Abstract

We use a vector field model to analyze third-harmonic generation (THG) from model geometries (interfaces, slabs, periodic structures) illuminated by Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) beams focused by a high NA lens. Calculations show that phase matching conditions are significantly affected by the tailoring of the field distribution near focus. In the case of an interface parallel to the optical axis illuminated by an odd HG mode, the emission patterns and signal level reflect the relative orientation of the interface and the focal field structure. In the case of slabs and periodic structures, the emission patterns reflect the interplay between focal field distribution (amplitude and phase) and sample structure. Forward-to-backward emission ratios using different beam shapes provide sub-wavelength information about sample spatial frequencies.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yew and C. Sheppard, "Second harmonic generation microscopy with tightly focused linearly and radially polarized beams," Opt. Commun. 275, 453-457 (2007).
    [CrossRef]
  2. K. Yoshiki, R. Kanamaru, M. Hashimoto, N. Hashimoto, and T. Araki, "Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation," Opt. Lett. 32, 1680-1682 (2007).
    [CrossRef] [PubMed]
  3. V. V. Krishnamachari and E. O. Potma, "Focus-engineered coherent anti-Stokes Raman scattering microscopy: a numerical investigation," J. Opt. Soc. Am. A 24, 1138-1147 (2007).
    [CrossRef]
  4. V. V. Krishnamachari and E. O. Potma, "Imaging chemical interfaces perpendicular to the optical axis with focus-engineered coherent anti-Stokes Raman scattering microscopy," Chem. Phys. 341, 81-88 (2007).
    [CrossRef]
  5. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
    [CrossRef]
  6. M. M¨uller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D-microscopy of transparent objects using thirdharmonic generation," J. Microsc. 191, 266-274 (1998).
    [CrossRef] [PubMed]
  7. D. Débarre and E. Beaurepaire, "Quantitative characterization of biological liquids for third-harmonic generation microscopy," Biophys. J. 92, 603-612 (2007).
    [CrossRef]
  8. D. Yelin and Y. Silberberg, "Laser scanning third-harmonic generation microscopy in biology," Opt. Express 5 (1999).
    [CrossRef] [PubMed]
  9. D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, "Depth-resolved structural imaging by thirdharmonic generation microscopy," J. Struct. Biol. 147, 3-11 (2004).
    [CrossRef] [PubMed]
  10. D. Débarre, W. Supatto, E. Farge, B. Moulia, M.-C. Schanne-Klein, and E. Beaurepaire, "Velocimetric thirdharmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos," Opt. Lett. 29, 2881-2883 (2004).
    [CrossRef]
  11. C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, "Higher harmonic generation microscopy for developmental biology," J. Struct. Biol. 147, 19-30 (2004).
    [CrossRef] [PubMed]
  12. W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses," Proc. Nat. Acad. Sci. USA 102, 1047-1052 (2005).
    [CrossRef] [PubMed]
  13. D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nat. Methods 3, 47-53 (2006).
    [CrossRef]
  14. D. Débarre, W. Supatto, and E. Beaurepaire, "Structure sensitivity in third-harmonic generation microscopy," Opt. Lett. 30, 2134-2136 (2005).
    [CrossRef] [PubMed]
  15. J.-X. Cheng and X. S. Xie, "Green???s function formulation for third harmonic generation microscopy," J. Opt. Soc. Am. B 19, 1604-1610 (2002).
    [CrossRef]
  16. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system.," Proc. Royal Soc. A 253, 358-379 (1959).
    [CrossRef]
  17. L. Novotny and B. Hecht, Principles of nano-optics (Cambridge Univ Press, 2006).
  18. Boyd, R. W. Nonlinear optics, 2nd edition, (Academic Press 2003).
  19. H. Kogelnik and T. Li, Laser beams and resonators," Appl. Opt. 5, 1550 (1966).
    [CrossRef] [PubMed]
  20. K. Youngworth and T. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000).
    [CrossRef] [PubMed]
  21. D. Débarre, N. Olivier, and E. Beaurepaire, "Signal epidetection in third-harmonic generation microscopy of turbid media," Opt. Express 15, 8913-8924 (2007).
    [CrossRef] [PubMed]
  22. E. Y. S. Yew and C. J. R. Sheppard, "Fractional Gouy phase," Opt. Lett. 33, 1363-1365 (2008).
    [CrossRef] [PubMed]
  23. J. Mertz and L. Moreaux, "Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers," Opt. Commun. 196, 325-330 (2001).
    [CrossRef]
  24. C. J. R. Sheppard, "High-aperture beams," J. Opt. Soc. Am. A 18, 1579-1587 (2001).
    [CrossRef]
  25. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
    [CrossRef]
  26. S. Carrasco, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, "Second- and third-harmonic generation with vector Gaussian beams," J. Opt. Soc. Am. B 23, 2134-2141 (2006).
    [CrossRef]
  27. S. S. Sherif, M. R. Foreman, and P. Török, "Eigenfunction expansion of the electric fields in the focal region of a high numerical aperture focusing system," Opt. Express 16, 3397-3407 (2008).
    [CrossRef] [PubMed]
  28. M. R. Foreman, S. S. Sherif, P. R. T. Munro, and P. Török, "Inversion of the Debye-Wolf diffraction integral using an eigenfunction representation of the electric fields in the focal region," Opt. Express 16, 4901-4917 (2008).
    [CrossRef] [PubMed]

2008 (3)

2007 (6)

V. V. Krishnamachari and E. O. Potma, "Focus-engineered coherent anti-Stokes Raman scattering microscopy: a numerical investigation," J. Opt. Soc. Am. A 24, 1138-1147 (2007).
[CrossRef]

K. Yoshiki, R. Kanamaru, M. Hashimoto, N. Hashimoto, and T. Araki, "Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation," Opt. Lett. 32, 1680-1682 (2007).
[CrossRef] [PubMed]

D. Débarre, N. Olivier, and E. Beaurepaire, "Signal epidetection in third-harmonic generation microscopy of turbid media," Opt. Express 15, 8913-8924 (2007).
[CrossRef] [PubMed]

V. V. Krishnamachari and E. O. Potma, "Imaging chemical interfaces perpendicular to the optical axis with focus-engineered coherent anti-Stokes Raman scattering microscopy," Chem. Phys. 341, 81-88 (2007).
[CrossRef]

D. Débarre and E. Beaurepaire, "Quantitative characterization of biological liquids for third-harmonic generation microscopy," Biophys. J. 92, 603-612 (2007).
[CrossRef]

E. Yew and C. Sheppard, "Second harmonic generation microscopy with tightly focused linearly and radially polarized beams," Opt. Commun. 275, 453-457 (2007).
[CrossRef]

2006 (2)

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nat. Methods 3, 47-53 (2006).
[CrossRef]

S. Carrasco, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, "Second- and third-harmonic generation with vector Gaussian beams," J. Opt. Soc. Am. B 23, 2134-2141 (2006).
[CrossRef]

2005 (2)

D. Débarre, W. Supatto, and E. Beaurepaire, "Structure sensitivity in third-harmonic generation microscopy," Opt. Lett. 30, 2134-2136 (2005).
[CrossRef] [PubMed]

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses," Proc. Nat. Acad. Sci. USA 102, 1047-1052 (2005).
[CrossRef] [PubMed]

2004 (3)

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, "Depth-resolved structural imaging by thirdharmonic generation microscopy," J. Struct. Biol. 147, 3-11 (2004).
[CrossRef] [PubMed]

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, "Higher harmonic generation microscopy for developmental biology," J. Struct. Biol. 147, 19-30 (2004).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, E. Farge, B. Moulia, M.-C. Schanne-Klein, and E. Beaurepaire, "Velocimetric thirdharmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos," Opt. Lett. 29, 2881-2883 (2004).
[CrossRef]

2002 (1)

2001 (2)

J. Mertz and L. Moreaux, "Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers," Opt. Commun. 196, 325-330 (2001).
[CrossRef]

C. J. R. Sheppard, "High-aperture beams," J. Opt. Soc. Am. A 18, 1579-1587 (2001).
[CrossRef]

2000 (2)

K. Youngworth and T. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

1999 (1)

D. Yelin and Y. Silberberg, "Laser scanning third-harmonic generation microscopy in biology," Opt. Express 5 (1999).
[CrossRef] [PubMed]

1998 (1)

M. M¨uller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D-microscopy of transparent objects using thirdharmonic generation," J. Microsc. 191, 266-274 (1998).
[CrossRef] [PubMed]

1997 (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

1966 (1)

1959 (1)

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system.," Proc. Royal Soc. A 253, 358-379 (1959).
[CrossRef]

Araki, T.

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

Beaurepaire, E.

D. Débarre and E. Beaurepaire, "Quantitative characterization of biological liquids for third-harmonic generation microscopy," Biophys. J. 92, 603-612 (2007).
[CrossRef]

D. Débarre, N. Olivier, and E. Beaurepaire, "Signal epidetection in third-harmonic generation microscopy of turbid media," Opt. Express 15, 8913-8924 (2007).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nat. Methods 3, 47-53 (2006).
[CrossRef]

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses," Proc. Nat. Acad. Sci. USA 102, 1047-1052 (2005).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, and E. Beaurepaire, "Structure sensitivity in third-harmonic generation microscopy," Opt. Lett. 30, 2134-2136 (2005).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, E. Farge, B. Moulia, M.-C. Schanne-Klein, and E. Beaurepaire, "Velocimetric thirdharmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos," Opt. Lett. 29, 2881-2883 (2004).
[CrossRef]

Brakenhoff, G. J.

M. M¨uller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D-microscopy of transparent objects using thirdharmonic generation," J. Microsc. 191, 266-274 (1998).
[CrossRef] [PubMed]

Brouzés, E.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses," Proc. Nat. Acad. Sci. USA 102, 1047-1052 (2005).
[CrossRef] [PubMed]

Brown, T.

Carrasco, S.

Chen, S.-Y.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, "Higher harmonic generation microscopy for developmental biology," J. Struct. Biol. 147, 19-30 (2004).
[CrossRef] [PubMed]

Cheng, J.-X.

Chu, S.-W.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, "Higher harmonic generation microscopy for developmental biology," J. Struct. Biol. 147, 19-30 (2004).
[CrossRef] [PubMed]

Combettes, L.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nat. Methods 3, 47-53 (2006).
[CrossRef]

Débarre, D.

D. Débarre and E. Beaurepaire, "Quantitative characterization of biological liquids for third-harmonic generation microscopy," Biophys. J. 92, 603-612 (2007).
[CrossRef]

D. Débarre, N. Olivier, and E. Beaurepaire, "Signal epidetection in third-harmonic generation microscopy of turbid media," Opt. Express 15, 8913-8924 (2007).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nat. Methods 3, 47-53 (2006).
[CrossRef]

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses," Proc. Nat. Acad. Sci. USA 102, 1047-1052 (2005).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, and E. Beaurepaire, "Structure sensitivity in third-harmonic generation microscopy," Opt. Lett. 30, 2134-2136 (2005).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, E. Farge, B. Moulia, M.-C. Schanne-Klein, and E. Beaurepaire, "Velocimetric thirdharmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos," Opt. Lett. 29, 2881-2883 (2004).
[CrossRef]

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

Fabre, A.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nat. Methods 3, 47-53 (2006).
[CrossRef]

Fachima, R.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, "Depth-resolved structural imaging by thirdharmonic generation microscopy," J. Struct. Biol. 147, 3-11 (2004).
[CrossRef] [PubMed]

Farge, E.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses," Proc. Nat. Acad. Sci. USA 102, 1047-1052 (2005).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, E. Farge, B. Moulia, M.-C. Schanne-Klein, and E. Beaurepaire, "Velocimetric thirdharmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos," Opt. Lett. 29, 2881-2883 (2004).
[CrossRef]

Foreman, M. R.

Fourkas, J. T.

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Hashimoto, M.

Hashimoto, N.

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

Kanamaru, R.

Kogelnik, H.

Krishnamachari, V. V.

V. V. Krishnamachari and E. O. Potma, "Imaging chemical interfaces perpendicular to the optical axis with focus-engineered coherent anti-Stokes Raman scattering microscopy," Chem. Phys. 341, 81-88 (2007).
[CrossRef]

V. V. Krishnamachari and E. O. Potma, "Focus-engineered coherent anti-Stokes Raman scattering microscopy: a numerical investigation," J. Opt. Soc. Am. A 24, 1138-1147 (2007).
[CrossRef]

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Li, T.

Lin, C.-Y.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, "Higher harmonic generation microscopy for developmental biology," J. Struct. Biol. 147, 19-30 (2004).
[CrossRef] [PubMed]

Liu, T.-M.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, "Higher harmonic generation microscopy for developmental biology," J. Struct. Biol. 147, 19-30 (2004).
[CrossRef] [PubMed]

M¨uller, M.

M. M¨uller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D-microscopy of transparent objects using thirdharmonic generation," J. Microsc. 191, 266-274 (1998).
[CrossRef] [PubMed]

Martin, J.-L.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses," Proc. Nat. Acad. Sci. USA 102, 1047-1052 (2005).
[CrossRef] [PubMed]

Mertz, J.

J. Mertz and L. Moreaux, "Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers," Opt. Commun. 196, 325-330 (2001).
[CrossRef]

Moreaux, L.

J. Mertz and L. Moreaux, "Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers," Opt. Commun. 196, 325-330 (2001).
[CrossRef]

Moulia, B.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses," Proc. Nat. Acad. Sci. USA 102, 1047-1052 (2005).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, E. Farge, B. Moulia, M.-C. Schanne-Klein, and E. Beaurepaire, "Velocimetric thirdharmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos," Opt. Lett. 29, 2881-2883 (2004).
[CrossRef]

Munro, P. R. T.

Olivier, N.

Oron, D.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, "Depth-resolved structural imaging by thirdharmonic generation microscopy," J. Struct. Biol. 147, 3-11 (2004).
[CrossRef] [PubMed]

Pena, A.-M.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nat. Methods 3, 47-53 (2006).
[CrossRef]

Potma, E. O.

V. V. Krishnamachari and E. O. Potma, "Imaging chemical interfaces perpendicular to the optical axis with focus-engineered coherent anti-Stokes Raman scattering microscopy," Chem. Phys. 341, 81-88 (2007).
[CrossRef]

V. V. Krishnamachari and E. O. Potma, "Focus-engineered coherent anti-Stokes Raman scattering microscopy: a numerical investigation," J. Opt. Soc. Am. A 24, 1138-1147 (2007).
[CrossRef]

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Raz, S.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, "Depth-resolved structural imaging by thirdharmonic generation microscopy," J. Struct. Biol. 147, 3-11 (2004).
[CrossRef] [PubMed]

Richards, B.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system.," Proc. Royal Soc. A 253, 358-379 (1959).
[CrossRef]

Saleh, B. E. A.

Schanne-Klein, M.-C.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nat. Methods 3, 47-53 (2006).
[CrossRef]

D. Débarre, W. Supatto, E. Farge, B. Moulia, M.-C. Schanne-Klein, and E. Beaurepaire, "Velocimetric thirdharmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos," Opt. Lett. 29, 2881-2883 (2004).
[CrossRef]

Sheppard, C.

E. Yew and C. Sheppard, "Second harmonic generation microscopy with tightly focused linearly and radially polarized beams," Opt. Commun. 275, 453-457 (2007).
[CrossRef]

Sheppard, C. J. R.

Sherif, S. S.

Silberberg, Y.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, "Depth-resolved structural imaging by thirdharmonic generation microscopy," J. Struct. Biol. 147, 3-11 (2004).
[CrossRef] [PubMed]

D. Yelin and Y. Silberberg, "Laser scanning third-harmonic generation microscopy in biology," Opt. Express 5 (1999).
[CrossRef] [PubMed]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

Squier, J.

M. M¨uller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D-microscopy of transparent objects using thirdharmonic generation," J. Microsc. 191, 266-274 (1998).
[CrossRef] [PubMed]

Sun, C.-K.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, "Higher harmonic generation microscopy for developmental biology," J. Struct. Biol. 147, 19-30 (2004).
[CrossRef] [PubMed]

Supatto, W.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nat. Methods 3, 47-53 (2006).
[CrossRef]

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses," Proc. Nat. Acad. Sci. USA 102, 1047-1052 (2005).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, and E. Beaurepaire, "Structure sensitivity in third-harmonic generation microscopy," Opt. Lett. 30, 2134-2136 (2005).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, E. Farge, B. Moulia, M.-C. Schanne-Klein, and E. Beaurepaire, "Velocimetric thirdharmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos," Opt. Lett. 29, 2881-2883 (2004).
[CrossRef]

Tal, E.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, "Depth-resolved structural imaging by thirdharmonic generation microscopy," J. Struct. Biol. 147, 3-11 (2004).
[CrossRef] [PubMed]

Teich, M. C.

Tordjmann, T.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nat. Methods 3, 47-53 (2006).
[CrossRef]

Török, P.

Tsai, H.-J.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, "Higher harmonic generation microscopy for developmental biology," J. Struct. Biol. 147, 19-30 (2004).
[CrossRef] [PubMed]

Tsai, T.-H.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, "Higher harmonic generation microscopy for developmental biology," J. Struct. Biol. 147, 19-30 (2004).
[CrossRef] [PubMed]

Wilson, K. R.

M. M¨uller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D-microscopy of transparent objects using thirdharmonic generation," J. Microsc. 191, 266-274 (1998).
[CrossRef] [PubMed]

Wolf, E.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system.," Proc. Royal Soc. A 253, 358-379 (1959).
[CrossRef]

Xie, X. S.

Yelin, D.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, "Depth-resolved structural imaging by thirdharmonic generation microscopy," J. Struct. Biol. 147, 3-11 (2004).
[CrossRef] [PubMed]

D. Yelin and Y. Silberberg, "Laser scanning third-harmonic generation microscopy in biology," Opt. Express 5 (1999).
[CrossRef] [PubMed]

Yew, E.

E. Yew and C. Sheppard, "Second harmonic generation microscopy with tightly focused linearly and radially polarized beams," Opt. Commun. 275, 453-457 (2007).
[CrossRef]

Yew, E. Y. S.

Yoshiki, K.

Youngworth, K.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997).
[CrossRef]

Biophys. J. (1)

D. Débarre and E. Beaurepaire, "Quantitative characterization of biological liquids for third-harmonic generation microscopy," Biophys. J. 92, 603-612 (2007).
[CrossRef]

Chem. Phys. (1)

V. V. Krishnamachari and E. O. Potma, "Imaging chemical interfaces perpendicular to the optical axis with focus-engineered coherent anti-Stokes Raman scattering microscopy," Chem. Phys. 341, 81-88 (2007).
[CrossRef]

J. Microsc. (1)

M. M¨uller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D-microscopy of transparent objects using thirdharmonic generation," J. Microsc. 191, 266-274 (1998).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

J. Struct. Biol. (2)

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, "Depth-resolved structural imaging by thirdharmonic generation microscopy," J. Struct. Biol. 147, 3-11 (2004).
[CrossRef] [PubMed]

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, "Higher harmonic generation microscopy for developmental biology," J. Struct. Biol. 147, 19-30 (2004).
[CrossRef] [PubMed]

Nat. Methods (1)

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nat. Methods 3, 47-53 (2006).
[CrossRef]

Opt. Commun. (3)

E. Yew and C. Sheppard, "Second harmonic generation microscopy with tightly focused linearly and radially polarized beams," Opt. Commun. 275, 453-457 (2007).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

J. Mertz and L. Moreaux, "Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers," Opt. Commun. 196, 325-330 (2001).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Proc. Nat. Acad. Sci. USA (1)

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, "In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses," Proc. Nat. Acad. Sci. USA 102, 1047-1052 (2005).
[CrossRef] [PubMed]

Proc. Royal Soc. A (1)

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system.," Proc. Royal Soc. A 253, 358-379 (1959).
[CrossRef]

Other (2)

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge Univ Press, 2006).

Boyd, R. W. Nonlinear optics, 2nd edition, (Academic Press 2003).

Supplementary Material (1)

» Media 1: AVI (1125 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Geometry and notations (see text)

Fig. 2.
Fig. 2.

Distributions in the xy and xz planes of the focal field intensity and of the phase of the x-polarized component when relevant, for the modes described by Eqs.(5–11). Arrows indicate the direction of polarization in the xy plane for focused LG 01 beams. Intensity plots are normalized to their maximum values. Phase color table ranges from white (-πrad) to black (π rad). NA = 1.4, x,y∈[-1 1]µm, z∈[-2 2]µm.

Fig. 3.
Fig. 3.

Distribution of the different field polarization components and total intensity in the transverse focal plane for focused HG 00 and LG rad 01 beams. x,y∈[-1 1]µm.

Fig. 4.
Fig. 4.

F-THG during an axial scan through a xy interface with HG and LG beams. Curves are normalized by the factors indicated in the inset.

Fig. 5.
Fig. 5.

F-THG during lateral scans through interfaces parallel to the optical axis. (a) x-scan through a YZ interface. (b) y-scan through a XZ interface. The HG 10 x curve (empty green triangles) is the behavior predicted when the z component of HG 10 is omitted. (c) Excitation field and intensity distribution in the focal plane for focused HG 01 and HG 10 beams.

Fig. 6.
Fig. 6.

Sensitivity to the orientation of an interface parallel to the optical axis using asymmetric excitation (HG 01 and HG 10). (a) Geometry of the sample and distribution of the excitation intensity in the focal plane. (b) Normalized F-THG signal as a function of interface angle ϕ for HG 00 (black squares), HG 01 (red discs) and HG 10 (green triangles). Normalization factors are indicated in the inset. The HG 10/HG 01 signal ratio (purple stars) probes the interface orientation within the focal volume with good contrast. (c) Projected far-field emission patterns as a function of interface angle for HG 01 and HG 10 excitation. (Media1): TH emission patterns for HG 00, HG 01, and HG 10 excitation, as a function of interface orientation. Patterns are evaluated at z = +10cm over a 15 × 15cm area transverse to the optical axis, which corresponds to a detection NA of approximately 0.5.

Fig. 7.
Fig. 7.

F-THG and B-THG from slabs of varying thicknesses using different beam shapes. (a) F-THG as a function of slab thickness indicates the forward coherence length associated with a particular field profile. The inset depicts the corresponding geometry. HG 20 excitation (blue triangles) results in larger forward coherence length than HG 00 (black squares). HG 01 excitation (red disc) produce a double-peaked response as a function of thickness, corresponding to distinct emission patterns. The double peak behavior is blurred for HG 10 excitation (see text). The HG 20 case without dispersion is also presented for comparison (empty triangles). For all the modes considered here, the peak TH signal intensity is between 1.5 and 2 times higher than that obtained from a semi-infinite slab. (b) Far-field emission patterns using HG 01 and HG 10 excitation, for different slab thicknesses. (c) B-THG as a function of slab thickness, according to the geometry depicted in the inset. Oscillation period indicates the backward coherence length. (d) On-axis phase distribution (without propagation term) for HG 00 and HG 20 modes with different NAs.

Fig. 8.
Fig. 8.

F-THG and B-THG signal obtained from an axially periodic sample using different focal field distributions. (a) B-THG and F-THG as a function of sample period, for various HG and polarization-shaped LG 01 beams. Different field shapes result in different spatial resonances. THG measurements with a properly chosen set of beam shapes provide information on sample characteristic lengths at different scales. Normalization factors for B-THG (resp F-THG) curves with respect to F-THG from a semi-infinite slab with a gaussian excitation: HG 00 × 1.5(× 2); HG 01 × 1(× 1); HG 10 × 0.4(× 0.3); HG 20 × 0.3(× 0.3); LG lin 01 × 0.3(× 0.4); LG rad 01 × 0.1(× 0.1); LG az 01 × 0.5(× 0.6). (b) Characteristic examples of emission patterns in the forward and backward direction, as a function of sample periodicity.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E ( ρ , ϕ , z ) = ik ω f e ik ω f 2 π 0 θ m 0 2 π e ik ω z cos ( θ ) e ikρ sin ( θ ) cos ( Φ ϕ ) sin ( θ ) E ( θ , Φ ) d Φ d θ
E ( θ , Φ ) = ( cos θ ) 1 2 [ E 0 ( θ , Φ ) · ( sin Φ cos Φ 0 ) ] ( sin Φ cos Φ 0 )
+ ( cos θ ) 1 2 [ E 0 ( θ , Φ ) · ( cos Φ sin Φ 0 ) ] ( cos Φ cos θ sin Φ cos θ sin θ )
I lmn α β ( ρ , z ) = α β fw ( θ ) ( cos θ ) 1 2 sin m θ cos n θ J l ( k ρ sin θ ) e ikz cos θ d θ
I lmn = I lmn 0 θ max ; E 1 = ikf 2 E 0 e ikf ; E 2 = ikf 2 2 w 0 E 0 e ikf
E ( ρ , ϕ , z ) = E 1 [ I 010 + I 011 + ( I 210 I 211 ) cos ( 2 ϕ ) ( I 210 I 211 ) sin ( 2 ϕ ) 2 i I 120 cos ϕ ]
E ( ρ , ϕ , z ) = E 2 [ i ( I 120 + 3 I 121 ) cos ϕ + i ( I 320 I 321 ) cos ( 3 ϕ ) i ( I 120 I 121 ) sin ϕ + i ( I 320 I 321 ) sin ( 3 ϕ ) 2 i I 030 + 2 I 230 cos ( 2 ϕ ) ]
E ( ρ , ϕ , z ) = E 2 [ i ( 3 I 120 + I 121 ) sin ϕ + i ( I 320 I 321 ) sin ( 3 ϕ ) i ( 2 I 120 2 I 121 ) cos ϕ i ( I 320 I 321 ) cos ( 3 ϕ ) 2 I 230 sin ( 2 ϕ ) ]
E ( ρ , ϕ , z ) = E 2 [ 3 I 031 2 ( I 010 + I 011 ) 2 cos ( 2 ϕ ) [ 2 I 231 + I 210 I 211 ] + cos ( 4 ϕ ) I 140 2 sin ( 2 ϕ ) [ I 230 I 231 + I 211 I 210 ] + 2 sin ( 4 ϕ ) [ I 431 I 430 ] cos ( ϕ ) [ 4 I 120 3 I 140 ] + 2 i cos ( 3 ϕ ) I 340 ]
L G 01 lin = HG 10 + i HG 01
E ( ρ , ϕ , z ) = E 2 [ 4 i I 120 sin ϕ 4 i I 120 cos ϕ 0 ]
E ( ρ , ϕ , z ) = E 2 [ 4 i I 121 cos ϕ 4 i I 121 sin ϕ 4 I 030 ]
P i ( 3 ω ) = j , k , l χ ijkl ( 3 ) E j E k E l
χ ijkl ( 3 ) = χ 0 ( δ ij δ kl + δ ik δ jl + δ il δ jk )
P ( 3 ω ) = χ 0 [ E x ( 3 E x 2 + E y 2 + E z 2 ) E y ( E x 2 + 3 E y 2 + E z 2 ) E z ( E x 2 + E y 2 + 3 E z 2 ) ]
E FF ( R ) = V P ( 3 ω ) ( r ) G FF ( R r ) d V
G FF = exp ( ik R ) 4 π R [ I RR R 2 ]

Metrics