Abstract

Fluctuations in accommodation have been shown to be correlated in the two eyes of the same subject. However, the dynamic correlation of higher-order aberrations in the frequency domain has not been studied previously. A binocular Shack-Hartmann wavefront sensor is used to measure the ocular wavefront aberrations concurrently in both eyes of six subjects at a sampling rate of 20.5 Hz. Coherence function analysis shows that the inter-ocular correlation between aberrations depends on subject, Zernike mode and frequency. For each subject, the coherence values are generally low across the resolvable frequency range (mean 0.11), indicating poor dynamic correlation between the aberrations of the two eyes. Further analysis showed that phase consistency dominates the coherence values. Monocular and binocular viewing conditions showed similar power spectral density functions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. N. Charman and G. Heron, "Fluctuations in accommodation: a review," Ophthalmic Physiol. Opt. 8, 153-164 (1988).
    [CrossRef] [PubMed]
  2. B. Winn and B. Gilmartin, "Current perspective on microfluctuations of accommodation," Ophthalmic Physiol. Opt. 12, 252-256 (1992).
    [CrossRef] [PubMed]
  3. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, "Dynamics of the eye???s wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001).
    [CrossRef]
  4. T. Nirmaier, G. Pudasaini, and J. Bille, "Very fast wave-front measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor," Opt. Express 11, 2704-2716 (2003).
    [CrossRef] [PubMed]
  5. L. Stark, F. W. Campbell and J. Atwood "Pupil unrest: An example of noise in a biological servomechanism," Nature 182, 857-858 (1958).
    [CrossRef] [PubMed]
  6. A. Spauschus, J. Marsden, D. M. Halliday, J. R. Rosenberg, and P. Brown, "The origin of ocular microtremor in man," Exp. Brain Res. 126, 556-562 (1999).
    [CrossRef] [PubMed]
  7. F. W. Campbell, "Correlation of accommodation between the two eyes," J. Opt. Soc. Am. 50, 738 (1960).
  8. G. Heron, B. Winn, J. R. Pugh, and A. S. Eadie, "Twin channel infrared optometer for recording binocular accommodation," Optom. Vision Sci. 66, 123-129 (1989).
    [CrossRef] [PubMed]
  9. J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997).
    [CrossRef]
  10. S. Marcos and S. A. Burns, "On the symmetry between eyes of wavefront aberrations and cone directionality," Vision Res. 40, 2437-2447 (2000).
    [CrossRef]
  11. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
    [CrossRef] [PubMed]
  12. J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito and P. Artal, "Ocular wave-front aberrations statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
    [CrossRef]
  13. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
    [CrossRef] [PubMed]
  14. L. Wang and D. D. Koch, "Ocular higher-order aberrations in individuals screened for refractive surgery," J. Cataract Refract. Surg. 29, 1896-1903 (2003).
    [CrossRef]
  15. J. R. Jimenez, J. J. Castro, R. Jimenez, and E. Hita, "Interocular differences in higher-order aberrations on binocular visual performance," Optom. Vision Sci. 85, 174-179 (2008).
    [CrossRef] [PubMed]
  16. B. S. BoxerWachler, "Effect of pupil size on visual function under monocular and binocular conditions in LASIK and non-LASIK patients," J. Cataract Refract. Surg. 29, 275-278 (2003).
    [CrossRef]
  17. T. Kawamorita and H. Uozato, "The effect of pupil size on binocular summation," Invest. Ophthalmol. Visual Sci. 45, 4322 (2004).
    [CrossRef]
  18. T. Kawamorita and H. Uozato, "Effect of pupil size and ocular wavefront aberration under binocular and monocular conditions," Invest. Ophthalmol. Visual Sci.  47, 1202 (2006).
  19. H. C. Howland, "High order wave aberration of eyes," Ophthalmic Physiol. Opt. 22, 434-439 (2002).
  20. B. J. Wilson, K. E. Decker, and A. Roorda, "Monochromatic aberrations provide an odd-error cue to focus direction," J. Opt. Soc. Am. A 19, 833-839 (2002).
    [CrossRef] [PubMed]
  21. Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, "Changes of higher order aberration with various pupil sizes in the myopic eye," J. Refract. Surg. 19, S270-S274 (2003).
    [CrossRef]
  22. J. S. Pepose and R. A. Applegate, "Making sense out of wavefront sensing," Am. J. Ophthalmol. 139, 335-343 (2005).
    [PubMed]
  23. M. R. Clark and H. D. Crane, "Dynamic interaction in binocular vision," in Eye Movement and the Higher Psychological Functions, J. W. Senders, D. F. Fisher and R. A. Monty, eds., (Erlbaum, New York, 1978), pp. 77-88.
    [CrossRef] [PubMed]
  24. G. Heron and B. Winn, "Binocular accommodation reaction and response times for normal observers," Ophthalmic Physiol. Opt. 9, 176-183 (1989).
  25. F. Okuyama, T. Tokoro, and M. Fujieda, "Binocular infrared optometer for measuring accommodation in both eyes simultaneously in natural-viewing conditions," Appl. Opt. 32, 4147-4154 (1993).
    [CrossRef] [PubMed]
  26. D. Seidel, L. S. Gray, and G. Heron, "The effect of monocular and binocular viewing on the accommodation response to real targets in emmetropia and myopia," Optom. Vision Sci. 82, 279-285 (2005).
    [CrossRef] [PubMed]
  27. E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. Am. A 22, 1732-1738 (2005).
    [CrossRef]
  28. L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, "Accommodation with higher-order monochromatic aberrations corrected with adaptive optics," J. Opt. Soc. Am. A 23, 1-8 (2006).
    [CrossRef]
  29. M. L. Abbott, K. L. Schmid, and N. C. Strang, "Differences in the accommodation stimulus response curves of adult myopes and emmetropes," Ophthalmic Physiol. Opt. 18, 13-20 (1998).
    [CrossRef]
  30. T. O. Salmon, L. N. Thibos, and A. Bradley, "Comparison of the eye???s wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor," J. Opt. Soc. Am. A 15, 2457-2465 (1998).
    [CrossRef] [PubMed]
  31. L. N. Thibos and X. Hong, "Clinical applications of the Shack-Hartmann aberrometer," Optom. Vision Sci. 76, 817-825 (1999).
    [CrossRef]
  32. K. M. Hampson, S. S. Chin, and E. A. H. Mallen, "Binocular Shack-Hartmann sensor for the human eye," J. Mod. Opt. 55, 703-716 (2008).
    [CrossRef]
  33. British Standards: Safety of Laser Products, 60825-1:1994.
    [CrossRef]
  34. J. M. Bland and D. G. Altman, "Measuring agreement in method comparison studies,"Stat. Methods Med. Res. 8, 135-160 (1999).
  35. L. N. Thibos, W. Wheeler, and D. Horner, "Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error," Optom. Vision Sci. 74, 367-375 (1997).
    [CrossRef] [PubMed]
  36. S. Giessler, T. Hammer, and G. I. Duncker, "Aberrometry due dilated pupils- which mydriatic should be used?" Klin. Monatsbl. Augenheilkd. 219, 655-659 (2002).
    [CrossRef]
  37. A. Carkeet, S. Velaedan, Y. K. Tan, D. Y. J. Lee, and D. T. H. Tan, "Higher order ocular aberrations after cycloplegic and non-cycloplegic pupil dilation," J. Refract. Surg. 19, 316-322 (2003).
    [PubMed]
  38. Y. Yang and F. Wu, "Technical Note: Comparison of the wavefront aberrations between natural and pharmacological pupil dilations," Ophthalmic Physiol. Opt. 27, 220-223 (2007).
    [PubMed]
  39. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).
    [CrossRef] [PubMed]
  40. J. R. Pugh, A. S. Eadie, B. Winn, and G. Heron, "Power spectrum analysis in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 7, 321-324 (1987).
    [PubMed]
  41. M. Collins, B. Davis, and J. Wood, "Microfluctuations of steady-state accommodation and the cardiopulmonary system," Vision Res. 35, 2491-2502 (1995).
    [CrossRef] [PubMed]
  42. D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, "Analyzing the dynamic wavefront aberrations in the human eye," IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
    [PubMed]
  43. M. G. Doane, "Interaction of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink," Am. J. Ophthalmol. 89, 507-516 (1980).
    [CrossRef] [PubMed]
  44. A. S. Eadie, J. R. Pugh, and B. Winn, "The use of coherence functions in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 15, 311-317 (1995).
    [PubMed]
  45. M. Zhu, M. J. Collins, and R. D. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-571 (2004).
    [CrossRef] [PubMed]
  46. K. M. Hampson, E. A. H. Mallen, and C. Dainty, "Coherence function analysis of the higher-order aberrations of the human eye," Opt. Lett. 31, 184-186 (2006).
    [CrossRef] [PubMed]
  47. J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures (John Wiley and Sons, Inc., New York, 2000).
    [CrossRef] [PubMed]
  48. S. Y. Wang and M. X. Tang, "Exact confidence interval for magnitude-squared coherence estimates," IEEE Signal Process Lett. 11, 326-329 (2004).
  49. L. Diaz-Dantana, C. Torti, I. Munro, P. Gasson, and C. Dainty, "Benefit of higher closed-loop bandwidths in ocular adaptive optics," Opt. Express 11, 2597-2605 (2003).
    [CrossRef]
  50. A. Bruns, "Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches?," J. Neurosci. Methods 137, 321-332 (2004).
    [CrossRef]
  51. K. M. Hampson, I. Munro, C. Paterson, and C. Dainty, "Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system," J. Opt. Soc. Am. A 22, 1241-1250 (2005).
    [CrossRef] [PubMed]
  52. S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, "Effect of tear film break-up on higher-order aberrations measured with wavefront sensor," Am. J. Ophthalmol. 134, 115-117 (2002).
    [CrossRef]
  53. R. Montés-Micó, J. L. Alió, G. Muñoz, J. J. Pérez-Santonja, and W. N. Charman, "Postblink changes in total and corneal ocular aberrations," Ophthalmology 111, 758-767 (2004).
    [CrossRef]
  54. S. Gruppetta, F. Lacombe, and P. Puget, "Study of the dynamic aberrations of the human tear film," Opt. Express 13, 7631-7636 (2005)
    [CrossRef] [PubMed]
  55. S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Besscho, H. Watanabe, T. Fujikado, and Y. Tano, "Serial measurements of higher-order aberrations after blinking in normal subjects," Invest. Ophthalmol. Visual Sci. 47, 3318-3324 (2006).
    [CrossRef] [PubMed]
  56. M. Zhu, M. J. Collins, and D. R. Iskander, "The contribution of accommodation and the ocular surface to the microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 26, 439-446 (2006).
    [CrossRef]
  57. F. W. Campbell, J. G. Robson, and G. Westheimer, "Fluctuations of accommodation under steady viewing conditions," J. Physiol. 145, 579-594 (1959).
    [CrossRef] [PubMed]
  58. L. R. Stark and D. A. Atchison, "Pupil size, mean accommodation response and the fluctuations of accommodation," Ophthalmic Physiol. Opt. 17, 316-323 (1997).
    [PubMed]
  59. N. A. McBrien and D. W. Adams, "A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings," Invest. Ophthalmol. Visual Sci. 38, 321-333 (1997).
    [CrossRef] [PubMed]

2008

J. R. Jimenez, J. J. Castro, R. Jimenez, and E. Hita, "Interocular differences in higher-order aberrations on binocular visual performance," Optom. Vision Sci. 85, 174-179 (2008).
[CrossRef] [PubMed]

K. M. Hampson, S. S. Chin, and E. A. H. Mallen, "Binocular Shack-Hartmann sensor for the human eye," J. Mod. Opt. 55, 703-716 (2008).
[CrossRef]

2007

Y. Yang and F. Wu, "Technical Note: Comparison of the wavefront aberrations between natural and pharmacological pupil dilations," Ophthalmic Physiol. Opt. 27, 220-223 (2007).
[PubMed]

2006

L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, "Accommodation with higher-order monochromatic aberrations corrected with adaptive optics," J. Opt. Soc. Am. A 23, 1-8 (2006).
[CrossRef]

K. M. Hampson, E. A. H. Mallen, and C. Dainty, "Coherence function analysis of the higher-order aberrations of the human eye," Opt. Lett. 31, 184-186 (2006).
[CrossRef] [PubMed]

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Besscho, H. Watanabe, T. Fujikado, and Y. Tano, "Serial measurements of higher-order aberrations after blinking in normal subjects," Invest. Ophthalmol. Visual Sci. 47, 3318-3324 (2006).
[CrossRef] [PubMed]

M. Zhu, M. J. Collins, and D. R. Iskander, "The contribution of accommodation and the ocular surface to the microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 26, 439-446 (2006).
[CrossRef]

2005

2004

A. Bruns, "Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches?," J. Neurosci. Methods 137, 321-332 (2004).
[CrossRef]

R. Montés-Micó, J. L. Alió, G. Muñoz, J. J. Pérez-Santonja, and W. N. Charman, "Postblink changes in total and corneal ocular aberrations," Ophthalmology 111, 758-767 (2004).
[CrossRef]

S. Y. Wang and M. X. Tang, "Exact confidence interval for magnitude-squared coherence estimates," IEEE Signal Process Lett. 11, 326-329 (2004).

M. Zhu, M. J. Collins, and R. D. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-571 (2004).
[CrossRef] [PubMed]

D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, "Analyzing the dynamic wavefront aberrations in the human eye," IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
[PubMed]

2003

A. Carkeet, S. Velaedan, Y. K. Tan, D. Y. J. Lee, and D. T. H. Tan, "Higher order ocular aberrations after cycloplegic and non-cycloplegic pupil dilation," J. Refract. Surg. 19, 316-322 (2003).
[PubMed]

L. Diaz-Dantana, C. Torti, I. Munro, P. Gasson, and C. Dainty, "Benefit of higher closed-loop bandwidths in ocular adaptive optics," Opt. Express 11, 2597-2605 (2003).
[CrossRef]

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, "Changes of higher order aberration with various pupil sizes in the myopic eye," J. Refract. Surg. 19, S270-S274 (2003).
[CrossRef]

L. Wang and D. D. Koch, "Ocular higher-order aberrations in individuals screened for refractive surgery," J. Cataract Refract. Surg. 29, 1896-1903 (2003).
[CrossRef]

B. S. BoxerWachler, "Effect of pupil size on visual function under monocular and binocular conditions in LASIK and non-LASIK patients," J. Cataract Refract. Surg. 29, 275-278 (2003).
[CrossRef]

T. Nirmaier, G. Pudasaini, and J. Bille, "Very fast wave-front measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor," Opt. Express 11, 2704-2716 (2003).
[CrossRef] [PubMed]

2002

H. C. Howland, "High order wave aberration of eyes," Ophthalmic Physiol. Opt. 22, 434-439 (2002).

B. J. Wilson, K. E. Decker, and A. Roorda, "Monochromatic aberrations provide an odd-error cue to focus direction," J. Opt. Soc. Am. A 19, 833-839 (2002).
[CrossRef] [PubMed]

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito and P. Artal, "Ocular wave-front aberrations statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
[CrossRef] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).
[CrossRef] [PubMed]

S. Giessler, T. Hammer, and G. I. Duncker, "Aberrometry due dilated pupils- which mydriatic should be used?" Klin. Monatsbl. Augenheilkd. 219, 655-659 (2002).
[CrossRef]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, "Effect of tear film break-up on higher-order aberrations measured with wavefront sensor," Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef]

2001

2000

S. Marcos and S. A. Burns, "On the symmetry between eyes of wavefront aberrations and cone directionality," Vision Res. 40, 2437-2447 (2000).
[CrossRef]

1999

A. Spauschus, J. Marsden, D. M. Halliday, J. R. Rosenberg, and P. Brown, "The origin of ocular microtremor in man," Exp. Brain Res. 126, 556-562 (1999).
[CrossRef] [PubMed]

L. N. Thibos and X. Hong, "Clinical applications of the Shack-Hartmann aberrometer," Optom. Vision Sci. 76, 817-825 (1999).
[CrossRef]

J. M. Bland and D. G. Altman, "Measuring agreement in method comparison studies,"Stat. Methods Med. Res. 8, 135-160 (1999).

1998

M. L. Abbott, K. L. Schmid, and N. C. Strang, "Differences in the accommodation stimulus response curves of adult myopes and emmetropes," Ophthalmic Physiol. Opt. 18, 13-20 (1998).
[CrossRef]

T. O. Salmon, L. N. Thibos, and A. Bradley, "Comparison of the eye???s wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor," J. Opt. Soc. Am. A 15, 2457-2465 (1998).
[CrossRef] [PubMed]

1997

L. N. Thibos, W. Wheeler, and D. Horner, "Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error," Optom. Vision Sci. 74, 367-375 (1997).
[CrossRef] [PubMed]

J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997).
[CrossRef]

L. R. Stark and D. A. Atchison, "Pupil size, mean accommodation response and the fluctuations of accommodation," Ophthalmic Physiol. Opt. 17, 316-323 (1997).
[PubMed]

N. A. McBrien and D. W. Adams, "A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings," Invest. Ophthalmol. Visual Sci. 38, 321-333 (1997).
[CrossRef] [PubMed]

1995

A. S. Eadie, J. R. Pugh, and B. Winn, "The use of coherence functions in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 15, 311-317 (1995).
[PubMed]

M. Collins, B. Davis, and J. Wood, "Microfluctuations of steady-state accommodation and the cardiopulmonary system," Vision Res. 35, 2491-2502 (1995).
[CrossRef] [PubMed]

1993

1992

B. Winn and B. Gilmartin, "Current perspective on microfluctuations of accommodation," Ophthalmic Physiol. Opt. 12, 252-256 (1992).
[CrossRef] [PubMed]

1989

G. Heron, B. Winn, J. R. Pugh, and A. S. Eadie, "Twin channel infrared optometer for recording binocular accommodation," Optom. Vision Sci. 66, 123-129 (1989).
[CrossRef] [PubMed]

G. Heron and B. Winn, "Binocular accommodation reaction and response times for normal observers," Ophthalmic Physiol. Opt. 9, 176-183 (1989).

1988

W. N. Charman and G. Heron, "Fluctuations in accommodation: a review," Ophthalmic Physiol. Opt. 8, 153-164 (1988).
[CrossRef] [PubMed]

1987

J. R. Pugh, A. S. Eadie, B. Winn, and G. Heron, "Power spectrum analysis in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 7, 321-324 (1987).
[PubMed]

1980

M. G. Doane, "Interaction of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink," Am. J. Ophthalmol. 89, 507-516 (1980).
[CrossRef] [PubMed]

1960

1959

F. W. Campbell, J. G. Robson, and G. Westheimer, "Fluctuations of accommodation under steady viewing conditions," J. Physiol. 145, 579-594 (1959).
[CrossRef] [PubMed]

1958

L. Stark, F. W. Campbell and J. Atwood "Pupil unrest: An example of noise in a biological servomechanism," Nature 182, 857-858 (1958).
[CrossRef] [PubMed]

Abbott, M. L.

M. L. Abbott, K. L. Schmid, and N. C. Strang, "Differences in the accommodation stimulus response curves of adult myopes and emmetropes," Ophthalmic Physiol. Opt. 18, 13-20 (1998).
[CrossRef]

Adams, D. W.

N. A. McBrien and D. W. Adams, "A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings," Invest. Ophthalmol. Visual Sci. 38, 321-333 (1997).
[CrossRef] [PubMed]

Alió, J. L.

R. Montés-Micó, J. L. Alió, G. Muñoz, J. J. Pérez-Santonja, and W. N. Charman, "Postblink changes in total and corneal ocular aberrations," Ophthalmology 111, 758-767 (2004).
[CrossRef]

Altman, D. G.

J. M. Bland and D. G. Altman, "Measuring agreement in method comparison studies,"Stat. Methods Med. Res. 8, 135-160 (1999).

Applegate, R. A.

J. S. Pepose and R. A. Applegate, "Making sense out of wavefront sensing," Am. J. Ophthalmol. 139, 335-343 (2005).
[PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).
[CrossRef] [PubMed]

Aragón, J. L.

Artal, P.

Atchison, D. A.

L. R. Stark and D. A. Atchison, "Pupil size, mean accommodation response and the fluctuations of accommodation," Ophthalmic Physiol. Opt. 17, 316-323 (1997).
[PubMed]

Atwood, J.

L. Stark, F. W. Campbell and J. Atwood "Pupil unrest: An example of noise in a biological servomechanism," Nature 182, 857-858 (1958).
[CrossRef] [PubMed]

Besscho, K.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Besscho, H. Watanabe, T. Fujikado, and Y. Tano, "Serial measurements of higher-order aberrations after blinking in normal subjects," Invest. Ophthalmol. Visual Sci. 47, 3318-3324 (2006).
[CrossRef] [PubMed]

Bille, J.

Bland, J. M.

J. M. Bland and D. G. Altman, "Measuring agreement in method comparison studies,"Stat. Methods Med. Res. 8, 135-160 (1999).

Bradley, A.

Brown, P.

A. Spauschus, J. Marsden, D. M. Halliday, J. R. Rosenberg, and P. Brown, "The origin of ocular microtremor in man," Exp. Brain Res. 126, 556-562 (1999).
[CrossRef] [PubMed]

Bruns, A.

A. Bruns, "Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches?," J. Neurosci. Methods 137, 321-332 (2004).
[CrossRef]

Burns, S. A.

S. Marcos and S. A. Burns, "On the symmetry between eyes of wavefront aberrations and cone directionality," Vision Res. 40, 2437-2447 (2000).
[CrossRef]

Campbell, F. W.

F. W. Campbell, "Correlation of accommodation between the two eyes," J. Opt. Soc. Am. 50, 738 (1960).

F. W. Campbell, J. G. Robson, and G. Westheimer, "Fluctuations of accommodation under steady viewing conditions," J. Physiol. 145, 579-594 (1959).
[CrossRef] [PubMed]

L. Stark, F. W. Campbell and J. Atwood "Pupil unrest: An example of noise in a biological servomechanism," Nature 182, 857-858 (1958).
[CrossRef] [PubMed]

Carkeet, A.

A. Carkeet, S. Velaedan, Y. K. Tan, D. Y. J. Lee, and D. T. H. Tan, "Higher order ocular aberrations after cycloplegic and non-cycloplegic pupil dilation," J. Refract. Surg. 19, 316-322 (2003).
[PubMed]

Castejon-Mochon, J. F.

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito and P. Artal, "Ocular wave-front aberrations statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef]

Castro, J. J.

J. R. Jimenez, J. J. Castro, R. Jimenez, and E. Hita, "Interocular differences in higher-order aberrations on binocular visual performance," Optom. Vision Sci. 85, 174-179 (2008).
[CrossRef] [PubMed]

Charman, W. N.

R. Montés-Micó, J. L. Alió, G. Muñoz, J. J. Pérez-Santonja, and W. N. Charman, "Postblink changes in total and corneal ocular aberrations," Ophthalmology 111, 758-767 (2004).
[CrossRef]

W. N. Charman and G. Heron, "Fluctuations in accommodation: a review," Ophthalmic Physiol. Opt. 8, 153-164 (1988).
[CrossRef] [PubMed]

Chen, L.

Cheng, X.

Chin, S. S.

K. M. Hampson, S. S. Chin, and E. A. H. Mallen, "Binocular Shack-Hartmann sensor for the human eye," J. Mod. Opt. 55, 703-716 (2008).
[CrossRef]

Collins, M.

M. Collins, B. Davis, and J. Wood, "Microfluctuations of steady-state accommodation and the cardiopulmonary system," Vision Res. 35, 2491-2502 (1995).
[CrossRef] [PubMed]

Collins, M. J.

M. Zhu, M. J. Collins, and D. R. Iskander, "The contribution of accommodation and the ocular surface to the microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 26, 439-446 (2006).
[CrossRef]

D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, "Analyzing the dynamic wavefront aberrations in the human eye," IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
[PubMed]

M. Zhu, M. J. Collins, and R. D. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-571 (2004).
[CrossRef] [PubMed]

Cox, I. G.

Dainty, C.

Davis, B.

M. Collins, B. Davis, and J. Wood, "Microfluctuations of steady-state accommodation and the cardiopulmonary system," Vision Res. 35, 2491-2502 (1995).
[CrossRef] [PubMed]

Decker, K. E.

Diaz-Dantana, L.

Doane, M. G.

M. G. Doane, "Interaction of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink," Am. J. Ophthalmol. 89, 507-516 (1980).
[CrossRef] [PubMed]

Duncker, G. I.

S. Giessler, T. Hammer, and G. I. Duncker, "Aberrometry due dilated pupils- which mydriatic should be used?" Klin. Monatsbl. Augenheilkd. 219, 655-659 (2002).
[CrossRef]

Eadie, A. S.

A. S. Eadie, J. R. Pugh, and B. Winn, "The use of coherence functions in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 15, 311-317 (1995).
[PubMed]

G. Heron, B. Winn, J. R. Pugh, and A. S. Eadie, "Twin channel infrared optometer for recording binocular accommodation," Optom. Vision Sci. 66, 123-129 (1989).
[CrossRef] [PubMed]

J. R. Pugh, A. S. Eadie, B. Winn, and G. Heron, "Power spectrum analysis in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 7, 321-324 (1987).
[PubMed]

Fernández, E. J.

Fujieda, M.

Fujikado, T.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Besscho, H. Watanabe, T. Fujikado, and Y. Tano, "Serial measurements of higher-order aberrations after blinking in normal subjects," Invest. Ophthalmol. Visual Sci. 47, 3318-3324 (2006).
[CrossRef] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, "Effect of tear film break-up on higher-order aberrations measured with wavefront sensor," Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef]

Gasson, P.

Giessler, S.

S. Giessler, T. Hammer, and G. I. Duncker, "Aberrometry due dilated pupils- which mydriatic should be used?" Klin. Monatsbl. Augenheilkd. 219, 655-659 (2002).
[CrossRef]

Gilmartin, B.

B. Winn and B. Gilmartin, "Current perspective on microfluctuations of accommodation," Ophthalmic Physiol. Opt. 12, 252-256 (1992).
[CrossRef] [PubMed]

Gray, L. S.

D. Seidel, L. S. Gray, and G. Heron, "The effect of monocular and binocular viewing on the accommodation response to real targets in emmetropia and myopia," Optom. Vision Sci. 82, 279-285 (2005).
[CrossRef] [PubMed]

Gruppetta, S.

Guirao, A.

Halliday, D. M.

A. Spauschus, J. Marsden, D. M. Halliday, J. R. Rosenberg, and P. Brown, "The origin of ocular microtremor in man," Exp. Brain Res. 126, 556-562 (1999).
[CrossRef] [PubMed]

Hammer, T.

S. Giessler, T. Hammer, and G. I. Duncker, "Aberrometry due dilated pupils- which mydriatic should be used?" Klin. Monatsbl. Augenheilkd. 219, 655-659 (2002).
[CrossRef]

Hampson, K. M.

Heron, G.

D. Seidel, L. S. Gray, and G. Heron, "The effect of monocular and binocular viewing on the accommodation response to real targets in emmetropia and myopia," Optom. Vision Sci. 82, 279-285 (2005).
[CrossRef] [PubMed]

G. Heron and B. Winn, "Binocular accommodation reaction and response times for normal observers," Ophthalmic Physiol. Opt. 9, 176-183 (1989).

G. Heron, B. Winn, J. R. Pugh, and A. S. Eadie, "Twin channel infrared optometer for recording binocular accommodation," Optom. Vision Sci. 66, 123-129 (1989).
[CrossRef] [PubMed]

W. N. Charman and G. Heron, "Fluctuations in accommodation: a review," Ophthalmic Physiol. Opt. 8, 153-164 (1988).
[CrossRef] [PubMed]

J. R. Pugh, A. S. Eadie, B. Winn, and G. Heron, "Power spectrum analysis in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 7, 321-324 (1987).
[PubMed]

Hirohara, Y.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Besscho, H. Watanabe, T. Fujikado, and Y. Tano, "Serial measurements of higher-order aberrations after blinking in normal subjects," Invest. Ophthalmol. Visual Sci. 47, 3318-3324 (2006).
[CrossRef] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, "Effect of tear film break-up on higher-order aberrations measured with wavefront sensor," Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef]

Hita, E.

J. R. Jimenez, J. J. Castro, R. Jimenez, and E. Hita, "Interocular differences in higher-order aberrations on binocular visual performance," Optom. Vision Sci. 85, 174-179 (2008).
[CrossRef] [PubMed]

Hofer, H.

Hong, X.

Hori, Y.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, "Effect of tear film break-up on higher-order aberrations measured with wavefront sensor," Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef]

Horner, D.

L. N. Thibos, W. Wheeler, and D. Horner, "Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error," Optom. Vision Sci. 74, 367-375 (1997).
[CrossRef] [PubMed]

Howland, H. C.

H. C. Howland, "High order wave aberration of eyes," Ophthalmic Physiol. Opt. 22, 434-439 (2002).

Iskander, D. R.

M. Zhu, M. J. Collins, and D. R. Iskander, "The contribution of accommodation and the ocular surface to the microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 26, 439-446 (2006).
[CrossRef]

D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, "Analyzing the dynamic wavefront aberrations in the human eye," IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
[PubMed]

Iskander, R. D.

M. Zhu, M. J. Collins, and R. D. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-571 (2004).
[CrossRef] [PubMed]

Jimenez, J. R.

J. R. Jimenez, J. J. Castro, R. Jimenez, and E. Hita, "Interocular differences in higher-order aberrations on binocular visual performance," Optom. Vision Sci. 85, 174-179 (2008).
[CrossRef] [PubMed]

Jimenez, R.

J. R. Jimenez, J. J. Castro, R. Jimenez, and E. Hita, "Interocular differences in higher-order aberrations on binocular visual performance," Optom. Vision Sci. 85, 174-179 (2008).
[CrossRef] [PubMed]

Jin, Y.

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, "Changes of higher order aberration with various pupil sizes in the myopic eye," J. Refract. Surg. 19, S270-S274 (2003).
[CrossRef]

Koch, D. D.

L. Wang and D. D. Koch, "Ocular higher-order aberrations in individuals screened for refractive surgery," J. Cataract Refract. Surg. 29, 1896-1903 (2003).
[CrossRef]

Koh, S.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Besscho, H. Watanabe, T. Fujikado, and Y. Tano, "Serial measurements of higher-order aberrations after blinking in normal subjects," Invest. Ophthalmol. Visual Sci. 47, 3318-3324 (2006).
[CrossRef] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, "Effect of tear film break-up on higher-order aberrations measured with wavefront sensor," Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef]

Kruger, P. B.

Kuroda, T.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, "Effect of tear film break-up on higher-order aberrations measured with wavefront sensor," Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef]

Lacombe, F.

Lee, D. Y. J.

A. Carkeet, S. Velaedan, Y. K. Tan, D. Y. J. Lee, and D. T. H. Tan, "Higher order ocular aberrations after cycloplegic and non-cycloplegic pupil dilation," J. Refract. Surg. 19, 316-322 (2003).
[PubMed]

Liang, J.

Maeda, N.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Besscho, H. Watanabe, T. Fujikado, and Y. Tano, "Serial measurements of higher-order aberrations after blinking in normal subjects," Invest. Ophthalmol. Visual Sci. 47, 3318-3324 (2006).
[CrossRef] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, "Effect of tear film break-up on higher-order aberrations measured with wavefront sensor," Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef]

Mallen, E. A. H.

K. M. Hampson, S. S. Chin, and E. A. H. Mallen, "Binocular Shack-Hartmann sensor for the human eye," J. Mod. Opt. 55, 703-716 (2008).
[CrossRef]

K. M. Hampson, E. A. H. Mallen, and C. Dainty, "Coherence function analysis of the higher-order aberrations of the human eye," Opt. Lett. 31, 184-186 (2006).
[CrossRef] [PubMed]

Marcos, S.

S. Marcos and S. A. Burns, "On the symmetry between eyes of wavefront aberrations and cone directionality," Vision Res. 40, 2437-2447 (2000).
[CrossRef]

Marsden, J.

A. Spauschus, J. Marsden, D. M. Halliday, J. R. Rosenberg, and P. Brown, "The origin of ocular microtremor in man," Exp. Brain Res. 126, 556-562 (1999).
[CrossRef] [PubMed]

McBrien, N. A.

N. A. McBrien and D. W. Adams, "A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings," Invest. Ophthalmol. Visual Sci. 38, 321-333 (1997).
[CrossRef] [PubMed]

Mihashi, T.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Besscho, H. Watanabe, T. Fujikado, and Y. Tano, "Serial measurements of higher-order aberrations after blinking in normal subjects," Invest. Ophthalmol. Visual Sci. 47, 3318-3324 (2006).
[CrossRef] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, "Effect of tear film break-up on higher-order aberrations measured with wavefront sensor," Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef]

Montés-Micó, R.

R. Montés-Micó, J. L. Alió, G. Muñoz, J. J. Pérez-Santonja, and W. N. Charman, "Postblink changes in total and corneal ocular aberrations," Ophthalmology 111, 758-767 (2004).
[CrossRef]

Morelande, M. R.

D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, "Analyzing the dynamic wavefront aberrations in the human eye," IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
[PubMed]

Muñoz, G.

R. Montés-Micó, J. L. Alió, G. Muñoz, J. J. Pérez-Santonja, and W. N. Charman, "Postblink changes in total and corneal ocular aberrations," Ophthalmology 111, 758-767 (2004).
[CrossRef]

Munro, I.

Ninomiya, S.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Besscho, H. Watanabe, T. Fujikado, and Y. Tano, "Serial measurements of higher-order aberrations after blinking in normal subjects," Invest. Ophthalmol. Visual Sci. 47, 3318-3324 (2006).
[CrossRef] [PubMed]

Nirmaier, T.

Niu, Y.

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, "Changes of higher order aberration with various pupil sizes in the myopic eye," J. Refract. Surg. 19, S270-S274 (2003).
[CrossRef]

Okuyama, F.

Paterson, C.

Pepose, J. S.

J. S. Pepose and R. A. Applegate, "Making sense out of wavefront sensing," Am. J. Ophthalmol. 139, 335-343 (2005).
[PubMed]

Pérez-Santonja, J. J.

R. Montés-Micó, J. L. Alió, G. Muñoz, J. J. Pérez-Santonja, and W. N. Charman, "Postblink changes in total and corneal ocular aberrations," Ophthalmology 111, 758-767 (2004).
[CrossRef]

Porter, J.

Pudasaini, G.

Puget, P.

Pugh, J. R.

A. S. Eadie, J. R. Pugh, and B. Winn, "The use of coherence functions in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 15, 311-317 (1995).
[PubMed]

G. Heron, B. Winn, J. R. Pugh, and A. S. Eadie, "Twin channel infrared optometer for recording binocular accommodation," Optom. Vision Sci. 66, 123-129 (1989).
[CrossRef] [PubMed]

J. R. Pugh, A. S. Eadie, B. Winn, and G. Heron, "Power spectrum analysis in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 7, 321-324 (1987).
[PubMed]

Robson, J. G.

F. W. Campbell, J. G. Robson, and G. Westheimer, "Fluctuations of accommodation under steady viewing conditions," J. Physiol. 145, 579-594 (1959).
[CrossRef] [PubMed]

Roorda, A.

Rosenberg, J. R.

A. Spauschus, J. Marsden, D. M. Halliday, J. R. Rosenberg, and P. Brown, "The origin of ocular microtremor in man," Exp. Brain Res. 126, 556-562 (1999).
[CrossRef] [PubMed]

Salmon, T. O.

Schmid, K. L.

M. L. Abbott, K. L. Schmid, and N. C. Strang, "Differences in the accommodation stimulus response curves of adult myopes and emmetropes," Ophthalmic Physiol. Opt. 18, 13-20 (1998).
[CrossRef]

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).
[CrossRef] [PubMed]

Seidel, D.

D. Seidel, L. S. Gray, and G. Heron, "The effect of monocular and binocular viewing on the accommodation response to real targets in emmetropia and myopia," Optom. Vision Sci. 82, 279-285 (2005).
[CrossRef] [PubMed]

Singer, B.

Spauschus, A.

A. Spauschus, J. Marsden, D. M. Halliday, J. R. Rosenberg, and P. Brown, "The origin of ocular microtremor in man," Exp. Brain Res. 126, 556-562 (1999).
[CrossRef] [PubMed]

Stark, L.

L. Stark, F. W. Campbell and J. Atwood "Pupil unrest: An example of noise in a biological servomechanism," Nature 182, 857-858 (1958).
[CrossRef] [PubMed]

Stark, L. R.

L. R. Stark and D. A. Atchison, "Pupil size, mean accommodation response and the fluctuations of accommodation," Ophthalmic Physiol. Opt. 17, 316-323 (1997).
[PubMed]

Strang, N. C.

M. L. Abbott, K. L. Schmid, and N. C. Strang, "Differences in the accommodation stimulus response curves of adult myopes and emmetropes," Ophthalmic Physiol. Opt. 18, 13-20 (1998).
[CrossRef]

Tan, D. T. H.

A. Carkeet, S. Velaedan, Y. K. Tan, D. Y. J. Lee, and D. T. H. Tan, "Higher order ocular aberrations after cycloplegic and non-cycloplegic pupil dilation," J. Refract. Surg. 19, 316-322 (2003).
[PubMed]

Tan, Y. K.

A. Carkeet, S. Velaedan, Y. K. Tan, D. Y. J. Lee, and D. T. H. Tan, "Higher order ocular aberrations after cycloplegic and non-cycloplegic pupil dilation," J. Refract. Surg. 19, 316-322 (2003).
[PubMed]

Tang, M. X.

S. Y. Wang and M. X. Tang, "Exact confidence interval for magnitude-squared coherence estimates," IEEE Signal Process Lett. 11, 326-329 (2004).

Tano, Y.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Besscho, H. Watanabe, T. Fujikado, and Y. Tano, "Serial measurements of higher-order aberrations after blinking in normal subjects," Invest. Ophthalmol. Visual Sci. 47, 3318-3324 (2006).
[CrossRef] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, "Effect of tear film break-up on higher-order aberrations measured with wavefront sensor," Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef]

Thibos, L. N.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).
[CrossRef] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
[CrossRef] [PubMed]

L. N. Thibos and X. Hong, "Clinical applications of the Shack-Hartmann aberrometer," Optom. Vision Sci. 76, 817-825 (1999).
[CrossRef]

T. O. Salmon, L. N. Thibos, and A. Bradley, "Comparison of the eye???s wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor," J. Opt. Soc. Am. A 15, 2457-2465 (1998).
[CrossRef] [PubMed]

L. N. Thibos, W. Wheeler, and D. Horner, "Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error," Optom. Vision Sci. 74, 367-375 (1997).
[CrossRef] [PubMed]

Tokoro, T.

Torti, C.

Velaedan, S.

A. Carkeet, S. Velaedan, Y. K. Tan, D. Y. J. Lee, and D. T. H. Tan, "Higher order ocular aberrations after cycloplegic and non-cycloplegic pupil dilation," J. Refract. Surg. 19, 316-322 (2003).
[PubMed]

Wang, L.

L. Wang and D. D. Koch, "Ocular higher-order aberrations in individuals screened for refractive surgery," J. Cataract Refract. Surg. 29, 1896-1903 (2003).
[CrossRef]

Wang, S. Y.

S. Y. Wang and M. X. Tang, "Exact confidence interval for magnitude-squared coherence estimates," IEEE Signal Process Lett. 11, 326-329 (2004).

Wang, Y.

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, "Changes of higher order aberration with various pupil sizes in the myopic eye," J. Refract. Surg. 19, S270-S274 (2003).
[CrossRef]

Watanabe, H.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Besscho, H. Watanabe, T. Fujikado, and Y. Tano, "Serial measurements of higher-order aberrations after blinking in normal subjects," Invest. Ophthalmol. Visual Sci. 47, 3318-3324 (2006).
[CrossRef] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, "Effect of tear film break-up on higher-order aberrations measured with wavefront sensor," Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef]

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).
[CrossRef] [PubMed]

Westheimer, G.

F. W. Campbell, J. G. Robson, and G. Westheimer, "Fluctuations of accommodation under steady viewing conditions," J. Physiol. 145, 579-594 (1959).
[CrossRef] [PubMed]

Wheeler, W.

L. N. Thibos, W. Wheeler, and D. Horner, "Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error," Optom. Vision Sci. 74, 367-375 (1997).
[CrossRef] [PubMed]

Williams, D. R.

Wilson, B. J.

Winn, B.

A. S. Eadie, J. R. Pugh, and B. Winn, "The use of coherence functions in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 15, 311-317 (1995).
[PubMed]

B. Winn and B. Gilmartin, "Current perspective on microfluctuations of accommodation," Ophthalmic Physiol. Opt. 12, 252-256 (1992).
[CrossRef] [PubMed]

G. Heron, B. Winn, J. R. Pugh, and A. S. Eadie, "Twin channel infrared optometer for recording binocular accommodation," Optom. Vision Sci. 66, 123-129 (1989).
[CrossRef] [PubMed]

G. Heron and B. Winn, "Binocular accommodation reaction and response times for normal observers," Ophthalmic Physiol. Opt. 9, 176-183 (1989).

J. R. Pugh, A. S. Eadie, B. Winn, and G. Heron, "Power spectrum analysis in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 7, 321-324 (1987).
[PubMed]

Wood, J.

M. Collins, B. Davis, and J. Wood, "Microfluctuations of steady-state accommodation and the cardiopulmonary system," Vision Res. 35, 2491-2502 (1995).
[CrossRef] [PubMed]

Wu, F.

Y. Yang and F. Wu, "Technical Note: Comparison of the wavefront aberrations between natural and pharmacological pupil dilations," Ophthalmic Physiol. Opt. 27, 220-223 (2007).
[PubMed]

Yang, Y.

Y. Yang and F. Wu, "Technical Note: Comparison of the wavefront aberrations between natural and pharmacological pupil dilations," Ophthalmic Physiol. Opt. 27, 220-223 (2007).
[PubMed]

Zhao, K.

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, "Changes of higher order aberration with various pupil sizes in the myopic eye," J. Refract. Surg. 19, S270-S274 (2003).
[CrossRef]

Zhu, M.

M. Zhu, M. J. Collins, and D. R. Iskander, "The contribution of accommodation and the ocular surface to the microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 26, 439-446 (2006).
[CrossRef]

D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, "Analyzing the dynamic wavefront aberrations in the human eye," IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
[PubMed]

M. Zhu, M. J. Collins, and R. D. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-571 (2004).
[CrossRef] [PubMed]

Zuo, T.

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, "Changes of higher order aberration with various pupil sizes in the myopic eye," J. Refract. Surg. 19, S270-S274 (2003).
[CrossRef]

Am. J. Ophthalmol.

J. S. Pepose and R. A. Applegate, "Making sense out of wavefront sensing," Am. J. Ophthalmol. 139, 335-343 (2005).
[PubMed]

M. G. Doane, "Interaction of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink," Am. J. Ophthalmol. 89, 507-516 (1980).
[CrossRef] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, "Effect of tear film break-up on higher-order aberrations measured with wavefront sensor," Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef]

Appl. Opt.

Exp. Brain Res.

A. Spauschus, J. Marsden, D. M. Halliday, J. R. Rosenberg, and P. Brown, "The origin of ocular microtremor in man," Exp. Brain Res. 126, 556-562 (1999).
[CrossRef] [PubMed]

IEEE Signal Process Lett.

S. Y. Wang and M. X. Tang, "Exact confidence interval for magnitude-squared coherence estimates," IEEE Signal Process Lett. 11, 326-329 (2004).

IEEE Trans. Biomed. Eng.

D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, "Analyzing the dynamic wavefront aberrations in the human eye," IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
[PubMed]

Invest. Ophthalmol. Visual Sci.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, S. Ninomiya, K. Besscho, H. Watanabe, T. Fujikado, and Y. Tano, "Serial measurements of higher-order aberrations after blinking in normal subjects," Invest. Ophthalmol. Visual Sci. 47, 3318-3324 (2006).
[CrossRef] [PubMed]

N. A. McBrien and D. W. Adams, "A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings," Invest. Ophthalmol. Visual Sci. 38, 321-333 (1997).
[CrossRef] [PubMed]

J. Cataract Refract. Surg.

L. Wang and D. D. Koch, "Ocular higher-order aberrations in individuals screened for refractive surgery," J. Cataract Refract. Surg. 29, 1896-1903 (2003).
[CrossRef]

B. S. BoxerWachler, "Effect of pupil size on visual function under monocular and binocular conditions in LASIK and non-LASIK patients," J. Cataract Refract. Surg. 29, 275-278 (2003).
[CrossRef]

J. Mod. Opt.

K. M. Hampson, S. S. Chin, and E. A. H. Mallen, "Binocular Shack-Hartmann sensor for the human eye," J. Mod. Opt. 55, 703-716 (2008).
[CrossRef]

J. Neurosci. Methods

A. Bruns, "Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches?," J. Neurosci. Methods 137, 321-332 (2004).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, "Dynamics of the eye???s wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001).
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. Am. A 22, 1732-1738 (2005).
[CrossRef]

L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, "Accommodation with higher-order monochromatic aberrations corrected with adaptive optics," J. Opt. Soc. Am. A 23, 1-8 (2006).
[CrossRef]

T. O. Salmon, L. N. Thibos, and A. Bradley, "Comparison of the eye???s wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor," J. Opt. Soc. Am. A 15, 2457-2465 (1998).
[CrossRef] [PubMed]

B. J. Wilson, K. E. Decker, and A. Roorda, "Monochromatic aberrations provide an odd-error cue to focus direction," J. Opt. Soc. Am. A 19, 833-839 (2002).
[CrossRef] [PubMed]

K. M. Hampson, I. Munro, C. Paterson, and C. Dainty, "Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system," J. Opt. Soc. Am. A 22, 1241-1250 (2005).
[CrossRef] [PubMed]

J. Physiol.

F. W. Campbell, J. G. Robson, and G. Westheimer, "Fluctuations of accommodation under steady viewing conditions," J. Physiol. 145, 579-594 (1959).
[CrossRef] [PubMed]

J. Refract. Surg.

A. Carkeet, S. Velaedan, Y. K. Tan, D. Y. J. Lee, and D. T. H. Tan, "Higher order ocular aberrations after cycloplegic and non-cycloplegic pupil dilation," J. Refract. Surg. 19, 316-322 (2003).
[PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).
[CrossRef] [PubMed]

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, "Changes of higher order aberration with various pupil sizes in the myopic eye," J. Refract. Surg. 19, S270-S274 (2003).
[CrossRef]

Klin. Monatsbl. Augenheilkd.

S. Giessler, T. Hammer, and G. I. Duncker, "Aberrometry due dilated pupils- which mydriatic should be used?" Klin. Monatsbl. Augenheilkd. 219, 655-659 (2002).
[CrossRef]

Nature

L. Stark, F. W. Campbell and J. Atwood "Pupil unrest: An example of noise in a biological servomechanism," Nature 182, 857-858 (1958).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt.

W. N. Charman and G. Heron, "Fluctuations in accommodation: a review," Ophthalmic Physiol. Opt. 8, 153-164 (1988).
[CrossRef] [PubMed]

B. Winn and B. Gilmartin, "Current perspective on microfluctuations of accommodation," Ophthalmic Physiol. Opt. 12, 252-256 (1992).
[CrossRef] [PubMed]

H. C. Howland, "High order wave aberration of eyes," Ophthalmic Physiol. Opt. 22, 434-439 (2002).

G. Heron and B. Winn, "Binocular accommodation reaction and response times for normal observers," Ophthalmic Physiol. Opt. 9, 176-183 (1989).

M. L. Abbott, K. L. Schmid, and N. C. Strang, "Differences in the accommodation stimulus response curves of adult myopes and emmetropes," Ophthalmic Physiol. Opt. 18, 13-20 (1998).
[CrossRef]

J. R. Pugh, A. S. Eadie, B. Winn, and G. Heron, "Power spectrum analysis in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 7, 321-324 (1987).
[PubMed]

Y. Yang and F. Wu, "Technical Note: Comparison of the wavefront aberrations between natural and pharmacological pupil dilations," Ophthalmic Physiol. Opt. 27, 220-223 (2007).
[PubMed]

A. S. Eadie, J. R. Pugh, and B. Winn, "The use of coherence functions in the study of ocular mechanisms," Ophthalmic Physiol. Opt. 15, 311-317 (1995).
[PubMed]

M. Zhu, M. J. Collins, and R. D. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-571 (2004).
[CrossRef] [PubMed]

L. R. Stark and D. A. Atchison, "Pupil size, mean accommodation response and the fluctuations of accommodation," Ophthalmic Physiol. Opt. 17, 316-323 (1997).
[PubMed]

M. Zhu, M. J. Collins, and D. R. Iskander, "The contribution of accommodation and the ocular surface to the microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 26, 439-446 (2006).
[CrossRef]

Ophthalmology

R. Montés-Micó, J. L. Alió, G. Muñoz, J. J. Pérez-Santonja, and W. N. Charman, "Postblink changes in total and corneal ocular aberrations," Ophthalmology 111, 758-767 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Optom. Vision Sci.

G. Heron, B. Winn, J. R. Pugh, and A. S. Eadie, "Twin channel infrared optometer for recording binocular accommodation," Optom. Vision Sci. 66, 123-129 (1989).
[CrossRef] [PubMed]

J. R. Jimenez, J. J. Castro, R. Jimenez, and E. Hita, "Interocular differences in higher-order aberrations on binocular visual performance," Optom. Vision Sci. 85, 174-179 (2008).
[CrossRef] [PubMed]

L. N. Thibos and X. Hong, "Clinical applications of the Shack-Hartmann aberrometer," Optom. Vision Sci. 76, 817-825 (1999).
[CrossRef]

L. N. Thibos, W. Wheeler, and D. Horner, "Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error," Optom. Vision Sci. 74, 367-375 (1997).
[CrossRef] [PubMed]

D. Seidel, L. S. Gray, and G. Heron, "The effect of monocular and binocular viewing on the accommodation response to real targets in emmetropia and myopia," Optom. Vision Sci. 82, 279-285 (2005).
[CrossRef] [PubMed]

Stat. Methods Med. Res.

J. M. Bland and D. G. Altman, "Measuring agreement in method comparison studies,"Stat. Methods Med. Res. 8, 135-160 (1999).

Vision Res.

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito and P. Artal, "Ocular wave-front aberrations statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef]

S. Marcos and S. A. Burns, "On the symmetry between eyes of wavefront aberrations and cone directionality," Vision Res. 40, 2437-2447 (2000).
[CrossRef]

M. Collins, B. Davis, and J. Wood, "Microfluctuations of steady-state accommodation and the cardiopulmonary system," Vision Res. 35, 2491-2502 (1995).
[CrossRef] [PubMed]

Other

J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures (John Wiley and Sons, Inc., New York, 2000).
[CrossRef] [PubMed]

T. Kawamorita and H. Uozato, "The effect of pupil size on binocular summation," Invest. Ophthalmol. Visual Sci. 45, 4322 (2004).
[CrossRef]

T. Kawamorita and H. Uozato, "Effect of pupil size and ocular wavefront aberration under binocular and monocular conditions," Invest. Ophthalmol. Visual Sci.  47, 1202 (2006).

British Standards: Safety of Laser Products, 60825-1:1994.
[CrossRef]

M. R. Clark and H. D. Crane, "Dynamic interaction in binocular vision," in Eye Movement and the Higher Psychological Functions, J. W. Senders, D. F. Fisher and R. A. Monty, eds., (Erlbaum, New York, 1978), pp. 77-88.
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(Color online) Binocular Shack-Hartmann wavefront sensor. A: aperture, L: lens (superscript represents focal length of the lens in mm), CBS: cube beamsplitter, PBS: pellicle beamsplitter PM: plane mirror, HM: hot mirror.

Fig. 2.
Fig. 2.

(Color online) Validation of both channels with spherical trial lenses. (a) Measurements obtained in the right (blue) and left (red) channels against the actual power of trial lenses, (b) Bland and Altman plot showing the difference between the measurements of the two channels against their mean.

Fig. 3.
Fig. 3.

(Color online) Wavefront maps for both eyes of subjects YP (top) and JC (bottom).

Fig. 4.
Fig. 4.

(Color online) Zernike coefficients for the left and right eye for four subjects. Different colors represent different subjects. The value r represents the correlation coefficient between the two eyes of each subject. The solid black line represents a linear fit to all the data, where r is equal to 0.39. The dotted dashed line indicates the unity plot.

Fig. 5.
Fig. 5.

(Color online) PSD of the rms wavefront error for the right (blue) and left (red) eyes of subjects KH and EM. Confidence intervals are omitted for clarity.

Fig. 6.
Fig. 6.

(Color online) Coherence function of the rms wavefront errors for all subjects. Dotted lines represent the 95% confidence intervals.

Fig. 7.
Fig. 7.

(Color online) Coherence value between each individual aberration (up to and including the fifth radial order) of the two eyes of subject EM.

Fig. 8.
Fig. 8.

(Color online) The mean coherence values of the six subjects for the low frequency region (blue) and across the resolvable frequency range (red). The plot for the high frequency region is omitted for clarity.

Fig. 9.
Fig. 9.

(Color online) PSDs of the accommodation microfluctuations (a) and (c), and the rms wavefront errors of the higher-order aberrations (b) and (d), for the right (top) and left (bottom) eyes of subject KH, with both eyes open (blue) and one eye blocked (red).

Fig. 10.
Fig. 10.

(Color online) Coherence values for coherence function (blue) and phase consistency (red) for subject KH and EM.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

j = n ( n + 2 ) + m 2
γ xy 2 ( f ) = G xy ( f ) 2 G xx ( f ) G yy ( f )
S ( f , t ) = S ( f , t ) · e i φ ( f , t )
γ XY 2 ( f , t ) = Σ n = 1 N S X , n ( f , t ) · S Y , n * ( f , t ) 2 Σ n = 1 N S X , n ( f , t ) 2 · Σ n = 1 N S Y , n ( f , t ) 2
γ φ , XY 2 ( f , t ) = Σ n = 1 N e i φ X , n ( f , t ) · e i φ Y , n ( f , t ) 2 Σ n = 1 N 1 2 · Σ n = 1 N 1 2
= 1 N 2 Σ n = 1 N e i ( φ X , n ( f , t ) φ Y , n ( f , t ) ) 2

Metrics