Abstract

The potential of fiber-laser-based sub-Doppler noise-immune cavity-enhanced optical heterodyne molecular spectrometry for trace gas detection is scrutinized. The non-linear dependence of the on-resonance sub-Doppler dispersion signal on the intracavity pressure and power is investigated and the optimum conditions with respect to these are determined. The linearity of the signal strength with concentration is demonstrated and the dynamic range of the technique is discussed. Measurements were performed on C2H2 at 1531 nm up to degrees of saturation of 100. The minimum detectable sub-Doppler optical phase shift was 5 × 10-11 cm-1 Hz-1/2, corresponding to a partial pressure of C2H2 of 1 × 10-12 atm for an intracavity pressure of 20 mTorr, and a concentration of 10 ppb at 400 mTorr.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fried and D. Richter, "Infrared absorption spectroscopy," in Analytical Techniques for Atmospheric Measurements, D. Heard, eds. (Blackwell Publishing, 2006), pp. 72-146.
  2. B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83, 975-999 (2005).
    [CrossRef]
  3. Y. He and B. J. Orr, "Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity," Appl. Phys. B 85, 355-364 (2006).
    [CrossRef]
  4. E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, "Design consideration in high-sensitivity off-axis integrated cavity output spectroscopy," Appl. Phys. B DOI: 10.1007/s00340-00008-03137-00349 (2008).
  5. M. H. Wappelhorst, M. Murtz, P. Palm, and W. Urban, "Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60 THz (5 ?m)," Appl. Phys. B 65, 25-32 (1997).
    [CrossRef]
  6. P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, "A 3.5-mW continuous-wave difference-frequency source around 3 ?m for sub-Doppler molecular spectroscopy," Appl. Phys. B 80, 141-145 (2005).
    [CrossRef]
  7. A. Castrillo, E. De Tommasi, L. Gianfrani, L. Sirigu, and J. Faist, "Doppler-free saturated-absorption spectroscopy of CO2 at 4.3 ?m by means of a distributed feedback quantum cascade laser," Opt. Lett. 31, 3040-3042 (2006).
    [CrossRef] [PubMed]
  8. M. Delabachelerie, K. Nakagawa, and M. Ohtsu, "Ultranarrow 13C2H2 Saturated-Absorption Lines at 1.5 ?m," Opt. Lett. 19, 840-842 (1994).
    [CrossRef]
  9. G. Gagliardi, G. Rusciano, and L. Gianfrani, "Narrow 18H2O lines and new absolute frequency references in the near-IR," J. Opt. A: Pure Appl. Opt. 2, 310-313 (2000).
    [CrossRef]
  10. K. Anzai, X. M. Gao, H. Sasada, and N. Yoshida, "Narrow Lamb dip of 3.4 ?m band transition of methane with difference frequency generation and enhancement cavity," Jpn. J. Appl. Phys.  45, 2771-2775 (2006).
    [CrossRef]
  11. D. Romanini, P. Dupre, and R. Jost, "Non-linear effects by continuous wave cavity ringdown spectroscopy in jet-cooled NO2," Vibr. Spectrosc. 19, 93-106 (1999).
    [CrossRef]
  12. J. Hald, J. C. Petersen, and J. Henningsen, "Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers," Phys. Rev. Lett. 98, (2007).
    [CrossRef] [PubMed]
  13. A. M. Cubillas, J. Hald, and J. C. Petersen, "High resolution spectroscopy of ammonia in a hollow-core fiber," Opt. Express 16, 3976-3985 (2008).
    [CrossRef] [PubMed]
  14. J. Henningsen and J. Hald, "Dynamics of gas flow in hollow core photonic bandgap fibers," Appl. Opt. 47, 2790-2797 (2008).
    [CrossRef] [PubMed]
  15. J. Ye, L. S. Ma, and J. L. Hall, "Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy," J. Opt. Soc. Am. B 15, 6-15 (1998).
    [CrossRef]
  16. J. Ye and J. L. Hall, "Absorption detection at the quantum limit: Probing high-finesse cavities with modulation techniques," in Cavity-Enhanced Spectroscopies, R. D. van Zee and J. P. Looney, eds. (Academic Press, 2002), pp. 83-127.
  17. J. Ye and T. W. Lynn, "Applications of optical cavities in modern atomic, molecular, and optical physics," in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, eds. (Academic, 2003), pp. 1-83.
  18. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, "Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential," Appl. Phys. B DOI: 10.1007/s00340-00008-03126-z (2008).
  19. J. Ye, L. S. Ma, and J. L. Hall, "Sub-Doppler optical frequency reference at 1.064 ?m by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition," Opt. Lett. 21, 1000-1002 (1996).
    [CrossRef] [PubMed]
  20. J. Ye, Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards, PhD Thesis (University of Colorado, 1997).
  21. L. S. Ma, J. Ye, P. Dube, and J. L. Hall, "Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD," J. Opt. Soc. Am. B 16, 2255-2268 (1999).
    [CrossRef]
  22. L. Gianfrani, R. W. Fox, and L. Hollberg, "Cavity-enhanced absorption spectroscopy of molecular oxygen," J. Opt. Soc. Am. B 16, 2247-2254 (1999).
    [CrossRef]
  23. N. J. van Leeuwen, and A. C. Wilson, "Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy," J. Opt. Soc. Am. B 21, 1713-1721 (2004).
    [CrossRef]
  24. J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," J. Chem. Phys. 124, 084311 (2006).
    [CrossRef] [PubMed]
  25. F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, "Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range," J. Opt. Soc. Am. B 24, 1392-1405 (2007).
    [CrossRef]
  26. F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, "Doppler-broadened fiber-laser-based NICE-OHMS - Improved detectability," Opt. Express 15, 10822-10831 (2007).
    [CrossRef] [PubMed]
  27. C. Ishibashi and H. Sasada, "Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 ?m tunable diode laser," Jpn. J. Appl. Phys.  38, 920-922 (1999).
    [CrossRef]
  28. M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
    [CrossRef]
  29. O. Axner, W. Ma, and A. Foltynowicz, "Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised," J. Opt. Soc. Am. B 25, 1166-1177 (2008).
    [CrossRef]
  30. A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, "Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions," J. Opt. Soc. Am. B 25, 1156-1165 (2008).
    [CrossRef]
  31. P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, "Wavelength modulation absorption spectrometry - an extensive scrutiny of the generation of signals," Spectrochim. Acta. 56, 1277-1354 (2001).
    [CrossRef]
  32. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
    [CrossRef]
  33. R. G. DeVoe and R. G. Brewer, "Laser frequency division and stabilization," Phys. Rev. A: At. Mol. Opt. Phys. 30, 2827-2829 (1984).
    [CrossRef]
  34. HITRAN2004 Database (Version 12.0).
  35. W. Ma, A. Foltynowicz, and O. Axner, "Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions," J. Opt. Soc. Am. B 25, 1144-1155 (2008).
    [CrossRef]
  36. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, "Frequency Modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis," Appl. Phys. B 32, 145-152 (1983).
    [CrossRef]
  37. P. Werle, R. Mucke, and F. Slemr, "The limits of signal averaging in atmospheric trace-gas monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS)," Appl. Phys. B 57, 131-139 (1993).
    [CrossRef]
  38. N. C. Wong and J. L. Hall, "Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection," J. Opt. Soc. Am. B 2, 1527 (1985).
    [CrossRef]
  39. G. Gagliardi, G. Rusciano, and L. Gianfrani, "Sub-Doppler spectroscopy of 18H2O at 1.4 ?m," Appl. Phys. B 70, 883-888 (2000).
    [CrossRef]

2008 (7)

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, "Design consideration in high-sensitivity off-axis integrated cavity output spectroscopy," Appl. Phys. B DOI: 10.1007/s00340-00008-03137-00349 (2008).

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, "Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential," Appl. Phys. B DOI: 10.1007/s00340-00008-03126-z (2008).

A. M. Cubillas, J. Hald, and J. C. Petersen, "High resolution spectroscopy of ammonia in a hollow-core fiber," Opt. Express 16, 3976-3985 (2008).
[CrossRef] [PubMed]

J. Henningsen and J. Hald, "Dynamics of gas flow in hollow core photonic bandgap fibers," Appl. Opt. 47, 2790-2797 (2008).
[CrossRef] [PubMed]

W. Ma, A. Foltynowicz, and O. Axner, "Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions," J. Opt. Soc. Am. B 25, 1144-1155 (2008).
[CrossRef]

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, "Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions," J. Opt. Soc. Am. B 25, 1156-1165 (2008).
[CrossRef]

O. Axner, W. Ma, and A. Foltynowicz, "Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised," J. Opt. Soc. Am. B 25, 1166-1177 (2008).
[CrossRef]

2007 (3)

2006 (4)

J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

Y. He and B. J. Orr, "Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity," Appl. Phys. B 85, 355-364 (2006).
[CrossRef]

K. Anzai, X. M. Gao, H. Sasada, and N. Yoshida, "Narrow Lamb dip of 3.4 ?m band transition of methane with difference frequency generation and enhancement cavity," Jpn. J. Appl. Phys.  45, 2771-2775 (2006).
[CrossRef]

A. Castrillo, E. De Tommasi, L. Gianfrani, L. Sirigu, and J. Faist, "Doppler-free saturated-absorption spectroscopy of CO2 at 4.3 ?m by means of a distributed feedback quantum cascade laser," Opt. Lett. 31, 3040-3042 (2006).
[CrossRef] [PubMed]

2005 (2)

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, "A 3.5-mW continuous-wave difference-frequency source around 3 ?m for sub-Doppler molecular spectroscopy," Appl. Phys. B 80, 141-145 (2005).
[CrossRef]

B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83, 975-999 (2005).
[CrossRef]

2004 (2)

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

N. J. van Leeuwen, and A. C. Wilson, "Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy," J. Opt. Soc. Am. B 21, 1713-1721 (2004).
[CrossRef]

2001 (1)

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, "Wavelength modulation absorption spectrometry - an extensive scrutiny of the generation of signals," Spectrochim. Acta. 56, 1277-1354 (2001).
[CrossRef]

2000 (2)

G. Gagliardi, G. Rusciano, and L. Gianfrani, "Narrow 18H2O lines and new absolute frequency references in the near-IR," J. Opt. A: Pure Appl. Opt. 2, 310-313 (2000).
[CrossRef]

G. Gagliardi, G. Rusciano, and L. Gianfrani, "Sub-Doppler spectroscopy of 18H2O at 1.4 ?m," Appl. Phys. B 70, 883-888 (2000).
[CrossRef]

1999 (4)

L. Gianfrani, R. W. Fox, and L. Hollberg, "Cavity-enhanced absorption spectroscopy of molecular oxygen," J. Opt. Soc. Am. B 16, 2247-2254 (1999).
[CrossRef]

L. S. Ma, J. Ye, P. Dube, and J. L. Hall, "Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD," J. Opt. Soc. Am. B 16, 2255-2268 (1999).
[CrossRef]

D. Romanini, P. Dupre, and R. Jost, "Non-linear effects by continuous wave cavity ringdown spectroscopy in jet-cooled NO2," Vibr. Spectrosc. 19, 93-106 (1999).
[CrossRef]

C. Ishibashi and H. Sasada, "Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 ?m tunable diode laser," Jpn. J. Appl. Phys.  38, 920-922 (1999).
[CrossRef]

1998 (1)

1997 (1)

M. H. Wappelhorst, M. Murtz, P. Palm, and W. Urban, "Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60 THz (5 ?m)," Appl. Phys. B 65, 25-32 (1997).
[CrossRef]

1996 (1)

1994 (1)

1993 (1)

P. Werle, R. Mucke, and F. Slemr, "The limits of signal averaging in atmospheric trace-gas monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS)," Appl. Phys. B 57, 131-139 (1993).
[CrossRef]

1985 (1)

1984 (1)

R. G. DeVoe and R. G. Brewer, "Laser frequency division and stabilization," Phys. Rev. A: At. Mol. Opt. Phys. 30, 2827-2829 (1984).
[CrossRef]

1983 (2)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, "Frequency Modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis," Appl. Phys. B 32, 145-152 (1983).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Allen, N. T.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, "Design consideration in high-sensitivity off-axis integrated cavity output spectroscopy," Appl. Phys. B DOI: 10.1007/s00340-00008-03137-00349 (2008).

Anderson, J. G.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, "Design consideration in high-sensitivity off-axis integrated cavity output spectroscopy," Appl. Phys. B DOI: 10.1007/s00340-00008-03137-00349 (2008).

Anzai, K.

K. Anzai, X. M. Gao, H. Sasada, and N. Yoshida, "Narrow Lamb dip of 3.4 ?m band transition of methane with difference frequency generation and enhancement cavity," Jpn. J. Appl. Phys.  45, 2771-2775 (2006).
[CrossRef]

Axner, O.

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, "Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential," Appl. Phys. B DOI: 10.1007/s00340-00008-03126-z (2008).

W. Ma, A. Foltynowicz, and O. Axner, "Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions," J. Opt. Soc. Am. B 25, 1144-1155 (2008).
[CrossRef]

O. Axner, W. Ma, and A. Foltynowicz, "Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised," J. Opt. Soc. Am. B 25, 1166-1177 (2008).
[CrossRef]

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, "Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions," J. Opt. Soc. Am. B 25, 1156-1165 (2008).
[CrossRef]

F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, "Doppler-broadened fiber-laser-based NICE-OHMS - Improved detectability," Opt. Express 15, 10822-10831 (2007).
[CrossRef] [PubMed]

F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, "Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range," J. Opt. Soc. Am. B 24, 1392-1405 (2007).
[CrossRef]

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, "Wavelength modulation absorption spectrometry - an extensive scrutiny of the generation of signals," Spectrochim. Acta. 56, 1277-1354 (2001).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, "Frequency Modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis," Appl. Phys. B 32, 145-152 (1983).
[CrossRef]

Bood, J.

J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

Brewer, R. G.

R. G. DeVoe and R. G. Brewer, "Laser frequency division and stabilization," Phys. Rev. A: At. Mol. Opt. Phys. 30, 2827-2829 (1984).
[CrossRef]

Cannon, B. D.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

Castrillo, A.

Cubillas, A. M.

De Natale, P.

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, "A 3.5-mW continuous-wave difference-frequency source around 3 ?m for sub-Doppler molecular spectroscopy," Appl. Phys. B 80, 141-145 (2005).
[CrossRef]

De Tommasi, E.

Delabachelerie, M.

DeVoe, R. G.

R. G. DeVoe and R. G. Brewer, "Laser frequency division and stabilization," Phys. Rev. A: At. Mol. Opt. Phys. 30, 2827-2829 (1984).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Dube, P.

Dupre, P.

D. Romanini, P. Dupre, and R. Jost, "Non-linear effects by continuous wave cavity ringdown spectroscopy in jet-cooled NO2," Vibr. Spectrosc. 19, 93-106 (1999).
[CrossRef]

Engel, G. S.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, "Design consideration in high-sensitivity off-axis integrated cavity output spectroscopy," Appl. Phys. B DOI: 10.1007/s00340-00008-03137-00349 (2008).

Faist, J.

Foltynowicz, A.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Fox, R. W.

Gagliardi, G.

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, "A 3.5-mW continuous-wave difference-frequency source around 3 ?m for sub-Doppler molecular spectroscopy," Appl. Phys. B 80, 141-145 (2005).
[CrossRef]

G. Gagliardi, G. Rusciano, and L. Gianfrani, "Sub-Doppler spectroscopy of 18H2O at 1.4 ?m," Appl. Phys. B 70, 883-888 (2000).
[CrossRef]

G. Gagliardi, G. Rusciano, and L. Gianfrani, "Narrow 18H2O lines and new absolute frequency references in the near-IR," J. Opt. A: Pure Appl. Opt. 2, 310-313 (2000).
[CrossRef]

Gao, X. M.

K. Anzai, X. M. Gao, H. Sasada, and N. Yoshida, "Narrow Lamb dip of 3.4 ?m band transition of methane with difference frequency generation and enhancement cavity," Jpn. J. Appl. Phys.  45, 2771-2775 (2006).
[CrossRef]

Gianfrani, L.

A. Castrillo, E. De Tommasi, L. Gianfrani, L. Sirigu, and J. Faist, "Doppler-free saturated-absorption spectroscopy of CO2 at 4.3 ?m by means of a distributed feedback quantum cascade laser," Opt. Lett. 31, 3040-3042 (2006).
[CrossRef] [PubMed]

G. Gagliardi, G. Rusciano, and L. Gianfrani, "Narrow 18H2O lines and new absolute frequency references in the near-IR," J. Opt. A: Pure Appl. Opt. 2, 310-313 (2000).
[CrossRef]

G. Gagliardi, G. Rusciano, and L. Gianfrani, "Sub-Doppler spectroscopy of 18H2O at 1.4 ?m," Appl. Phys. B 70, 883-888 (2000).
[CrossRef]

L. Gianfrani, R. W. Fox, and L. Hollberg, "Cavity-enhanced absorption spectroscopy of molecular oxygen," J. Opt. Soc. Am. B 16, 2247-2254 (1999).
[CrossRef]

Gustafsson, J.

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, "Wavelength modulation absorption spectrometry - an extensive scrutiny of the generation of signals," Spectrochim. Acta. 56, 1277-1354 (2001).
[CrossRef]

Hald, J.

Hall, J. L.

He, Y.

Y. He and B. J. Orr, "Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity," Appl. Phys. B 85, 355-364 (2006).
[CrossRef]

Henningsen, J.

J. Henningsen and J. Hald, "Dynamics of gas flow in hollow core photonic bandgap fibers," Appl. Opt. 47, 2790-2797 (2008).
[CrossRef] [PubMed]

J. Hald, J. C. Petersen, and J. Henningsen, "Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers," Phys. Rev. Lett. 98, (2007).
[CrossRef] [PubMed]

Hollberg, L.

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Ishibashi, C.

C. Ishibashi and H. Sasada, "Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 ?m tunable diode laser," Jpn. J. Appl. Phys.  38, 920-922 (1999).
[CrossRef]

Jost, R.

D. Romanini, P. Dupre, and R. Jost, "Non-linear effects by continuous wave cavity ringdown spectroscopy in jet-cooled NO2," Vibr. Spectrosc. 19, 93-106 (1999).
[CrossRef]

Kachanov, A. A.

B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83, 975-999 (2005).
[CrossRef]

Keutsch, F. N.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, "Design consideration in high-sensitivity off-axis integrated cavity output spectroscopy," Appl. Phys. B DOI: 10.1007/s00340-00008-03137-00349 (2008).

Kluczynski, P.

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, "Wavelength modulation absorption spectrometry - an extensive scrutiny of the generation of signals," Spectrochim. Acta. 56, 1277-1354 (2001).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Kroll, J. H.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, "Design consideration in high-sensitivity off-axis integrated cavity output spectroscopy," Appl. Phys. B DOI: 10.1007/s00340-00008-03137-00349 (2008).

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, "Frequency Modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis," Appl. Phys. B 32, 145-152 (1983).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, "Frequency Modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis," Appl. Phys. B 32, 145-152 (1983).
[CrossRef]

Lindberg, A. M.

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, "Wavelength modulation absorption spectrometry - an extensive scrutiny of the generation of signals," Spectrochim. Acta. 56, 1277-1354 (2001).
[CrossRef]

Lock, T.

Ma, L. S.

Ma, W.

Maddaloni, P.

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, "A 3.5-mW continuous-wave difference-frequency source around 3 ?m for sub-Doppler molecular spectroscopy," Appl. Phys. B 80, 141-145 (2005).
[CrossRef]

Malara, P.

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, "A 3.5-mW continuous-wave difference-frequency source around 3 ?m for sub-Doppler molecular spectroscopy," Appl. Phys. B 80, 141-145 (2005).
[CrossRef]

McIlroy, A.

J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

Moyer, E. J.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, "Design consideration in high-sensitivity off-axis integrated cavity output spectroscopy," Appl. Phys. B DOI: 10.1007/s00340-00008-03137-00349 (2008).

Mucke, R.

P. Werle, R. Mucke, and F. Slemr, "The limits of signal averaging in atmospheric trace-gas monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS)," Appl. Phys. B 57, 131-139 (1993).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Murtz, M.

M. H. Wappelhorst, M. Murtz, P. Palm, and W. Urban, "Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60 THz (5 ?m)," Appl. Phys. B 65, 25-32 (1997).
[CrossRef]

Myers, T. L.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

Nakagawa, K.

Ohtsu, M.

Oritz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, "Frequency Modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis," Appl. Phys. B 32, 145-152 (1983).
[CrossRef]

Orr, B. J.

Y. He and B. J. Orr, "Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity," Appl. Phys. B 85, 355-364 (2006).
[CrossRef]

Osborn, D. L.

J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

Paldus, B. A.

B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83, 975-999 (2005).
[CrossRef]

Palm, P.

M. H. Wappelhorst, M. Murtz, P. Palm, and W. Urban, "Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60 THz (5 ?m)," Appl. Phys. B 65, 25-32 (1997).
[CrossRef]

Petersen, J. C.

A. M. Cubillas, J. Hald, and J. C. Petersen, "High resolution spectroscopy of ammonia in a hollow-core fiber," Opt. Express 16, 3976-3985 (2008).
[CrossRef] [PubMed]

J. Hald, J. C. Petersen, and J. Henningsen, "Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers," Phys. Rev. Lett. 98, (2007).
[CrossRef] [PubMed]

Romanini, D.

D. Romanini, P. Dupre, and R. Jost, "Non-linear effects by continuous wave cavity ringdown spectroscopy in jet-cooled NO2," Vibr. Spectrosc. 19, 93-106 (1999).
[CrossRef]

Rusciano, G.

G. Gagliardi, G. Rusciano, and L. Gianfrani, "Sub-Doppler spectroscopy of 18H2O at 1.4 ?m," Appl. Phys. B 70, 883-888 (2000).
[CrossRef]

G. Gagliardi, G. Rusciano, and L. Gianfrani, "Narrow 18H2O lines and new absolute frequency references in the near-IR," J. Opt. A: Pure Appl. Opt. 2, 310-313 (2000).
[CrossRef]

Sasada, H.

K. Anzai, X. M. Gao, H. Sasada, and N. Yoshida, "Narrow Lamb dip of 3.4 ?m band transition of methane with difference frequency generation and enhancement cavity," Jpn. J. Appl. Phys.  45, 2771-2775 (2006).
[CrossRef]

C. Ishibashi and H. Sasada, "Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 ?m tunable diode laser," Jpn. J. Appl. Phys.  38, 920-922 (1999).
[CrossRef]

Sayres, D. S.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, "Design consideration in high-sensitivity off-axis integrated cavity output spectroscopy," Appl. Phys. B DOI: 10.1007/s00340-00008-03137-00349 (2008).

Schmidt, F. M.

Sirigu, L.

Slemr, F.

P. Werle, R. Mucke, and F. Slemr, "The limits of signal averaging in atmospheric trace-gas monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS)," Appl. Phys. B 57, 131-139 (1993).
[CrossRef]

St. Clair, J. M.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, "Design consideration in high-sensitivity off-axis integrated cavity output spectroscopy," Appl. Phys. B DOI: 10.1007/s00340-00008-03137-00349 (2008).

Taubman, M. S.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

Urban, W.

M. H. Wappelhorst, M. Murtz, P. Palm, and W. Urban, "Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60 THz (5 ?m)," Appl. Phys. B 65, 25-32 (1997).
[CrossRef]

van Leeuwen, N. J.

Wappelhorst, M. H.

M. H. Wappelhorst, M. Murtz, P. Palm, and W. Urban, "Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60 THz (5 ?m)," Appl. Phys. B 65, 25-32 (1997).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Werle, P.

P. Werle, R. Mucke, and F. Slemr, "The limits of signal averaging in atmospheric trace-gas monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS)," Appl. Phys. B 57, 131-139 (1993).
[CrossRef]

Williams, R. M.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

Wilson, A. C.

Wong, N. C.

Ye, J.

Yoshida, N.

K. Anzai, X. M. Gao, H. Sasada, and N. Yoshida, "Narrow Lamb dip of 3.4 ?m band transition of methane with difference frequency generation and enhancement cavity," Jpn. J. Appl. Phys.  45, 2771-2775 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (9)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, "Frequency Modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis," Appl. Phys. B 32, 145-152 (1983).
[CrossRef]

P. Werle, R. Mucke, and F. Slemr, "The limits of signal averaging in atmospheric trace-gas monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS)," Appl. Phys. B 57, 131-139 (1993).
[CrossRef]

G. Gagliardi, G. Rusciano, and L. Gianfrani, "Sub-Doppler spectroscopy of 18H2O at 1.4 ?m," Appl. Phys. B 70, 883-888 (2000).
[CrossRef]

Y. He and B. J. Orr, "Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity," Appl. Phys. B 85, 355-364 (2006).
[CrossRef]

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, "Design consideration in high-sensitivity off-axis integrated cavity output spectroscopy," Appl. Phys. B DOI: 10.1007/s00340-00008-03137-00349 (2008).

M. H. Wappelhorst, M. Murtz, P. Palm, and W. Urban, "Very high resolution CO laser spectrometer and first sub-Doppler line-shape studies near 60 THz (5 ?m)," Appl. Phys. B 65, 25-32 (1997).
[CrossRef]

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, "A 3.5-mW continuous-wave difference-frequency source around 3 ?m for sub-Doppler molecular spectroscopy," Appl. Phys. B 80, 141-145 (2005).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, "Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential," Appl. Phys. B DOI: 10.1007/s00340-00008-03126-z (2008).

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Can. J. Phys. (1)

B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83, 975-999 (2005).
[CrossRef]

J. Chem. Phys. (1)

J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

J. Opt. A: Pure Appl. Opt. (1)

G. Gagliardi, G. Rusciano, and L. Gianfrani, "Narrow 18H2O lines and new absolute frequency references in the near-IR," J. Opt. A: Pure Appl. Opt. 2, 310-313 (2000).
[CrossRef]

J. Opt. Soc. Am. B (9)

N. C. Wong and J. L. Hall, "Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection," J. Opt. Soc. Am. B 2, 1527 (1985).
[CrossRef]

J. Ye, L. S. Ma, and J. L. Hall, "Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy," J. Opt. Soc. Am. B 15, 6-15 (1998).
[CrossRef]

L. Gianfrani, R. W. Fox, and L. Hollberg, "Cavity-enhanced absorption spectroscopy of molecular oxygen," J. Opt. Soc. Am. B 16, 2247-2254 (1999).
[CrossRef]

L. S. Ma, J. Ye, P. Dube, and J. L. Hall, "Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD," J. Opt. Soc. Am. B 16, 2255-2268 (1999).
[CrossRef]

W. Ma, A. Foltynowicz, and O. Axner, "Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions," J. Opt. Soc. Am. B 25, 1144-1155 (2008).
[CrossRef]

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, "Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions," J. Opt. Soc. Am. B 25, 1156-1165 (2008).
[CrossRef]

O. Axner, W. Ma, and A. Foltynowicz, "Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised," J. Opt. Soc. Am. B 25, 1166-1177 (2008).
[CrossRef]

N. J. van Leeuwen, and A. C. Wilson, "Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy," J. Opt. Soc. Am. B 21, 1713-1721 (2004).
[CrossRef]

F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, "Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range," J. Opt. Soc. Am. B 24, 1392-1405 (2007).
[CrossRef]

Jpn. J. Appl. Phys (2)

K. Anzai, X. M. Gao, H. Sasada, and N. Yoshida, "Narrow Lamb dip of 3.4 ?m band transition of methane with difference frequency generation and enhancement cavity," Jpn. J. Appl. Phys.  45, 2771-2775 (2006).
[CrossRef]

C. Ishibashi and H. Sasada, "Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 ?m tunable diode laser," Jpn. J. Appl. Phys.  38, 920-922 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A: At. Mol. Opt. Phys. (1)

R. G. DeVoe and R. G. Brewer, "Laser frequency division and stabilization," Phys. Rev. A: At. Mol. Opt. Phys. 30, 2827-2829 (1984).
[CrossRef]

Phys. Rev. Lett. (1)

J. Hald, J. C. Petersen, and J. Henningsen, "Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers," Phys. Rev. Lett. 98, (2007).
[CrossRef] [PubMed]

Spectrochim. Acta, Part A (1)

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

Spectrochim. Acta. (1)

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, "Wavelength modulation absorption spectrometry - an extensive scrutiny of the generation of signals," Spectrochim. Acta. 56, 1277-1354 (2001).
[CrossRef]

Vibr. Spectrosc. (1)

D. Romanini, P. Dupre, and R. Jost, "Non-linear effects by continuous wave cavity ringdown spectroscopy in jet-cooled NO2," Vibr. Spectrosc. 19, 93-106 (1999).
[CrossRef]

Other (5)

J. Ye and J. L. Hall, "Absorption detection at the quantum limit: Probing high-finesse cavities with modulation techniques," in Cavity-Enhanced Spectroscopies, R. D. van Zee and J. P. Looney, eds. (Academic Press, 2002), pp. 83-127.

J. Ye and T. W. Lynn, "Applications of optical cavities in modern atomic, molecular, and optical physics," in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, eds. (Academic, 2003), pp. 1-83.

A. Fried and D. Richter, "Infrared absorption spectroscopy," in Analytical Techniques for Atmospheric Measurements, D. Heard, eds. (Blackwell Publishing, 2006), pp. 72-146.

J. Ye, Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards, PhD Thesis (University of Colorado, 1997).

HITRAN2004 Database (Version 12.0).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

A detailed schematic of the experimental setup. EDFL – Erbium doped fiber laser, EOM – electro-optic modulator, pol. – free space polarizer, λ/2 – half-wave plate, VA – variable attenuator, PBS – polarizing beam splitter cube, λ/4 – quarter-wave plate, OI – optical isolator, PD – photodetector, DBM – double balanced mixer, Phase – phase shifter, Gain – separate gain stage, BP – bandpass filter, nodes (∙) – power splitters/combiners. The dotted lines indicate the free-space laser beam path.

Fig. 2.
Fig. 2.

Doppler-broadened and sub-Doppler fm-NICE-OHMS (a) absorption and (b) dispersion signals from 500 ppm of C2H2 at 20 mTorr intracavity pressure for intracavity power of 4.6 W, which yields a degree of saturation of 50 for the carrier and 1.5 for the sidebands.

Fig. 3.
Fig. 3.

(a)–(c) Sub-Doppler fm-NICE-OHMS dispersion signals from 10 µTorr of C2H2 at different intracavity pressures and two intracavity powers: 4.1 W (black curve, larger signal) and 0.49 W (gray curve, smaller signal). (d)–(f) Sub-Doppler wm-NICE-OHMS dispersion signals taken under the same intracavity pressure and power conditions with modulation amplitudes of (d) 2.3 MHz, (e) 3.6 MHz, and (f) 5.4 MHz. Fits of Eq. (1) are also shown in the figure, with residues displayed below, where the upper and lower residues correspond to the higher and lower intracavity power, respectively.

Fig. 4.
Fig. 4.

(a) Sub-Doppler wm-NICE-OHMS signal strength as a function of the degree of saturation (solid markers) with a fit of Eq. (2) (solid line). (b) Signal strength as a function of intracavity pressure for a constant C2H2 partial pressure (10 µTorr) and different intracavity powers. The curves in (b) are not fitted and serve only as guidance for the eye.

Fig. 5.
Fig. 5.

(a) Pressure dependence of the sub-Doppler wm-NICE-OHMS signal strength for a constant C2H2 concentration (20 ppm) and four different intracavity powers. (b) Concentration dependence of the sub-Doppler wm-NICE-OHMS signal strength at different intracavity pressures for an intracavity power of 4.45 W.

Fig. 6.
Fig. 6.

The homogenous linewidth of the sub-Doppler NICE-OHMS dispersion signal as a function of intracavity power for different intracavity pressures.

Fig. 7.
Fig. 7.

Concentration of C2H2 and the square root of Allan variance of the sub-Doppler optical phase shift measured at total pressures (and with concentrations) of (a) 20 mTorr (25 ppm) and (b) 400 mTorr (5 ppm) with an intracavity power of 4.7 W. The gray curves show the concentration averaged over (a) 200 s and (b) 70 s. The solid lines show the τ -1/2 dependence characteristic for white noise.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

s DF wm ( c A , G 0 , Δ ν , ν a , δ ν L ) = s DF wm , 0 ( c A , G 0 ) χ L , 1 disp ( Δ ν , ν a , δ ν L ) .
s DF , 0 wm ( c A , G 0 ) = η wm 4 F π J 0 ( β ) J 1 ( β ) P 0 s χ 0 c A p L Φ ( G 0 ) ,
Φ ( G 0 ) = 8 · 0.45 w 2 0 G 0 e 4 ( r w ) 2 1 + 2 G 0 e 2 ( r w ) 2 r d r .
χ L , 1 disp ( Δ ν , ν a , δ ν L ) = 2 τ 0 τ δ ν L [ Δ ν + ν a cos ( 2 π f m t ) ] δ ν L 2 + [ Δ ν + ν a cos ( 2 π f m t ) ] 2 cos ( 2 π f m t ) d t ,
P sat = C s π w 2 ( Γ tt + Bp ) 2 ,
ϕ min = π 2 F 1 J 0 ( β ) J 1 ( β ) 1 χ L , 1 disp ( 0 , ν a , δ ν L ) e B w η P 0 ,

Metrics