Abstract

Broadband, sub-10-fs pulses, can be propagated through polarization-maintaining single mode fiber (PMF) for use in nonlinear optical microscopy (NLOM). We demonstrate delivery of near transform-limited, 1 nJ pulses from a Ti:Al2O3 (75 MHz repetition rate) oscillator via PMF to the NLOM focal plane while maintaining 120 nm of bandwidth. Negative group delay dispersion (GDD) introduced to pre-compensate normal dispersion of the optical fiber and microscope optics ensured linear pulse propagation through the PMF. The minimized time-bandwidth product of the laser pulses at the NLOM focus allowed the nonlinear excitation of multiple fluorophores simultaneously without central wavelength tuning. Polarization sensitive NLOM imaging using second harmonic generation in collagen was demonstrated using PMF delivered pulses. Two-photon excited fluorescence spectra and second harmonic images taken with and without the fiber indicates that the fiber based system is capable of generating optical signals that are within a factor of two to three of our traditional NLOM.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, "Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture," Tissue Eng. Part B: Reviews 14, 119-131 (2008).
    [CrossRef] [PubMed]
  2. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, "Fiber-optic fluorescence imaging," Nat. Methods 2, 941-950 (2005).
    [CrossRef] [PubMed]
  3. L. Fu and M. Gu, "Fibre-optic nonlinear optical microscopy and endoscopy," J. Microsc. 226, 195-206 (2007).
    [CrossRef] [PubMed]
  4. F. Helmchen, D. W. Tank, and W. Denk, "Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core," Appl. Opt. 41, 2930-2934 (2002).
    [CrossRef] [PubMed]
  5. S.-P. Tai, M.-C. Chan, T.-H. Tsai, S.-H. Guol, L.-J. Chen, and C.-K. Sun, "Two-photon fluorescence microscope with a hollow-core photonic crystal fiber," Opt. Express 12, 6122-6128 (2004).
    [CrossRef] [PubMed]
  6. M.-C. Chan, T.-M. Liu, S.-P. Tai, and C.-K. Sun, "Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy," J. Biomed. Opt. 10, 054006 (2005).
    [CrossRef] [PubMed]
  7. L. Fu, X. Gan, and M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Express 13, 5528-5534 (2005).
    [CrossRef] [PubMed]
  8. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, "A miniature head-mounted two-photon microscope: High resolution brain imaging in freely moving animals," Neuron 31, 903-912 (2001).
    [CrossRef] [PubMed]
  9. W. Gobel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, "Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective," Opt. Lett. 29, 2521-2523 (2004).
    [CrossRef] [PubMed]
  10. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, "Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo," Opt. Express 16, 5556-5564 (2008).
    [CrossRef] [PubMed]
  11. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30, 2272-2274 (2005).
    [CrossRef] [PubMed]
  12. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirrors," Opt. Express 14, 1027-1032 (2006).
    [CrossRef] [PubMed]
  13. M. T. Myaing, D. J. MacDonald, and X. Li, "Fiber-optic scanning two-photon fluorescence endoscope," Opt. Lett. 31, 1076-1078 (2006).
    [CrossRef] [PubMed]
  14. G. P. Agrawal, Nonlinear Fiber Optics (Acadmic Press, San Diego, 2007).
  15. D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1512-1515 (2002).
    [CrossRef]
  16. S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, "High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber," Opt. Lett. 30, 3225-3227 (2005).
    [CrossRef] [PubMed]
  17. S. W. Clark, F. O. Ilday, and F. W. Wise, "Fiber delivery of femtosecond pulses from a Ti:sapphire laser," Opt. Lett. 26, 1320-1322 (2001).
    [CrossRef]
  18. S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. Myaing, and D. A. Reis, "Adaptive dispersion compensation for remote fiber delivery of near-infrared femtosecond pulses," Opt. Lett. 29, 2602-2604 (2004).
    [CrossRef] [PubMed]
  19. M. Lelek, E. Suran, F. Louradour, A. Barthelemy, B. Viellerobe, and F. Lacombe, "Coherent femtosecond pulse shaping for the optimization of a non-linear micro-endoscope," Opt. Express 15, 10154-10162 (2007).
    [CrossRef] [PubMed]
  20. B. Rozsa, G. Katona, E. S. Vizi, Z. Varallyay, A. Saghy, L. Valenta, P. Maak, J. Fekete, A. Banyasz, and R. Szipocs, "Random access three-dimensional two-photon microscopy," Appl. Opt. 46, 1860-1865 (2007).
    [CrossRef] [PubMed]
  21. W. Gobel, A. Nimmerjahn, and F. Helmchen, "Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber," Opt. Lett. 29, 1285-1287 (2004).
    [CrossRef] [PubMed]
  22. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode," Opt. Lett. 22, 1344-1346 (1997).
    [CrossRef]
  23. A. M. Larson and A. T. Yeh, "Ex vivo characterization of sub-10-fs pulses," Opt. Lett. 31, 1681-1683 (2006).
    [CrossRef] [PubMed]
  24. D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239-242 (1998).
    [CrossRef]
  25. J. P. Ogilvie, K. J. Kubarych, A. Alexandrou, and M. Joffre, "Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control," Opt. Lett. 30, 911-913 (2005).
    [CrossRef] [PubMed]
  26. D. Meshulach, and Y. Silberberg, "Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses," Phys. Rev. A. 60, 1287-1292 (1999).
    [CrossRef]
  27. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton Intrapulse Interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
    [CrossRef]
  28. P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002).
    [CrossRef] [PubMed]

2008 (2)

A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, "Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture," Tissue Eng. Part B: Reviews 14, 119-131 (2008).
[CrossRef] [PubMed]

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, "Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo," Opt. Express 16, 5556-5564 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (3)

2005 (6)

2004 (4)

2002 (4)

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1512-1515 (2002).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton Intrapulse Interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002).
[CrossRef] [PubMed]

F. Helmchen, D. W. Tank, and W. Denk, "Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core," Appl. Opt. 41, 2930-2934 (2002).
[CrossRef] [PubMed]

2001 (2)

S. W. Clark, F. O. Ilday, and F. W. Wise, "Fiber delivery of femtosecond pulses from a Ti:sapphire laser," Opt. Lett. 26, 1320-1322 (2001).
[CrossRef]

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, "A miniature head-mounted two-photon microscope: High resolution brain imaging in freely moving animals," Neuron 31, 903-912 (2001).
[CrossRef] [PubMed]

1999 (1)

D. Meshulach, and Y. Silberberg, "Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses," Phys. Rev. A. 60, 1287-1292 (1999).
[CrossRef]

1998 (1)

D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239-242 (1998).
[CrossRef]

1997 (1)

Alexandrou, A.

Anderson, E. P.

Baltuska, A.

Banyasz, A.

Barthelemy, A.

Cavalieri, A. L.

Chan, M.-C.

M.-C. Chan, T.-M. Liu, S.-P. Tai, and C.-K. Sun, "Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy," J. Biomed. Opt. 10, 054006 (2005).
[CrossRef] [PubMed]

S.-P. Tai, M.-C. Chan, T.-H. Tsai, S.-H. Guol, L.-J. Chen, and C.-K. Sun, "Two-photon fluorescence microscope with a hollow-core photonic crystal fiber," Opt. Express 12, 6122-6128 (2004).
[CrossRef] [PubMed]

Chen, L.-J.

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, "Fiber-optic fluorescence imaging," Nat. Methods 2, 941-950 (2005).
[CrossRef] [PubMed]

Clark, S. W.

Cocker, E. D.

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30, 2272-2274 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, "Fiber-optic fluorescence imaging," Nat. Methods 2, 941-950 (2005).
[CrossRef] [PubMed]

Cranfield, C.

Da Silva, L. B.

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002).
[CrossRef] [PubMed]

Dantus, M.

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton Intrapulse Interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Denk, W.

F. Helmchen, D. W. Tank, and W. Denk, "Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core," Appl. Opt. 41, 2930-2934 (2002).
[CrossRef] [PubMed]

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, "A miniature head-mounted two-photon microscope: High resolution brain imaging in freely moving animals," Neuron 31, 903-912 (2001).
[CrossRef] [PubMed]

Dimarcello, F. V.

Engelbrecht, C. J.

Fee, M. S.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, "A miniature head-mounted two-photon microscope: High resolution brain imaging in freely moving animals," Neuron 31, 903-912 (2001).
[CrossRef] [PubMed]

Fekete, J.

Flusberg, B. A.

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30, 2272-2274 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, "Fiber-optic fluorescence imaging," Nat. Methods 2, 941-950 (2005).
[CrossRef] [PubMed]

Foster, M. A.

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1512-1515 (2002).
[CrossRef]

Fritz, D. M.

Fu, L.

Gaeta, A. L.

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1512-1515 (2002).
[CrossRef]

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode," Opt. Lett. 22, 1344-1346 (1997).
[CrossRef]

Gan, X.

Ghalmi, S.

Gibbs, H.

A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, "Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture," Tissue Eng. Part B: Reviews 14, 119-131 (2008).
[CrossRef] [PubMed]

Gobel, W.

Gu, M.

Guol, S.-H.

Helmchen, F.

Hu, J.-J.

A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, "Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture," Tissue Eng. Part B: Reviews 14, 119-131 (2008).
[CrossRef] [PubMed]

Ilday, F. O.

Jain, A.

Jasapara, J.

Joffre, M.

Johnston, R. S.

Jung, J. C.

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30, 2272-2274 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, "Fiber-optic fluorescence imaging," Nat. Methods 2, 941-950 (2005).
[CrossRef] [PubMed]

Katona, G.

Kerr, J. N. D.

Kim, B.-M.

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002).
[CrossRef] [PubMed]

Kubarych, K. J.

Lacombe, F.

Larson, A. M.

A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, "Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture," Tissue Eng. Part B: Reviews 14, 119-131 (2008).
[CrossRef] [PubMed]

A. M. Larson and A. T. Yeh, "Ex vivo characterization of sub-10-fs pulses," Opt. Lett. 31, 1681-1683 (2006).
[CrossRef] [PubMed]

Lee, S. H.

Lelek, M.

Li, X.

Liu, T.-M.

M.-C. Chan, T.-M. Liu, S.-P. Tai, and C.-K. Sun, "Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy," J. Biomed. Opt. 10, 054006 (2005).
[CrossRef] [PubMed]

Louradour, F.

Lozovoy, V. V.

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton Intrapulse Interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Maak, P.

MacDonald, D. J.

Meshulach, D.

D. Meshulach, and Y. Silberberg, "Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses," Phys. Rev. A. 60, 1287-1292 (1999).
[CrossRef]

D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239-242 (1998).
[CrossRef]

Moll, K. D.

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1512-1515 (2002).
[CrossRef]

Monberg, E.

Myaing, M.

Myaing, M. T.

Nimmerjahn, A.

Ogilvie, J. P.

Ouzounov, D. G.

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1512-1515 (2002).
[CrossRef]

Pastirk, I.

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton Intrapulse Interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, "Fiber-optic fluorescence imaging," Nat. Methods 2, 941-950 (2005).
[CrossRef] [PubMed]

Pshenichnikov, M. S.

Ramachandran, S.

Ranka, J. K.

Reis, D. A.

Reiser, K. M.

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002).
[CrossRef] [PubMed]

Rozsa, B.

Rubenchik, A. M.

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002).
[CrossRef] [PubMed]

Saghy, A.

Schnitzer, M. J.

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30, 2272-2274 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, "Fiber-optic fluorescence imaging," Nat. Methods 2, 941-950 (2005).
[CrossRef] [PubMed]

Seibel, E. J.

Silberberg, Y.

D. Meshulach, and Y. Silberberg, "Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses," Phys. Rev. A. 60, 1287-1292 (1999).
[CrossRef]

D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239-242 (1998).
[CrossRef]

Stoller, P.

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002).
[CrossRef] [PubMed]

Sun, C.-K.

M.-C. Chan, T.-M. Liu, S.-P. Tai, and C.-K. Sun, "Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy," J. Biomed. Opt. 10, 054006 (2005).
[CrossRef] [PubMed]

S.-P. Tai, M.-C. Chan, T.-H. Tsai, S.-H. Guol, L.-J. Chen, and C.-K. Sun, "Two-photon fluorescence microscope with a hollow-core photonic crystal fiber," Opt. Express 12, 6122-6128 (2004).
[CrossRef] [PubMed]

Suran, E.

Szipocs, R.

Tai, S.-P.

M.-C. Chan, T.-M. Liu, S.-P. Tai, and C.-K. Sun, "Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy," J. Biomed. Opt. 10, 054006 (2005).
[CrossRef] [PubMed]

S.-P. Tai, M.-C. Chan, T.-H. Tsai, S.-H. Guol, L.-J. Chen, and C.-K. Sun, "Two-photon fluorescence microscope with a hollow-core photonic crystal fiber," Opt. Express 12, 6122-6128 (2004).
[CrossRef] [PubMed]

Tank, D. W.

F. Helmchen, D. W. Tank, and W. Denk, "Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core," Appl. Opt. 41, 2930-2934 (2002).
[CrossRef] [PubMed]

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, "A miniature head-mounted two-photon microscope: High resolution brain imaging in freely moving animals," Neuron 31, 903-912 (2001).
[CrossRef] [PubMed]

Tsai, T.-H.

Valenta, L.

Varallyay, Z.

Viellerobe, B.

Vizi, E. S.

Walowicz, K. A.

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton Intrapulse Interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Webb, W. W.

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1512-1515 (2002).
[CrossRef]

Wiersma, D. A.

Wise, F. W.

Wisk, P.

Xie, H.

Yan, M. F.

Yeh, A. T.

A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, "Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture," Tissue Eng. Part B: Reviews 14, 119-131 (2008).
[CrossRef] [PubMed]

A. M. Larson and A. T. Yeh, "Ex vivo characterization of sub-10-fs pulses," Opt. Lett. 31, 1681-1683 (2006).
[CrossRef] [PubMed]

Zipfel, W. R.

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1512-1515 (2002).
[CrossRef]

Appl. Opt. (2)

J. Biomed. Opt. (2)

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002).
[CrossRef] [PubMed]

M.-C. Chan, T.-M. Liu, S.-P. Tai, and C.-K. Sun, "Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy," J. Biomed. Opt. 10, 054006 (2005).
[CrossRef] [PubMed]

J. Microsc. (1)

L. Fu and M. Gu, "Fibre-optic nonlinear optical microscopy and endoscopy," J. Microsc. 226, 195-206 (2007).
[CrossRef] [PubMed]

J. Phys. Chem. A (1)

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton Intrapulse Interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Nat. Methods (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, "Fiber-optic fluorescence imaging," Nat. Methods 2, 941-950 (2005).
[CrossRef] [PubMed]

Nature (1)

D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239-242 (1998).
[CrossRef]

Neuron (1)

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, "A miniature head-mounted two-photon microscope: High resolution brain imaging in freely moving animals," Neuron 31, 903-912 (2001).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (11)

M. T. Myaing, D. J. MacDonald, and X. Li, "Fiber-optic scanning two-photon fluorescence endoscope," Opt. Lett. 31, 1076-1078 (2006).
[CrossRef] [PubMed]

A. M. Larson and A. T. Yeh, "Ex vivo characterization of sub-10-fs pulses," Opt. Lett. 31, 1681-1683 (2006).
[CrossRef] [PubMed]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30, 2272-2274 (2005).
[CrossRef] [PubMed]

S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, "High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber," Opt. Lett. 30, 3225-3227 (2005).
[CrossRef] [PubMed]

J. P. Ogilvie, K. J. Kubarych, A. Alexandrou, and M. Joffre, "Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control," Opt. Lett. 30, 911-913 (2005).
[CrossRef] [PubMed]

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode," Opt. Lett. 22, 1344-1346 (1997).
[CrossRef]

S. W. Clark, F. O. Ilday, and F. W. Wise, "Fiber delivery of femtosecond pulses from a Ti:sapphire laser," Opt. Lett. 26, 1320-1322 (2001).
[CrossRef]

W. Gobel, A. Nimmerjahn, and F. Helmchen, "Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber," Opt. Lett. 29, 1285-1287 (2004).
[CrossRef] [PubMed]

W. Gobel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, "Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective," Opt. Lett. 29, 2521-2523 (2004).
[CrossRef] [PubMed]

S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. Myaing, and D. A. Reis, "Adaptive dispersion compensation for remote fiber delivery of near-infrared femtosecond pulses," Opt. Lett. 29, 2602-2604 (2004).
[CrossRef] [PubMed]

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1512-1515 (2002).
[CrossRef]

Phys. Rev. A. (1)

D. Meshulach, and Y. Silberberg, "Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses," Phys. Rev. A. 60, 1287-1292 (1999).
[CrossRef]

Tissue Eng. Part B: Reviews (1)

A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, "Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture," Tissue Eng. Part B: Reviews 14, 119-131 (2008).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Acadmic Press, San Diego, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Basic schematic diagram for optical fiber delivery of sub-10-fs pulses. Pulses were stretched using dispersion compensation mirrors (DCM). Polarization was aligned to a fiber axis using a λ/2 waveplate (WP). Coupling lens (L1) focuses the beam into the PMF and is collimated by lens (L2). Pulses were directed into the microscope and signals were detected using photomultiplier tubes or a fiber coupled spectrometer.

Fig. 2.
Fig. 2.

(a) Pulse spectra normalized to energy directly from the oscillator (blue) and after propagation through PMF (red). (b) Logarithmic plot of measured photocurrent from a GaAsP photodiode as a function of pulse energy into PMF (blue circles). Quadratic fit to data points shown for reference (red line).

Fig. 3.
Fig. 3.

Interferometric autocorrelation of fiber (a) and air (b) delivered pulses taken at the NLOM focal plane. Inset (a) autocorrelation with long (±240 fs) delays.

Fig 4.
Fig 4.

(a) Calculated T(ω) of the laser (blue) and PMF pulse spectra (red). (b) Two-photon photoluminescence excitation spectra for Indo-1 (diamond, cyan), FITC (circle, green), and TRITC (triangle, orange), Calculated T(ω) of the laser pulse shown for reference (solid line, blue).

Fig. 5.
Fig. 5.

Simultaneous excitation of Indo-1, FITC and TRITC using laser pulses delivered through air (blue) and PMF (red).

Fig. 6.
Fig. 6.

NLOM images of collagen fibers in rat skin using second harmonic generation with air (a) and fiber (b-c) delivered pulses. Double headed arrows indicate direction of incident laser polarization. Image depth is 15µm. Scale bar is 20 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T ( ω ) = 0 E ( ω 2 + Ω ) E ( ω 2 Ω ) d Ω 2 ,
Γ γ ( ω ) T ( ω ) d ω ,

Metrics