Abstract

We demonstrate a method for adiabatically self-tuning a silicon microdisk resonator. This mechanism is not only able to sensitively probe the fast nonlinear cavity dynamics, but also provides various optical functionalities like pulse compression, shaping, and tunable time delay.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Reed, M. Soljacic, and J. Joannopoulos, "Color of shock waves in photonic crystals," Phys. Rev. Lett. 90, 203904 (2003).
    [CrossRef] [PubMed]
  2. M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
    [CrossRef] [PubMed]
  3. M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803(R) (2006).
    [CrossRef]
  4. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
    [CrossRef] [PubMed]
  5. Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, "Photon energy lifter," Opt. Express 14, 7270-7278 (2006).
    [CrossRef] [PubMed]
  6. S. F. Preble, Q. Xu, and M. Lipson, "Changing the colour of light in a silicon resonator," Nat. Photonics 1, 293-296 (2007).
    [CrossRef]
  7. M. W. McCutcheon, A. G. Pattantyus-Abraham, G. W. Rieger, and J. F. Young, "Emission spectrum of electromagnetic energy stored in a dynamically perturbed optical microcavity," Opt. Express 15, 11472-11480 (2007).
    [CrossRef] [PubMed]
  8. P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson. "Introducing photonic transitions between discrete modes in a silicon optical microcavity," Phys. Rev. Lett. 100, 033904 (2008).
    [CrossRef] [PubMed]
  9. A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, "Nonadiabatic dynamics of electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006).
    [CrossRef] [PubMed]
  10. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
    [CrossRef]
  11. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Mater. 6, 862-865 (2007).
    [CrossRef]
  12. Q. Lin, O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: Modeling and applications," Opt. Express 15, 16604-16644 (2007).
    [CrossRef] [PubMed]
  13. M. Borselli, T. J. Johnson, C. P. Michael, M. D. Henry, and O. Painter, "Encapsulation layers for low-loss silicon photonics," Appl. Phys. Lett. 91, 131117 (2007).
    [CrossRef]
  14. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).
    [CrossRef] [PubMed]
  15. T. J. Johnson, M. Borselli, and O. J. Painter, "Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator," Opt. Express 14, 817-831 (2006).
    [CrossRef] [PubMed]
  16. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Mode coupling in traveling-wave resonators," Opt. Lett. 27, 1669-1671 (2002).
    [CrossRef]
  17. The intrnsic Q factor is referred to that originated from the intrnisic loss of the microdisk, while the loaded one is referred to that for the microdisk loaded with the coupling fiber taper. See Ref. [14].
  18. P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal micresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005).
  19. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
    [CrossRef]
  20. R.W. Boyd and D. J. Gauthier, "Slow and fast light," in Progress in Optics, Vol. 43, E.Wolf, ed. (Elsevier, 2002).
  21. J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparant media and coupled resonator structures: comparative analysis," J. Opt. Soc. Am. B 22, 1062-1074 (2005).
    [CrossRef]
  22. E. Tien, N. S. Yuksek, F. Qian, and O. Boyraz, "Pulse compression and mode locking by using TPA in silicon waveguides," Opt. Express 15, 6500-6506 (2007).
    [CrossRef] [PubMed]
  23. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427, 615-618 (2004).
    [CrossRef] [PubMed]
  24. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]

2008 (1)

P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson. "Introducing photonic transitions between discrete modes in a silicon optical microcavity," Phys. Rev. Lett. 100, 033904 (2008).
[CrossRef] [PubMed]

2007 (7)

S. F. Preble, Q. Xu, and M. Lipson, "Changing the colour of light in a silicon resonator," Nat. Photonics 1, 293-296 (2007).
[CrossRef]

M. W. McCutcheon, A. G. Pattantyus-Abraham, G. W. Rieger, and J. F. Young, "Emission spectrum of electromagnetic energy stored in a dynamically perturbed optical microcavity," Opt. Express 15, 11472-11480 (2007).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Mater. 6, 862-865 (2007).
[CrossRef]

Q. Lin, O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: Modeling and applications," Opt. Express 15, 16604-16644 (2007).
[CrossRef] [PubMed]

M. Borselli, T. J. Johnson, C. P. Michael, M. D. Henry, and O. Painter, "Encapsulation layers for low-loss silicon photonics," Appl. Phys. Lett. 91, 131117 (2007).
[CrossRef]

E. Tien, N. S. Yuksek, F. Qian, and O. Boyraz, "Pulse compression and mode locking by using TPA in silicon waveguides," Opt. Express 15, 6500-6506 (2007).
[CrossRef] [PubMed]

2006 (4)

T. J. Johnson, M. Borselli, and O. J. Painter, "Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator," Opt. Express 14, 817-831 (2006).
[CrossRef] [PubMed]

A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, "Nonadiabatic dynamics of electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006).
[CrossRef] [PubMed]

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
[CrossRef] [PubMed]

Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, "Photon energy lifter," Opt. Express 14, 7270-7278 (2006).
[CrossRef] [PubMed]

2005 (4)

2004 (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

2003 (1)

E. J. Reed, M. Soljacic, and J. Joannopoulos, "Color of shock waves in photonic crystals," Phys. Rev. Lett. 90, 203904 (2003).
[CrossRef] [PubMed]

2002 (1)

1987 (1)

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Agrawal, G. P.

Asano, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Mater. 6, 862-865 (2007).
[CrossRef]

Barclay, P. E.

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Borselli, M.

Boyraz, O.

Carusotto, I.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Cojocaru, C.

A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, "Nonadiabatic dynamics of electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006).
[CrossRef] [PubMed]

Dong, P.

P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson. "Introducing photonic transitions between discrete modes in a silicon optical microcavity," Phys. Rev. Lett. 100, 033904 (2008).
[CrossRef] [PubMed]

Fan, S.

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

Gaburro, Z.

Ghulinyan, M.

Henry, M. D.

M. Borselli, T. J. Johnson, C. P. Michael, M. D. Henry, and O. Painter, "Encapsulation layers for low-loss silicon photonics," Appl. Phys. Lett. 91, 131117 (2007).
[CrossRef]

Joannopoulos, J.

E. J. Reed, M. Soljacic, and J. Joannopoulos, "Color of shock waves in photonic crystals," Phys. Rev. Lett. 90, 203904 (2003).
[CrossRef] [PubMed]

Johnson, T. J.

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Khurgin, J. B.

Kippenberg, T. J.

Kuramochi, E.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
[CrossRef] [PubMed]

Levenson, J. A.

A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, "Nonadiabatic dynamics of electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006).
[CrossRef] [PubMed]

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Lin, Q.

Lipson, M.

P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson. "Introducing photonic transitions between discrete modes in a silicon optical microcavity," Phys. Rev. Lett. 100, 033904 (2008).
[CrossRef] [PubMed]

S. F. Preble, Q. Xu, and M. Lipson, "Changing the colour of light in a silicon resonator," Nat. Photonics 1, 293-296 (2007).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Manipatruni, S.

P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson. "Introducing photonic transitions between discrete modes in a silicon optical microcavity," Phys. Rev. Lett. 100, 033904 (2008).
[CrossRef] [PubMed]

McCutcheon, M. W.

Michael, C. P.

M. Borselli, T. J. Johnson, C. P. Michael, M. D. Henry, and O. Painter, "Encapsulation layers for low-loss silicon photonics," Appl. Phys. Lett. 91, 131117 (2007).
[CrossRef]

Mitsugi, S.

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
[CrossRef] [PubMed]

Monnier, P.

A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, "Nonadiabatic dynamics of electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006).
[CrossRef] [PubMed]

Nagashima, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Mater. 6, 862-865 (2007).
[CrossRef]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Noda, S.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Mater. 6, 862-865 (2007).
[CrossRef]

Notomi, M.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
[CrossRef] [PubMed]

Painter, O.

Painter, O. J.

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Pattantyus-Abraham, A. G.

Pavesi, L.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Preble, S. F.

P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson. "Introducing photonic transitions between discrete modes in a silicon optical microcavity," Phys. Rev. Lett. 100, 033904 (2008).
[CrossRef] [PubMed]

S. F. Preble, Q. Xu, and M. Lipson, "Changing the colour of light in a silicon resonator," Nat. Photonics 1, 293-296 (2007).
[CrossRef]

Qian, F.

Raineri, F.

A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, "Nonadiabatic dynamics of electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006).
[CrossRef] [PubMed]

Raj, R.

A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, "Nonadiabatic dynamics of electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006).
[CrossRef] [PubMed]

Recati, A.

Reed, E. J.

E. J. Reed, M. Soljacic, and J. Joannopoulos, "Color of shock waves in photonic crystals," Phys. Rev. Lett. 90, 203904 (2003).
[CrossRef] [PubMed]

Riboli, F.

Rieger, G. W.

Robinson, J. T.

P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson. "Introducing photonic transitions between discrete modes in a silicon optical microcavity," Phys. Rev. Lett. 100, 033904 (2008).
[CrossRef] [PubMed]

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Shinya, A.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

Soljacic, M.

E. J. Reed, M. Soljacic, and J. Joannopoulos, "Color of shock waves in photonic crystals," Phys. Rev. Lett. 90, 203904 (2003).
[CrossRef] [PubMed]

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Spillane, S. M.

Srinivasan, K.

Sugiya, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Mater. 6, 862-865 (2007).
[CrossRef]

Tanabe, T.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

Tanaka, Y.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Mater. 6, 862-865 (2007).
[CrossRef]

Taniyama, H.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
[CrossRef] [PubMed]

Tien, E.

Upham, J.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Mater. 6, 862-865 (2007).
[CrossRef]

Vahala, K. J.

Xu, Q.

S. F. Preble, Q. Xu, and M. Lipson, "Changing the colour of light in a silicon resonator," Nat. Photonics 1, 293-296 (2007).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Yacomotti, A. M.

A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, "Nonadiabatic dynamics of electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006).
[CrossRef] [PubMed]

Yanik, M. F.

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

Young, J. F.

Yuksek, N. S.

Appl. Phys. Lett. (1)

M. Borselli, T. J. Johnson, C. P. Michael, M. D. Henry, and O. Painter, "Encapsulation layers for low-loss silicon photonics," Appl. Phys. Lett. 91, 131117 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Mater. (1)

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Mater. 6, 862-865 (2007).
[CrossRef]

Nat. Photonics (2)

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007).
[CrossRef]

S. F. Preble, Q. Xu, and M. Lipson, "Changing the colour of light in a silicon resonator," Nat. Photonics 1, 293-296 (2007).
[CrossRef]

Nature (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, "A high-speed silicon optical modulator based on a metaloxidesemiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. Lett. (5)

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006).
[CrossRef] [PubMed]

E. J. Reed, M. Soljacic, and J. Joannopoulos, "Color of shock waves in photonic crystals," Phys. Rev. Lett. 90, 203904 (2003).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson. "Introducing photonic transitions between discrete modes in a silicon optical microcavity," Phys. Rev. Lett. 100, 033904 (2008).
[CrossRef] [PubMed]

A. M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. A. Levenson, and R. Raj, "Nonadiabatic dynamics of electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006).
[CrossRef] [PubMed]

Other (3)

M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803(R) (2006).
[CrossRef]

The intrnsic Q factor is referred to that originated from the intrnisic loss of the microdisk, while the loaded one is referred to that for the microdisk loaded with the coupling fiber taper. See Ref. [14].

R.W. Boyd and D. J. Gauthier, "Slow and fast light," in Progress in Optics, Vol. 43, E.Wolf, ed. (Elsevier, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of the cavity self-tuning experiment. The input optical pulse is launched into the microdisk through a fiber taper, which excites adiabatic self-tuning of cavity resonance. The backward WGM couples back to the fiber taper as the reflection wave. (b) Experimental setup. EOM: electro-optic modulator. EDFA: erbium-doped fiber amplfier. VOA: variable optical attenuator. TBPF: tunable bandpass filter. DCA: digital communication analyzer. OSA: optical spectrum analyzer.

Fig. 2.
Fig. 2.

(a) The input pulse waveform. (b)–(d) Recorded (red) and simulated (blue) temporal waveforms of the back reflected fiber taper signal from the cavity at the three different power levels. The input pulse has a carrier wavelength resonant with the doublet at λ = 1542.94 nm. (e) Low power (linear regime) transmission wavelength scan of the doublet resonance (red: experimental record; blue: theoretical fitting). The doublet has an average intrinsic and loaded Q factor of 1.4×106 and 9.2×105, respectively. (f) Recorded and (g) simulated optical spectra at input power levels varying from 0.63 to 80 mW. The input power is doubled in each successive curve. The finite spectral resolution of the OSA (15 pm) has been incorporated into the theoretical spectra in (g), where the spectral response of the OSA is assumed to have a Gaussian shape. In (g), each theoretical spectrum is normalized by its own maximum.

Fig. 3.
Fig. 3.

Simulated spectrograms of the intracavity forward WGM (b), backward WGM (c), reflected wave (d) for the resonance of 1542.94 nm shown in Fig. 2, at an input peak power of 40 mW. The spectrograms are plotted in a log scale. The right column shows the corresponding spectra (red) compared with the input (blue). The impact of the OSA resolution is not incorporated into the spectra. (e) shows the normalized temporal waveforms for the three waves (blue: forward WGM; red: backward WGM; green: reflected wave). (a) shows the carrier density N (blue) and induced refractive-index change n f (red). The sampling time window is 400 ps for the spectrograms.

Fig. 4.
Fig. 4.

Same as Fig. 3 except that the resonance is assumed to be critically coupled to the fiber taper with a loaded Q factor of 104.

Fig. 5.
Fig. 5.

(a) Recorded reflected signal temporal waveforms for excitation of the resonance at λ = 1551.27 nm under three different peak power levels. The inset shows the low-power (linear regime) transmission wavelength scan of the high-Q resonant mode (red: experimental record; blue: theoretical fitting). The doublet has an average intrinsic and loaded Q factor of 3.28×105 and 1.46×105, respectively. (b) Reflected signal temporal waveforms recorded with different frequency detuning, as indicated by the red (on-resonance) and blue (16 pm blue-detuned) arrows in the inset. (c) Reflected signal temporal waveform for an input pulse of 20 ns with a peak power of 20.5 mW launched on-resonance with a cavity mode of loaded Q = 9.7×104. The blue and red curves are for the input and reflection signals, respectively. A small hump at t = 40 ns is due to the non-zero floor of the tail of the input pulse (a result of the limited optical modulator extinction). A zoomed-in view of the measured compressed pulse waveform [indicated by the dashed circle in (c)] is shown in (d).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d E f d t = i ( ω ω 0 ) E f E f 2 τ t + i β 0 E b + Γ ( i ω n f n 0 c α f 2 n 0 ) E f + i γ ( E f 2 + 2 E b 2 ) E f + i E i τ e ,
d E b d t = i ( ω ω 0 ) E b E b 2 τ t + i β 0 E f + Γ ( i ω n f n 0 c α f 2 n 0 ) E b + i γ ( E b 2 + 2 E f 2 ) E b ,
d N d t = ν g 2 β T 2 h ¯ ω V eff 2 ( E f 4 + 4 E f 2 E b 2 + E b 4 ) N τ 0 ,

Metrics