Abstract

We studied the scattering from the simplified cylindrical cloaks analytically at both normal and oblique incidences. We found that these simplified cylindrical cloaks may produce a larger scattering at nonnormal incidences than that from an object without any cloak, making this object more “visible”. Even at normal incidence, the high-order transformation with impedance matched at the outer boundary can produce stronger scattering than the linear simplified one without matched impedance. This is due to the inefficiency of guided waves close to the inner boundary. Therefore, a square root transformation can improve scattering by guiding waves away from the inner boundary.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Alu and N. Engheta, "Achiveing transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623 (2005).
    [CrossRef]
  2. G. W. Milton and N. A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. London A 462, 3027 (2006).
    [CrossRef]
  3. A. Sihvola, "Peculiarities in the dielectric response of negative-permittivity scatterers," Prog. Electromagn. Res.pier- 66, 191-198 (2006).
    [CrossRef]
  4. N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, "Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance," Opt. Express 15, 6314-6323 (2006).
    [CrossRef]
  5. A. Greenleaf, M. Lassas, and G. Uhlmann, "Anisotropic conductivities that cannot be detected by EIT," Physiol. Meas. 24, 413-419 (2003).
    [CrossRef] [PubMed]
  6. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006).
    [CrossRef] [PubMed]
  7. U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777-1780 (2006).
    [CrossRef] [PubMed]
  8. D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794-9804 (2006).
    [CrossRef] [PubMed]
  9. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006).
    [CrossRef]
  10. F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett. 32, 1069-1071 (2007).
    [CrossRef] [PubMed]
  11. C. Blanchard, J. Porti, B. I. Wu, J. A. Morente, A. Salinas, and J. A. Kong, "Time domain simulation of electromagnetic cloaking structures with TLM method," Opt. Express 16, 6461-6470 (2008).
    [CrossRef] [PubMed]
  12. H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903 (2007).
    [CrossRef] [PubMed]
  13. B. Zhang, H. Chen, B. I. Wu, Y. Luo, L. Ran, and J. A. Kong, "Response of a cylindrical invisibility cloak to electromagnetic waves," Phys. Rev. B 76, 121101(R) (2007).
    [CrossRef]
  14. Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, "Ideal Cylindrical Cloak: Perfect but Sensitive to Tiny Perturbations," Phys. Rev. Lett. 99, 113903 (2007).
    [CrossRef] [PubMed]
  15. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
    [CrossRef] [PubMed]
  16. B. Zhang, H. Chen, B. I. Wu, and J. A. Kong, "Extraordinary Surface Voltage Effect in the Invisibility Cloak with an Active Device Inside," Phys. Rev. Lett. 100, 063904 (2008).
    [CrossRef] [PubMed]
  17. Q1. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics 1, 063904 (2007).
    [CrossRef]
  18. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, "Nonmagnetic cloak with minimized scattering," Appl. Phys. Lett. 91, 111105 (2007).
    [CrossRef]
  19. Y. Huang, Y. Feng, and T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Opt. Express 15, 11133-11141 (2007).
    [CrossRef] [PubMed]
  20. H. Chen, Z. Liang, P. Yao, X. Jiang, H. Ma, and C. T. Chan, "Extending the bandwidth of electromagnetic cloaks," Phys. Rev. B 76, 241104(R) (2007).
    [CrossRef]
  21. M. Yan, Z. Chao, and M. Qiu, "Cylindrical Invisibility Cloak with Simplified Material Parameters is Inherently Visible," Phys. Rev. Lett. 99, 233901 (2007).
    [CrossRef]
  22. M. Yan, Z. Chao, and M. Qiu, "Scattering characteristics of simplified cylindrical invisibility cloaks," Opt. Express 15, 17772-17782 (2007).
    [CrossRef] [PubMed]
  23. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express 16, 5444-5452 (2008).
    [CrossRef] [PubMed]
  24. M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, "Achieving invisibility over a finite range of frequencies," Opt. Express 16, 5656-5661 (2008).
    [CrossRef] [PubMed]
  25. S. Xi, H. Chen, B. I. Wu, B. Zhang, J. Huangfu, D. Wang, and J. A. Kong, "Effects of different transformations on the performance of cylindrical cloaks," J. Electrom. Waves and Appl. 22, 1489-1497 (2008).
    [CrossRef]
  26. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, "Improvement of cylindrical cloaking with the SHS lining," Opt. Express 15, 12717-12734 (2007).
    [CrossRef] [PubMed]
  27. W. C. Chew, Waves and Fields in inhomogeneous Media, 2nd ed, (IEEE Press, 1995).

2008

2007

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, "Improvement of cylindrical cloaking with the SHS lining," Opt. Express 15, 12717-12734 (2007).
[CrossRef] [PubMed]

Q1. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics 1, 063904 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, "Nonmagnetic cloak with minimized scattering," Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

Y. Huang, Y. Feng, and T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Opt. Express 15, 11133-11141 (2007).
[CrossRef] [PubMed]

M. Yan, Z. Chao, and M. Qiu, "Cylindrical Invisibility Cloak with Simplified Material Parameters is Inherently Visible," Phys. Rev. Lett. 99, 233901 (2007).
[CrossRef]

M. Yan, Z. Chao, and M. Qiu, "Scattering characteristics of simplified cylindrical invisibility cloaks," Opt. Express 15, 17772-17782 (2007).
[CrossRef] [PubMed]

H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, "Ideal Cylindrical Cloak: Perfect but Sensitive to Tiny Perturbations," Phys. Rev. Lett. 99, 113903 (2007).
[CrossRef] [PubMed]

F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett. 32, 1069-1071 (2007).
[CrossRef] [PubMed]

2006

G. W. Milton and N. A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. London A 462, 3027 (2006).
[CrossRef]

N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, "Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance," Opt. Express 15, 6314-6323 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794-9804 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

2005

A. Alu and N. Engheta, "Achiveing transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623 (2005).
[CrossRef]

2003

A. Greenleaf, M. Lassas, and G. Uhlmann, "Anisotropic conductivities that cannot be detected by EIT," Physiol. Meas. 24, 413-419 (2003).
[CrossRef] [PubMed]

Alu, A.

A. Alu and N. Engheta, "Achiveing transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Blanchard, C.

Botten, L. C.

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express 16, 5444-5452 (2008).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, "Nonmagnetic cloak with minimized scattering," Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

Q1. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics 1, 063904 (2007).
[CrossRef]

Chao, Z.

M. Yan, Z. Chao, and M. Qiu, "Cylindrical Invisibility Cloak with Simplified Material Parameters is Inherently Visible," Phys. Rev. Lett. 99, 233901 (2007).
[CrossRef]

M. Yan, Z. Chao, and M. Qiu, "Scattering characteristics of simplified cylindrical invisibility cloaks," Opt. Express 15, 17772-17782 (2007).
[CrossRef] [PubMed]

Chen, H.

B. Zhang, H. Chen, B. I. Wu, and J. A. Kong, "Extraordinary Surface Voltage Effect in the Invisibility Cloak with an Active Device Inside," Phys. Rev. Lett. 100, 063904 (2008).
[CrossRef] [PubMed]

S. Xi, H. Chen, B. I. Wu, B. Zhang, J. Huangfu, D. Wang, and J. A. Kong, "Effects of different transformations on the performance of cylindrical cloaks," J. Electrom. Waves and Appl. 22, 1489-1497 (2008).
[CrossRef]

H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express 16, 5444-5452 (2008).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, "Nonmagnetic cloak with minimized scattering," Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

Q1. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics 1, 063904 (2007).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006).
[CrossRef]

Engheta, N.

A. Alu and N. Engheta, "Achiveing transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Enoch, S.

Farhat, M.

Feng, Y.

Greenleaf, A.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, "Improvement of cylindrical cloaking with the SHS lining," Opt. Express 15, 12717-12734 (2007).
[CrossRef] [PubMed]

A. Greenleaf, M. Lassas, and G. Uhlmann, "Anisotropic conductivities that cannot be detected by EIT," Physiol. Meas. 24, 413-419 (2003).
[CrossRef] [PubMed]

Guenneau, S.

Huang, Y.

Huangfu, J.

S. Xi, H. Chen, B. I. Wu, B. Zhang, J. Huangfu, D. Wang, and J. A. Kong, "Effects of different transformations on the performance of cylindrical cloaks," J. Electrom. Waves and Appl. 22, 1489-1497 (2008).
[CrossRef]

Jiang, T.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express 16, 5444-5452 (2008).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, "Nonmagnetic cloak with minimized scattering," Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

Q1. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics 1, 063904 (2007).
[CrossRef]

Kong, J. A.

B. Zhang, H. Chen, B. I. Wu, and J. A. Kong, "Extraordinary Surface Voltage Effect in the Invisibility Cloak with an Active Device Inside," Phys. Rev. Lett. 100, 063904 (2008).
[CrossRef] [PubMed]

C. Blanchard, J. Porti, B. I. Wu, J. A. Morente, A. Salinas, and J. A. Kong, "Time domain simulation of electromagnetic cloaking structures with TLM method," Opt. Express 16, 6461-6470 (2008).
[CrossRef] [PubMed]

S. Xi, H. Chen, B. I. Wu, B. Zhang, J. Huangfu, D. Wang, and J. A. Kong, "Effects of different transformations on the performance of cylindrical cloaks," J. Electrom. Waves and Appl. 22, 1489-1497 (2008).
[CrossRef]

H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Kurylev, Y.

Lassas, M.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, "Improvement of cylindrical cloaking with the SHS lining," Opt. Express 15, 12717-12734 (2007).
[CrossRef] [PubMed]

A. Greenleaf, M. Lassas, and G. Uhlmann, "Anisotropic conductivities that cannot be detected by EIT," Physiol. Meas. 24, 413-419 (2003).
[CrossRef] [PubMed]

Leonhardt, U.

U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

McPhedran, R. C.

Milton, G. W.

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, "Nonmagnetic cloak with minimized scattering," Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, "Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance," Opt. Express 15, 6314-6323 (2006).
[CrossRef]

G. W. Milton and N. A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. London A 462, 3027 (2006).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Morente, J. A.

Movchan, A. B.

Neff, C. W.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, "Ideal Cylindrical Cloak: Perfect but Sensitive to Tiny Perturbations," Phys. Rev. Lett. 99, 113903 (2007).
[CrossRef] [PubMed]

Nicolet, A.

Nicorovici, N. A. P.

G. W. Milton and N. A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. London A 462, 3027 (2006).
[CrossRef]

N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, "Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance," Opt. Express 15, 6314-6323 (2006).
[CrossRef]

Pendry, J. B.

F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett. 32, 1069-1071 (2007).
[CrossRef] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794-9804 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Popa, B.-I.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006).
[CrossRef]

Porti, J.

Qiu, M.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, "Ideal Cylindrical Cloak: Perfect but Sensitive to Tiny Perturbations," Phys. Rev. Lett. 99, 113903 (2007).
[CrossRef] [PubMed]

M. Yan, Z. Chao, and M. Qiu, "Scattering characteristics of simplified cylindrical invisibility cloaks," Opt. Express 15, 17772-17782 (2007).
[CrossRef] [PubMed]

M. Yan, Z. Chao, and M. Qiu, "Cylindrical Invisibility Cloak with Simplified Material Parameters is Inherently Visible," Phys. Rev. Lett. 99, 233901 (2007).
[CrossRef]

Ruan, Z.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, "Ideal Cylindrical Cloak: Perfect but Sensitive to Tiny Perturbations," Phys. Rev. Lett. 99, 113903 (2007).
[CrossRef] [PubMed]

Salinas, A.

Schurig, D.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006).
[CrossRef]

D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794-9804 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express 16, 5444-5452 (2008).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, "Nonmagnetic cloak with minimized scattering," Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

Q1. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics 1, 063904 (2007).
[CrossRef]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794-9804 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Uhlmann, G.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, "Improvement of cylindrical cloaking with the SHS lining," Opt. Express 15, 12717-12734 (2007).
[CrossRef] [PubMed]

A. Greenleaf, M. Lassas, and G. Uhlmann, "Anisotropic conductivities that cannot be detected by EIT," Physiol. Meas. 24, 413-419 (2003).
[CrossRef] [PubMed]

Wang, D.

S. Xi, H. Chen, B. I. Wu, B. Zhang, J. Huangfu, D. Wang, and J. A. Kong, "Effects of different transformations on the performance of cylindrical cloaks," J. Electrom. Waves and Appl. 22, 1489-1497 (2008).
[CrossRef]

Wu, B. I.

S. Xi, H. Chen, B. I. Wu, B. Zhang, J. Huangfu, D. Wang, and J. A. Kong, "Effects of different transformations on the performance of cylindrical cloaks," J. Electrom. Waves and Appl. 22, 1489-1497 (2008).
[CrossRef]

C. Blanchard, J. Porti, B. I. Wu, J. A. Morente, A. Salinas, and J. A. Kong, "Time domain simulation of electromagnetic cloaking structures with TLM method," Opt. Express 16, 6461-6470 (2008).
[CrossRef] [PubMed]

B. Zhang, H. Chen, B. I. Wu, and J. A. Kong, "Extraordinary Surface Voltage Effect in the Invisibility Cloak with an Active Device Inside," Phys. Rev. Lett. 100, 063904 (2008).
[CrossRef] [PubMed]

H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Xi, S.

S. Xi, H. Chen, B. I. Wu, B. Zhang, J. Huangfu, D. Wang, and J. A. Kong, "Effects of different transformations on the performance of cylindrical cloaks," J. Electrom. Waves and Appl. 22, 1489-1497 (2008).
[CrossRef]

Yan, M.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, "Ideal Cylindrical Cloak: Perfect but Sensitive to Tiny Perturbations," Phys. Rev. Lett. 99, 113903 (2007).
[CrossRef] [PubMed]

M. Yan, Z. Chao, and M. Qiu, "Cylindrical Invisibility Cloak with Simplified Material Parameters is Inherently Visible," Phys. Rev. Lett. 99, 233901 (2007).
[CrossRef]

M. Yan, Z. Chao, and M. Qiu, "Scattering characteristics of simplified cylindrical invisibility cloaks," Opt. Express 15, 17772-17782 (2007).
[CrossRef] [PubMed]

Zhang, B.

B. Zhang, H. Chen, B. I. Wu, and J. A. Kong, "Extraordinary Surface Voltage Effect in the Invisibility Cloak with an Active Device Inside," Phys. Rev. Lett. 100, 063904 (2008).
[CrossRef] [PubMed]

S. Xi, H. Chen, B. I. Wu, B. Zhang, J. Huangfu, D. Wang, and J. A. Kong, "Effects of different transformations on the performance of cylindrical cloaks," J. Electrom. Waves and Appl. 22, 1489-1497 (2008).
[CrossRef]

H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Zolla, F.

Appl. Phys. Lett.

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, "Nonmagnetic cloak with minimized scattering," Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

J. Electrom. Waves and Appl.

S. Xi, H. Chen, B. I. Wu, B. Zhang, J. Huangfu, D. Wang, and J. A. Kong, "Effects of different transformations on the performance of cylindrical cloaks," J. Electrom. Waves and Appl. 22, 1489-1497 (2008).
[CrossRef]

Nat. Photonics

Q1. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics 1, 063904 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006).
[CrossRef]

A. Alu and N. Engheta, "Achiveing transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Phys. Rev. Lett.

B. Zhang, H. Chen, B. I. Wu, and J. A. Kong, "Extraordinary Surface Voltage Effect in the Invisibility Cloak with an Active Device Inside," Phys. Rev. Lett. 100, 063904 (2008).
[CrossRef] [PubMed]

H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, "Ideal Cylindrical Cloak: Perfect but Sensitive to Tiny Perturbations," Phys. Rev. Lett. 99, 113903 (2007).
[CrossRef] [PubMed]

M. Yan, Z. Chao, and M. Qiu, "Cylindrical Invisibility Cloak with Simplified Material Parameters is Inherently Visible," Phys. Rev. Lett. 99, 233901 (2007).
[CrossRef]

Physiol. Meas.

A. Greenleaf, M. Lassas, and G. Uhlmann, "Anisotropic conductivities that cannot be detected by EIT," Physiol. Meas. 24, 413-419 (2003).
[CrossRef] [PubMed]

Proc. R. Soc. London A

G. W. Milton and N. A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. London A 462, 3027 (2006).
[CrossRef]

Science

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Other

B. Zhang, H. Chen, B. I. Wu, Y. Luo, L. Ran, and J. A. Kong, "Response of a cylindrical invisibility cloak to electromagnetic waves," Phys. Rev. B 76, 121101(R) (2007).
[CrossRef]

H. Chen, Z. Liang, P. Yao, X. Jiang, H. Ma, and C. T. Chan, "Extending the bandwidth of electromagnetic cloaks," Phys. Rev. B 76, 241104(R) (2007).
[CrossRef]

A. Sihvola, "Peculiarities in the dielectric response of negative-permittivity scatterers," Prog. Electromagn. Res.pier- 66, 191-198 (2006).
[CrossRef]

W. C. Chew, Waves and Fields in inhomogeneous Media, 2nd ed, (IEEE Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(Color online) Electric field distribution of different simplified cylindrical cloaks illuminated by a vertically polarized and normally incident plane wave. Only scattered field is plotted outside of the cloak. R 2=1.5λ 0=2.08R 1. (a) Linear simplified cloak; (b) Impedance matched linear simplified cloak; (c) Impedance matched quadratic simplified cloak; (d) Impedance matched square root simplified cloak. From (a) to (d), the normalized RCS is 0.299, 0.125, 0.360 and 0.034, respectively.

Fig. 2.
Fig. 2.

(Color online) Comparison of the far-field differential normalized RCS of different simplified cylindrical cloaks illuminated by a vertically polarized and normally incident plane wave. R 2=1.5λ 0=2.08R 1.

Fig. 3.
Fig. 3.

(Color online) Dependance of normalized RCS (normalized to 2R 2) on incident angles for different simplified cloaks. R 2=1.5λ 0=2.08R 1.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

s × = [ 0 z ρ ϕ z 0 0 ρ ϕ 0 0 ] and ρ × = [ 0 0 0 0 0 ρ 0 ρ ρ ρ 0 ]
ρ × E ¯ s + s × E ¯ ρ = i ω ( μ ϕ ϕ ̂ ϕ ̂ + μ z z ̂ z ̂ ) · H ¯ s ;
s × E ¯ s = i ω μ ρ H ¯ ρ ;
ρ × H ¯ s + s × H ¯ ρ = i ω ( ε ϕ ϕ ̂ ϕ ̂ + ε z z ̂ z ̂ ) · E ¯ s ;
s × H ¯ s = i ω ε ρ E ¯ ρ .
ρ [ E z E ϕ H z H ϕ ] = [ 0 0 ink z ω ε ρ ρ i ω μ ϕ + ik z 2 ω ε ρ 0 1 ρ i ω μ z in 2 ω ε ρ ρ 2 ink z ω ε ρ ρ ink z ω μ ρ ρ i ω ε ϕ ik z 2 ω μ ρ 0 0 i ω ε z + in 2 ω μ ρ ρ 2 ink z ω μ ρ ρ 0 1 ρ ] · [ E z E ϕ H z H ϕ ] .
V ¯ ( ρ j + 1 ) V ¯ ( ρ j ) = Δ ρ T = ( ρ j ) · V ¯ ( ρ j )
V ¯ ( R 2 ) = [ j = 1 N ( I = + Δ ρ T = ( ρ j ) ) ] · V ¯ ( R 1 )

Metrics