

Signal strength and resolution as a function of ultrasound pulse duration. Legend: number of cycles.

Fig. 8.
Fig. 8.

Tomogram obtained with the SHB UOT system. (a) Photograph of the object. Scale in mm. Left top inset: lab coordinates. (b) B-mode tomogram with the background. (c) B-mode tomogram with the background removed by division.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

d ε ( ω p , z ) / d z = j ( K / 2 ε ) P ( ω p , z ) = α ( ω p , z ) ε ( ω p , z ) ,
α ( ω p , z ) = j ( K / 2 ε ) P ( ω p ,z ) ε ( ω p ,z ) ·
d I p ( ω p ,z ) / d z = 2 Re [ α ( ω p ,z ) ] I p ( ω p , z ) ,
P ( ω P ,z ) = j ( µ e , g 2 / ) ε ( ω p ,z ) γ ( ω ω p ) Δ N ,
G ( ω ) = 1 ΔΓ I π exp ( ω 2 ΔΓ I 2 ) ,
u ˙ + u / T 2 = ( ω ω p ) ν ,
ν ˙ + ν / T 2 = ( ω ω p ) u + ( µ e , g / ) ε ( ω p , z ) w
w ˙ + ( w w eq ) / T 1 = ( µ e ,g / ) ε ( ω p , z ) ν
w ( ω , z ) = w e q 1 + [ I p ( ω p , z ) / I s a t ] ζ ( ω ω p ) ,
Δ N = G ( ω p ) N I 1 + [ I p ( ω p , z ) / I s a t ] ζ ( ω ω p ) .
δ 3 d B ( ω p , z ) = 1 T 2 1 + I p ( ω p , z ) / I s a t .
P ( z ) = d ω P ( ω s , z ) ,
P ( ω s , z ) = j ( μ e , g 2 / ) ε ( ω s , z ) γ ( ω ω s ) Δ N .
α ( ω s , ω p , z ) = α 0 ( ω s ) T 2 d ω G ( ω ) γ ( ω ω s ) 1 + [ I p ( ω p , z ) / I sat ] ζ ( ω ω p ) .
α 0 ( ω ) = N 0 , I K μ e , g 2 T 2 2 ε ħ .
I s , out ( ω s ) = I s ( ω s ) exp { 2 Re [ 0 L C α ( ω s , ω p , z ) d z ] } ,
E n ( m ,r ,t ) = A n exp { j [ ω 0 t + m sin ( ω u t ) + ϕ n ( r ,t ) ] } ,
E n ( m ,r ,t ) A n { exp [ j ( ω 0 t + ϕ n ,0 ( r ,t ) ) ] ± m 2 exp ( j ω ± t ) exp [ j ϕ n , ± ( r , t ) ] } ,
I n , o u t = I n ( ω 0 ) exp [ 2 α 0 ( ω 0 ) G ( ω 0 ) L c ] + I n ( ω + ) exp [ 2 α 0 ( ω + ) G ( ω + ) L c ]
+ I n ( ω ) exp [ 2 α 0 ( ω P ) G ( ω p ) 0 L c d z 1 + I p ( ω p , z ) / I s a t ] .
i o u t ( m ) n = 1 N A n 2 m 2 exp [ 2 α 0 ( ω p ) G ( ω p ) 0 L c d z 1 + [ p 0 ( ω p , z ) / s ] / I s a t ] ,
S N R N S N R 1 = N exp [ α 0 ( ω p ) G ( ω p ) 0 L c d z 1 + [ p 0 ( ω p , z ) / S ] / I s a t ] ,
i o u t ( m ) A n 2 m 2 0 R d r 2 π r exp [ 2 α 0 ( ω p ) G ( ω p ) 0 L c d z 1 + I 0 ( 0 , ω p , z ) exp ( r 2 / σ 2 ) / I s a t ] ,
S N R N S N R 1 = 0 R d r 2 π r exp [ 2 α 0 ( ω p ) G ( ω p ) 0 L c d z 1 + I 0 ( 0 , ω 0 , z ) exp ( r 2 / σ 2 ) / I s a t ] .

Metrics