Abstract

We demonstrate that harmonic sidebands of an electro-optic modulator’s driving frequency can be used as the local oscillator in a photonic down-mixing process in order to significantly enhance the bandwidth of near-field, electro-optic, microwave measurements. The creation of second- and third-order-harmonic modulation sidebands on a laser-diode output are described, with heterodyne down-conversion of microwave signals taking place within an electro-optic sensor crystal. The measurement bandwidth of an electro-optic microwave probe can thus be enhanced by as much as a factor of three with respect to the use of conventional, fundamental-harmonic sidebands. Carrier-sideband analysis from the measured optical spectrum indicates that millimeter-wave-frequency local-oscillator sidebands can be created using a Ku-band electro-optic modulator and that the electro-optic-signal-modulation depth can be enhanced by suppressing the light-beam carrier component. Transverse near-field distributions from high frequency patch antennas are extracted using both second- and third-order-harmonic sidebands.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
    [CrossRef]
  2. K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near -Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).
  3. K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
    [CrossRef]
  4. K. Sasagawa, M. Tsuchiya, and M. Izutsu, "Electrooptic probing based on photonic down-conversion," Eighth Int. Symp. Contemporary Photon. Tech. Dig. 29-30, (2005).
  5. K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
    [CrossRef]
  6. D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth," Meas. Sci. Technol. (to be published).
  7. K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
    [CrossRef]
  8. B. H. Kolner and D. W. Dolfi, "Intermodulation distortion and compression in an integrated electrooptic modulator," Appl. Opt. 26, 3676-3680 (1987).
    [CrossRef] [PubMed]
  9. B. Masella and X. Zhang, "Linearized optical single sideband Mach-Zehnder electro-optic modulator for radio over fiber systems," Opt. Express 169181-9190 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-9181.
    [CrossRef] [PubMed]
  10. D. J. Lee, J. J. Kang, C. C. Chen, and J. F. Whitaker, "Vector Near-Field Measurement System Using an Electro-Optic Microcavity and Electrical Down-conversion," IEEE 2008 MTT-S International Microwave Symposium Digest, 1589-1592, (2008).
  11. J. J. Kang, D. J. Lee, C. C. Chen, J. F. Whitaker, and E. J. Rothwell, "Compact Mobile RFID Antenna Design and Analysis Using Photonic-assisted Vector Near-field Characterization," IEEE 2008 International Conference on RFID Digest, 81-88, (2008).
  12. D. J. Lee and J. F. Whitaker, "A Simplified Fabry-Pérot Electrooptic-Modulation Sensor," IEEE Photon. Technol. Lett. 20, 866-868, (2008).
    [CrossRef]

2008

2007

K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

2001

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

2000

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near -Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).

1998

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

1987

Crites, M. H.

D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth," Meas. Sci. Technol. (to be published).

David, G.

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Dolfi, D. W.

Forman, M.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Hubert, J.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Kanno, A

K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

Katehi, L. P. B.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near -Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Kawanishi, T.

K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

Kolner, B. H.

Lee, D. J.

D. J. Lee and J. F. Whitaker, "A Simplified Fabry-Pérot Electrooptic-Modulation Sensor," IEEE Photon. Technol. Lett. 20, 866-868, (2008).
[CrossRef]

D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth," Meas. Sci. Technol. (to be published).

Marshall, T.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Masella, B.

Mirth, L.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Popovic, Z.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Robertson, S.

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Sasagawa, K.

K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

Tsuchiya, M.

K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

Whitaker, J. F.

D. J. Lee and J. F. Whitaker, "A Simplified Fabry-Pérot Electrooptic-Modulation Sensor," IEEE Photon. Technol. Lett. 20, 866-868, (2008).
[CrossRef]

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near -Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth," Meas. Sci. Technol. (to be published).

Yang, K.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near -Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Yook, J. G.

K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near -Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).

Zhang, X.

Appl. Opt.

Appl. Phys. Lett.

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

D. J. Lee and J. F. Whitaker, "A Simplified Fabry-Pérot Electrooptic-Modulation Sensor," IEEE Photon. Technol. Lett. 20, 866-868, (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near -Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Meas. Sci. Technol.

D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth," Meas. Sci. Technol. (to be published).

Opt. Express

Other

D. J. Lee, J. J. Kang, C. C. Chen, and J. F. Whitaker, "Vector Near-Field Measurement System Using an Electro-Optic Microcavity and Electrical Down-conversion," IEEE 2008 MTT-S International Microwave Symposium Digest, 1589-1592, (2008).

J. J. Kang, D. J. Lee, C. C. Chen, J. F. Whitaker, and E. J. Rothwell, "Compact Mobile RFID Antenna Design and Analysis Using Photonic-assisted Vector Near-field Characterization," IEEE 2008 International Conference on RFID Digest, 81-88, (2008).

K. Sasagawa, M. Tsuchiya, and M. Izutsu, "Electrooptic probing based on photonic down-conversion," Eighth Int. Symp. Contemporary Photon. Tech. Dig. 29-30, (2005).

Supplementary Material (5)

» Media 1: AVI (3997 KB)     
» Media 2: AVI (3987 KB)     
» Media 3: AVI (3296 KB)     
» Media 4: AVI (3985 KB)     
» Media 5: AVI (3981 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Amplitude modulations at three symmetric DC-bias points of a sine-squared modulation function. The input sinusoids are drawn with vertical time axes and the modulation outputs with horizontal time axes. (b) Modulated spectra and evolution of modulation depth at operating point a for several fundamental driving frequencies (Black, red, green and blue: fLO = 5.241, 10.482, 15, 25 GHz, respectively; input LO-drive power is +14 dBm).

Fig. 2.
Fig. 2.

(a) Modulated spectra and evolution of modulation depth for several driving frequencies (Black, red, green and blue: fLO/2 = 5.241, 10.482, 15, and 25 GHz, respectively; +14 dBm LO drive power) at the second-order harmonic operating points (bias b in Fig. 1(a)). (b) Modulated spectra and change in modulation depth for various driving power levels (Red, black and green: +11, +14, and +17 dBm, respectively, at 25 GHz. Blue: optically amplified black spectrum).

Fig. 3.
Fig. 3.

(a) Ratio of second-order-harmonic optical-sideband power (driven at 5.241 GHz, operating point b) to fundamental optical-sideband power (driven at 10.482 GHz and +14 dBm, operating point a) vs. EOM-drive power for the former. (b) Comparison of DSB (red: driven by +14 dBm at 10.482 GHz; green: drive power off) and SSB (Black: driven by +26 dBm at 5.241 GHz; blue: drive power off) modulated spectra for comparable optical power.

Fig. 4.
Fig. 4.

a) Overdriven amplitude modulations using the symmetric bias point, a. (b) Modulated spectra and evolution of modulation depth for several EOM-input-drive power levels (Green, red and black: +18, +22 and +26 dBm, respectively, at fLO/3. Blue: +14 dBm at fLO for comparison).

Fig. 5.
Fig. 5.

(a) Down-mixed EO-signal strengths using the first three modulation harmonics as the LO, versus modulator driving power (Black, red and blue: fundamental-, second- and third-order, respectively). (b) EO field maps of the transverse near-field distribution (horizontal polarization) from an X-band patch antenna for different modulator-drive powers, (as indicated, +18 to +26 dBm). The top (bottom) scans use the second (third)-order harmonic LO sideband to mix down the signal frequency to fIF. As amplitude and phase are measured simultaneously in this EO measurement technique, the two terms may be combined together to illustrate the temporal nature of the sinusoidal microwave electric field around the patch antenna (Media 1) for the 26-dBm case with the second-order harmonic LO sideband).

Fig. 6.
Fig. 6.

(a) 2 × 2 array of K-band patch antennas. (b) Horizontal (x-component) EO field amplitude maps of (a) using 2nd harmonic LO (Media 2) for amplitude-phase animation. (c) Vertical (y-component) EO field amplitude maps of (a) using 2nd harmonic LO (Media 3) for amplitude-phase animation). (EOM-LO: +26 dBm at 9.266 GHz, DUT-RF: +10 dBm at 18.535 GHz). (Fig.6 (a) is one half of a 4 × 2 array of the patch antennas. (Media 4), and (Media 5), are expanded versions of Media 2 and 3, respectively, for the entire symmetric 4 × 2 array, including the feed line).

Metrics